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Abstract—In recent years, the shift to Distributed Generation
(DG) and the use of smarter domestic appliances has led to an
increasing integration of power electronics (active infeed convert-
ers, power drive systems etc.) at the household level. However,
the use of more power electronics results in the generation of
highly distorted currents entering the distribution grid. Previous
research shows that such current waveforms can cause large
errors in static electricity meters. Thus, there is an imperative
need to study the characteristics of these current waveforms
and their impact on meter readings by performing extended
measurements in households. Since it is not practical to store
all the high granularity waveform data of such measurements,
suitable detection methods and trigger levels need to be defined
to only capture the potentially problematic current waveforms.
In this paper, signal processing techniques (differentiation, Short
Time Fourier Transform and Wavelet Transform) are applied to
current signals in order to extract features suitable for use as a
trigger. Results show that the Discrete Wavelet Transform and
the filter with derivative method give the most promising results
and work reliably even for very noisy signals.

Index Terms—Power Quality, Static Meters, Short Time
Fourier Transform, Wavelet Transform, Multiresolution Signal
Decomposition.

I. INTRODUCTION

The increasing integration of Renewable Energy Sources
(RES) and the emerging smart grid technologies, employing
large amount of power electronics, have stressed the need for
better control of the production and distribution of electric-
ity. In that respect, traditional electro-mechanical electricity
revenue meters are being replaced with static energy meters
with communication capabilities for data transfer. Enhanced
control in balancing power generation and load consumption
is achieved and demand-response mechanisms arise, allowing
residents to manage their energy consumption easier and more
effectively. However, the use of more power electronics results
in the generation of highly distorted currents, entering the
distribution grid. In addition to the generated high frequency
harmonics (between 2-150 kHz), some of these currents are
characterized by sharp transitions with very short rise times
which can cause EMI [1], [2]. Such phenomena, mainly
observed when non-linear, fast switching loads are connected,
can result in large errors in static electricity meters.

In [3], [4] it is shown that, for three-phase energy meters,
large deviations exist in certain cases. In both studies various
loads were used, including an electric heater (resistive load), a

string of CFL lamps and a string of LED lamps. These loads
were controlled by a dimmer creating a phase-fired waveform,
effectively suppressing the first part of each half-cycle to zero.
Large negative errors were observed when the dimmer angle
was set to 90◦. However, the most erroneous cases with large
positive errors were observed when the dimmer angle was set
to 135◦. For the aforementioned studies, static meters with
different types of current sensors were used, such as current
transformers, Hall sensors and Rogowski coils. Readings taken
by meters with Rogowski coil sensors turned out to be dra-
matically higher compared with the electromechanical meter
[3], [4]. As a measurement with a Rogowski coil results in a
time derivative of the current, the measurement signal has to
be integrated. In [3], [4] it is speculated that active integration
is used instead of passive integration, and the input electronics
are pushed in saturation caused by the short rise-time of the
current.

The voltage and current measurements shown in Fig. 1
correspond to one of the most disturbing signals, described in
[4], for a combination of non-dimmable LED and CFL lamps,
used with a dimmer set to 135◦. The requirements for the static
meters, as described in the standard EN 50470-3 [5], limits the
rise time to be at least 0.2 ms. However, the rise time of the
current signal depicted in Fig. 1a is less than 50 µs resulting
in harmonics that extend up to many kHz (see Fig. 1b).

In order to study the characteristics of these current wave-
forms and their impact on meter readings extended on-site
measurements at real metering connection points need to be
performed to capture potentially problematic currents of the
type thought to cause meter errors. Since it is not practical
to store all the data of such measurements, suitable detection
methods and trigger levels need to be defined for capturing
only the current waveforms causing the meter errors. Thus,
algorithms suitable for detecting such waveforms are devel-
oped and tested on a known disturbing current signal.

In Section II the Short Time Fourier Transform and the
Wavelet Transform, suitable for processing non-stationary
signals, are briefly described. Four detection methods are
presented in Section III and tested on a disturbing current
waveform. In Section IV a sensitivity analysis is performed for
the choice of the mother wavelet used in the discrete wavelet
transform, which turned out to be the most promising detection
method. Section V gives the conclusions.
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Fig. 1. (a) Voltage and current waveforms for a combination of non-dimmable
LED and CFL lamps, used with a dimmer set to 135◦ and (b) the harmonic
content of the current signal.

II. PROCESSING OF NON-STATIONARY SIGNALS

It is often useful to apply mathematical transformations to
time domain waveforms, in order to extract more features and
analyse certain characteristics of the signals. Power system
voltage and current waveforms vary with time, so processing
methods suitable for the analysis of non-stationary signals, in
particular the Short Time Fourier Transform (STFT) and the
Wavelet Transform, are described in this section.

