
K-PIE: using K-means algorithm for Percentage Infection symptoms
Estimation
Vanessa Bueno-Sancho1*, Pilar Corredor-Moreno1, Ngonidzashe Kangara1 and Diane G.O.
Saunders*1

1John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
*For any queries contact: vbuens@gmail.com; Diane.Saunders@jic.ac.uk

Abstract
The K-means algorithm is one of the most effective clustering methods that has been widely
used in plant disease detection. Herein, we developed a script termed K-PIE (K-means
algorithm for Percentage Infection symptoms Estimation) that utilises the k-means algorithm
to analyse images of both yellow and stem rust infected wheat leaves to estimate the
percentage of disease symptoms based on colour analysis.

Introduction
Manual quantification of disease symptoms in plants is laborious and can lead to bias in the
results1. This has led to machine learning (ML) algorithms becoming increasingly popular for
automated image processing of plant disease symptoms2. ML algorithms based on image
segmentation have been used extensively for stress phenotyping3, identifying diseases 4 and
quantification of infection5,6. Image segmentation facilitates the identification of objects in
images and the grouping of pixels with similar characteristics. Several techniques for image
segmentation have been developed, including those based on thresholds, clusters, edge
detection, and neural networks7. One of the most effective methods are clustering-based
methods, of which the most widely used is the k-means algorithm. This algorithm is an
unsupervised method that segments the given data into groups (K-clusters) based on the k-
centroids8. These k-means algorithms present a simple solution that allows rapid quantification
of disease symptoms in images without supervision. Herein, we applied a k-means algorithm
for quantifying the percentage of disease symptoms in wheat leaves infected with the yellow
rust (YR) fungus (Puccinia striiformis f. sp. tritici) and the stem rust (SR) fungus (Puccinia
graminis f. sp. tritici).

Material and Methods
A python script was created to process input
images and estimate the percentage of infection
symptoms, which depending on the colour
selected could be pustules and/or include
chlorosis. The main script (k_pie.py) calls
functions from infection_functions.py, assuming
both scripts are in the same directory. The
following arguments are included in k_pie.py:
-p: positive control; image file of infected leaf.
-p_rgb: alternatively, RGB colour values as a
positive control.
-n: negative control; image file of uninfected leaf.
-n_rgb: alternatively, RGB colour values as a
negative control.
-i: input directory containing pictures to analyse.
-f: format of the input images (png, jpg or tiff);
default: .png.
-o: output directory for results; default: results.
-k: k value; default: 5.
The python package OpenCV9 was used for both
image processing and the k-means clustering

Figure 1. Illustration to show the
necessary input files and output files
created. A directory containing the images to
analyse, and two control pictures are
required. An output directory is created
containing a CSV file with the results, the
processed images and a pie chart
representing the colours of the clusters found
in the given images.

algorithm. This algorithm classifies the pixels of the image into k groups of different colours.
To determine the centre colours from a picture, the algorithm uses random centres until the
termination criteria are met i.e. when accuracy is equal to 1 or reaches 10 iterations. A total of
10 attempts are used for initial labelling. The python packages NumPy10 and Matplotlib11 are
also used for managing arrays and plotting figures respectively.
The python script first reads the control pictures, reshaping them to input them into the k-
means algorithm using k=10 (10 clusters). When the termination criteria are met, the centre
colours determined for each of the 10 clusters are saved and the percentage of each colour
found in the picture estimated. The most abundant colour for each control is saved as the
“standard value” for healthy and infected leaves. Alternatively, RGB colour values can be
given as positive and/or negative controls and those would then be used as the “standard
value” for healthy and infected leaves. RGB values have to be given as integers and separated
by commas as shown in results.
The input pictures are then analysed using the k-means algorithm as previously described
with the given k to calculate the centre colours. Each one of these values is then classified
into “healthy” or “infected”, depending on its closeness to the standard values. The percentage
of “infected” colours is estimated and output into the results.csv file.

Results
Using control images to find standard values
The K-PIE script takes three mandatory inputs: (i) An image of a healthy leaf as a negative
control (using the argument -n), (ii) an image of an infected leaf (argument -p), and (iii) an
input directory containing all images for analysis (Figure 1). The default format of the input
images is set as .png but can also be altered to .jpg or .tiff if appropriate using the -f argument.
Execution of k_pie.py using default values (k=5, output=results, image format=.png):

python k_pie.py -p infected.png -n healthy.png -i inputpictures/

Once complete, a directory containing the results is created. For each picture, a pie chart with
colours identified in the picture is created. A file in comma separated value (CSV) format is
generated that contains the percentage of infection estimated for each image and the k-value
used (Figure 2).
Using RGB colour values as standard values
Alternatively, the script can be executed using RGB values. This is the preferred option when
control pictures are not readily available or of poor quality. Alternatively, it can be used for
detecting a particular symptom e.g. pustules by colour. In this case, the values are given as
integer numbers (no decimals) and separated by commas.
Execution of python k_pie.py using default values (k=5, output=results, image format=.png):

python k_pie.py -p_rgb 205,133,63 -n_rgb 137,155,114 -i inputpictures/

As before, once the script has completed a directory containing the results is created (Figure
3).