A. Short Time Fourier Transform

The STFT is used to decompose the non-stationary signal
in time-frequency components, since the frequency content of
the signal is changing with respect to time [6], [7]. For a given
signal x(n) the discrete STFT is defined as:

Xn(e
jωk) =

∑
m

x(m)w(n−m)e−jωkm (1)

k = 0, 1, ..., N − 1

where k and n denote the frequency band and time instant
respectively, ωk is the frequency in radians and w(m) is a
selected symmetric window function.

Using the STFT, it is possible to estimate the frequency
contents of data as a function of time using sliding window
functions. Since the derivation of the Discrete Fourier Trans-
form (DFT) strictly requires the signal x(n) to be periodic,
special care should be taken for the choice of the window
function in order to minimize possible leakage of signal
components from the neighbouring frequency bands. The main
disadvantage of this method is related to the time-frequency

resolution constraint, i.e. the product of the time resolution
and the frequency resolution is constrained by the uncertainty
principle (Parceval’s theorem) [7], [8]. The STFT assumes
local periodicity within a continuously translated time window,
thus the time period of each window fixes the frequency
resolution.

Multiple resolutions in time and frequency are needed when
power signals containing a fundamental frequency superim-
posed with transients are studied. More specifically, fine time
resolution for short duration and high frequency signals, and
fine frequency resolution for long duration and lower fre-
quency signals are desirable. This provides accurate location
of the transient component while simultaneously retaining
information about the fundamental frequency and its low-order
harmonics [9].

B. Wavelet Transform

The disadvantage of STFT concerning the fixed time-
frequency resolution can be overcome with the use of the
Wavelet Transform. The wavelet transform analysis is sensitive
to signals with irregularities and is an appropriate tool to detect
and localise power quality disturbances [10].

The Continuous Wavelet Transform (CWT) of a signal x(t)
is defined as:

CWTψx(a, b) =Wx(a, b) =

∫ +∞

−∞
x(t)ψ∗a,b(t)dt (2)

where the asterisk denotes a complex conjugate and

ψa,b(t) = |a|−1/2 ψ
(
t− b
a

)
(3)

is the mother wavelet and a, b are the dilation and translation
parameters. Fig. 2 demonstrates how the frequency resolution
changes with respect to time by expanding and contracting the
mother wavelet using parameter a while parameter b allows the
various scale wavelets to be moved across the time axis. Here
lies the main difference between the Wavelet Transform and
STFT since for the latter the tiling of the time-frequency plane
(window) is fixed where short duration window generates
low time uncertainty and major frequency uncertainty, and
vice versa. Thus, in power quality analysis, long duration
disturbances have higher frequency and lower time resolution
while fast disturbances have increased time and decreased
frequency resolution [11].

To optimise computational efficiency, the mother wavelet
may be dilated and translated discretely by selecting a and b
such that:

ψm,n(t) = a
−m/2
0 ψ

(
t− nb0am0

am0

)
(4)

and the corresponding Discrete Wavelet Transform (DWT) is
given by:

DWTψx(m,n) =

∫ +∞

−∞
x(t)ψ∗m,n(t)dt (5)

With appropriate selection of a0 and b0 it is possible to have
an orthonormal wavelet transform and use the multiresolution
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Fig. 2. CWT time-scale plane.

signal decomposition (MSD) technique [11]. By using the
MSD technique, the input signal is decomposed into two other
signals; one is the smoothed version of the initial signal (which
can be further decomposed), and the other is the detailed
version of the initial signal that contains the sharp edges,
transitions, and jumps.

A recorded digitized time signal, c0(n), is decomposed into
its detailed, d1(n), and smoothed, c1(n), wavelet coefficients
using a bandpass filter, g(n), and a lowpass filter, h(n),
respectively.

c1(n) =
∑
k

h(k − 2n)c0(k) (6)

d1(n) =
∑
k

g(k − 2n)c0(k) (7)

Higher-order decompositions are then performed in a similar
manner taking the smooth wavelet coefficients, c1(n), as
the signal to be decomposed again into smooth, c2(n), and
detailed, d2(n), wavelet coefficients. The procedure is shown
in Fig. 3. At each decomposition level, the lengths of the
wavelet coefficients are half of the length of the signal in
the previous level [12], [13]. This scaling provides the DWT
with logarithmic frequency coverage in contrast to the uniform
frequency coverage of the STFT.
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c0(n)

d1(n)

c1(n)

c2(n)

d2(n)

h(n)

g(n)

h(n)

g(n)

Fig. 3. A two level signal decomposition of c0(n) into c2(n), d2(n) and
d1(n).