Conclusion
This script illustrates how the k-
means algorithm can be used to
estimate the percentage of infection
in leaves displaying disease
symptoms. In addition, the use of
RGB values facilities the precise
quantification of sporulating area of a
leaf in the case of SR. This presents
a very simple solution for estimating
the percentage of infection symptoms
when quantifying images from a large
number of infected leaves. Whereas
many current methods require
substantial pre-processing by the
user (i.e. marking the area to
quantify), this tool allows you to
rapidly quantify disease symptoms in
a high-throughput manner.

Additional information
The python scripts k_pie.py and
infection_functions.py can be found in
the following GitHub repository:

https://github.com/vbuens/k_pie,
alongside the requirements for
executing the script.

Figure 2. K-PIE output using control images as input. A. Original and processed images. Left, original
images; right, images following processing. Axes represent number of pixels. B. Pie chart showing the
percentage of each colour identified in the image. Black-outlined section highlights the colour considered as
infected. Numbers represent percentages C. Results in CSV format. From the first picture, using 5 clusters
(k=5), the percentage infection was estimated as 17.66 %, whereas 71.17 % infection was estimated for the
second leaf.

Figure 3. K-PIE output using RGB colour values as
input. A. Original and processed images. Left, original
image; right, image after processing. Axes represent
number of pixels. B. Pie chart showing the percentage of
each colour identified. The black-outlined section
represents the colour considered as infected. Numbers
represent percentages. C. Representation of estimated
results in CSV format. For the given image, using 7
clusters (k=7), 5.02 % infection was estimated.

Author contributions
VBS conceived and designed the tool, prepared the figures and wrote the text. PCM and NK
provided images and tested the script. DGOS provided feedback on the text. All authors read
and approved the final report.

Funding
V.B.S. was supported by the BBSRC Norwich Research Park Biosciences Doctoral Training
Partnership (grant number BB/M011216/1), P.C.M. by the European Research Council (no.
715638), N.K. by the European Union’s Horizon 2020 research and innovation programme
under Marie Skłodowska-Curie (no. 674964) and John Innes Centre Science for Africa
Scholarship. Additional funding was provided to D.G.O.S. by the BBSRC Institute Strategic
Programmes BB/P016855/1 and BB/P012574/1, and the John Innes Foundation.

References

1. Bock, C. H., Poole, G. H., Parker, P. E. & Gottwald, T. R. Plant disease severity

estimated visually, by digital photography and image analysis, and by hyperspectral
imaging. CRC. Crit. Rev. Plant Sci. (2010). doi:10.1080/07352681003617285

2. Khirade, S. D. & Patil, A. B. Plant disease detection using image processing. in
Proceedings - 1st International Conference on Computing, Communication, Control
and Automation, ICCUBEA (2015). doi:10.1109/ICCUBEA.2015.153

3. Singh, A., Ganapathysubramanian, B., Singh, A. K. & Sarkar, S. Machine Learning for
High-Throughput Stress Phenotyping in Plants. Trends in Plant Science (2016).
doi:10.1016/j.tplants.2015.10.015

4. Camargo, A. & Smith, J. S. An image-processing based algorithm to automatically
identify plant disease visual symptoms. Biosyst. Eng. (2009).
doi:10.1016/j.biosystemseng.2008.09.030

5. Hitimana, E. & Gwun, O. Automatic Estimation of Live Coffee Leaf Infection Based on
Image Processing Techniques. arXiv preprint. (2014). doi:10.5121/csit.2014.4221

6. Wijekoon, C. P., Goodwin, P. H. & Hsiang, T. Quantifying fungal infection of plant leaves
by digital image analysis using Scion Image software. J. Microbiol. Methods (2008).
doi:10.1016/j.mimet.2008.03.008

7. Bhanu, B. & Lee, S. Image segmentation Techniques. Genetic Learning for Adaptive
Image Segmentation. Springer US (1994). doi:10.1007/978-1-4615-2774-9_2

8. Pal, N. R. & Pal, S. K. A review on image segmentation techniques. Pattern Recognit.
(1993). doi:10.1016/0031-3203(93)90135-J

9. Bradski, G. R. & Kaehler, A. Learning OpenCV - computer vision with the OpenCV
library: software that sees. O’Reilly (2008). doi:10.1109/mra.2009.933612

10. Oliphant, T. E. Python for scientific computing. Comput. Sci. Eng. (2007).
doi:10.1109/MCSE.2007.58

11. Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. (2007).
doi:10.1109/MCSE.2007.55