In most publications the highest frequency band is used to
detect sudden changes in the waveform. This filter has the
shortest filter length and thus gives the best time localization.
Different authors use different mother wavelets. The two

most commonly used ones are the Morlet wavelet and the
Daubechies wavelet. A problem in the practical implementa-
tion of the wavelet-based triggering method is the noise in the
filter outputs when using actual measurements.

III. DETECTION ALGORITHMS COMPARISON

In order to detect current waveforms causing meter errors,
four methods are developed and tested on the disturbing
current signal depicted in Fig. 1a:

1) Since the rise time of the current waveform might be
related to the cause of false static meter readings [1],
[3], [4] the most straightforward indicator to detect such
wave shapes is the calculation of their derivatives. Thus,
the first method is the calculation of the dI/dt.

2) Furthermore, due to the steep rise of the current wave-
form higher frequency harmonics are created. Thus, the
second method to be tested is the Short-Time Fourier
Transform (STFT).

3) For the same reason, the wavelet transform is tested
using the continuous formulation (CWT).

4) Accordingly, the discrete wavelet transform (DWT) is
tested.

The voltage and current measurements of Fig. 1a have a
sampling rate of 1 MHz and the acquisition window is 10
power cycles. To imitate conditions existing in actual field
measurements, white Gaussian noise is added in the studied
current waveform, where the signal to noise ratio is chosen as
20 dB.

The first derivative of the current waveform is shown in
Fig. 4. Using the differentiation method, the current spikes
are clearly depicted in their derivatives, where at the time of
the steep transitions the derivative magnitudes are significantly
higher (see Fig. 4a). However, when noise is added in the
current measurement, it is impossible to detect the spikes since
it is highly sensitive and imbedded with noise (see Fig. 4b).
In order to suppress the noise a Gaussian filter is applied to
the current signal and then the derivative is calculated. As
presented in Fig. 4c, when the current waveform is filtered
using the Gaussian filter, the first-order derivative succeeds in
capturing the current transitions.

For the STFT, a window of one power cycle is used (which
translates into a frequency step of 50 Hz) with a slide step
of 1% of the power cycle. To minimize leakage a hamming
window is chosen and at the end the harmonic content
magnitude is scaled according to the window length and
amplification. The frequency content of the current waveform
through time is shown in Fig. 5. From the higher frequency
content disturbances are visible between 0 s and 0.005 s and
between 0.01 s and 0.015 s which correspond to the fast
current transitions. However, it is not possible to accurately
localize the disturbance since its spectrum is spread in a wide
time period. The main disadvantage of this method is related
to the time-frequency resolution constraint.

For the CWT, the Morlet wavelet is chosen as mother
wavelet and 148 scales were used for the calculations. The
CWT of the noisy current waveform is presented in Fig. 6.
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Fig. 4. First derivative of the current waveform (a) without noise, (b) with
white Gaussian noise and (c) when a Gaussian filter is applied to the noisy
current signal.

Fig. 5. Frequency spectrum with respect to time of the current waveform
with white Gaussian noise.

It is clear that the use of the wavelet transform can localize
the disturbances more accurately in time compared with the

STFT. This is due to the multiresolution characteristic of the
wavelet transform.

Fig. 6. Continuous wavelet transform of the current waveform with white
Gaussian noise.

Since the CWT is achieved by dilating and translating
the mother wavelet continuously, it generates substantial re-
dundant information and requires high computational time.
Therefore, instead of continuous dilation and translation, it is
preferable that the mother wavelet is dilated and translated
discretely by selecting appropriate dilation and translation
parameters. For the DWT, the Daubechies wavelet with two
filter coefficients (db2) is used as mother wavelet and a four-
level decomposition is performed. In Section IV, a comparison
of the performance between various mother wavelets is con-
ducted.

The DWT coefficients of the current waveform with the
addition of white Gaussian noise is shown in Fig. 7. Each
coefficient is related to a frequency band where for d1 is 250-
500 kHz, for d2 is 125-250 kHz, for d3 is 62.5-125 kHz and for
d4 is 31.25-62.5 kHz. As described in [14], using the Taylor
series approximation it is proved that the wavelet transform
reacts the most to the gradient of the signal. Thus, the wavelet
transform is sensitive to signal irregularities similar to the
sharp edges of the current shown in Fig. 1a but insensitive to
the steady-state behaviour of the signal. The first two detailed
coefficients d1 and d2 are very noisy but the disturbances start
to become detectable for both d3 and d4. The higher level
detailed coefficients are capable of detecting the timings of
the fast sharp current rise (having high dI/dt), making clear
that DWT is suitable for detecting these kind of disturbances.

In order to enhance the magnitude of the associated dis-
turbance coefficients and to suppress the magnitude of the
noise-related coefficients, all wavelet transform coefficients are
squared [12]. The result for squared d4 is shown in Fig. 8.
In this case, the detection of the disturbances becomes clear.
Thus, it can be concluded that the use of squared wavelet
coefficients (of higher scale) for noisy signals is a strong
indicator for disturbance detection.
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Fig. 7. Discrete wavelet transform of the current waveform with noise, where
d1-d4 are the level 1-4 wavelet detailed coefficients.
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Fig. 8. Squared wavelet detailed coefficients at level 4 for the current
waveform with noise.

Since the processing of the waveforms and possible dis-
turbance detection should be performed in real time the
computation time required by each transform is of utmost
importance. For this study, the signal processing is performed
in Matlab2018a software using a data window of 10 power
cycles with a sampling frequency of 1 MHz. Table I shows
the computational time needed for each method, as calculated
by Matlab’s ”tic toc” function.

As expected, the derivative is the fastest method while the
CWT is by far the slowest. The DWT is more optimized since
it does not contain all the redundant information of CWT
and thus, its computational time is approximately 100 times
less than the one of CWT. More specifically, DWT requires

TABLE I
COMPARISON OF COMPUTATIONAL TIME NEEDED FOR EACH

TRANSFORMATION METHOD USING A DATA WINDOW OF 10 POWER
CYCLES WITH A SAMPLING FREQUENCY OF 1 MHZ.

Filtered STFT CWT DWTderivative
Computational 0.0087 0.7630 2.7405 0.0262time (s)

26.2 ms to analyse a 10 cycle (200 ms) window waveform
which makes it a realistic method for real time processing
of waveform data. It is observed that the calculation of the
filtered derivative is approximately three times faster than the
calculation of the discrete wavelet transform.

IV. SELECTION OF MOTHER WAVELET

In power quality disturbance detection, the disturbances can
be classified into two categories, i.e. fast and slow transients. In
the fast transient case, the waveforms are characterized with
sharp edges, rapid changes, and short duration while in the
slow transient case, the waveforms are characterised with a
slow change or smooth amplitude change. The choice of a
mother wavelet for the DWT and its performance depend on
the type of disturbance to be analysed [10]. In Section III db2
was chosen as mother wavelet because Daubechies functions
(with 2 or 4 filter coefficients) are the most commonly used
in literature when analysing power quality disturbances [10],
[12]. Since the choice of the mother wavelet strongly affects
the magnitudes of the detailed coefficients, it is important to
thoroughly investigate the behaviour of the various mother
wavelets.

The comparison indicator between the mother wavelets is
chosen to be the maximum squared magnitude of detailed co-
efficient d4. Fig. 9 illustrates the maximum squared values of
coefficients d4 of the current waveform for the the Daubechies’
(Fig. 9a), the Coiflets (Fig. 9b), the Symlets (Fig. 9c), and
the biorthogonal (Fig. 9d) wavelet families [15]. Daubechies,
Coiflets, and Symlets are orthogonal wavelets which can be
entirely defined by the scaling filter (a low-pass finite impulse
response filter). On the other hand, in biorthogonal wavelets,
separate decomposition and reconstruction filters are defined.
It is observed that the mother wavelet which produces the
highest magnitude coeffcients is biorthogonal 1.5. The second
best is db2, which was the one used in the previous analysis.
With respect to computational time needed to perform DWT,
all mother wavelets give similar results.

V. CONCLUSION

This paper evaluates the use of signal processing techniques
to extract features from disturbing current signals that could
be used as a waveform data capture trigger mechanism when
to perform extended on-site measurements at meter connection
points.

Four detection methods are compared both for their ac-
curacy in detecting sharp transitions in a specific disturbing
signal (used as an extreme example) in a noisy environment
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Fig. 9. Maximum value of wavelet coefficient D4 of the current waveform for
(a) the Daubechies’ (b) the coiflets (c) the symlets and (d) the biorthogonal
wavelet family.

and for their computational time, since real time implemen-
tation is essential. It can be concluded that both the DWT
and the Gaussian filtered derivative give the most promising
results, since they can accurately detect the steep current fronts
with high time accuracy even when high levels of white
Gaussian noise are added in the measurements. Comparing
the two methods, the calculation of the filtered derivative is
approximately three times faster than the calculation of the
DWT.

Finally, a sensitivity analysis for the mother wavelet, used
in DWT, is performed to choose the most suitable mother
wavelet for the studied type of disturbance using the maximum
absolute magnitude of detailed coefficient d4 as comparison
indicator. Biorthogonal 1.5 and db2 resulted in the highest
magnitudes while with respect to computational time all

mother wavelets gave similar results.
Future work will focus on the application of the suggested

detection algorithm on an extended set of test current wave-
forms, both problematic and non-problematic. The analysis
will aim for the definition of a proper global trigger limit for
one of the detailed wavelet coefficients to be able to identify
the current waveforms which result in meter errors.
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