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Abstract. The Unmanned Aerial Vehicle (UAV) proliferation has raised
many concerns, since their potentially malicious usage renders them as a
detrimental tool for a number of illegal activities. Radar based counter-
UAV applications provide a robust solution for UAV detection and classi-
fication. Most of the existing research addresses the problem of UAV clas-
sification by extracting features from the time variations of the Fourier
spectra. Yet, these solutions require that the UAV is illuminated by the
radar for a longer time which can be only met by a tracking radar archi-
tecture. On the other hand, surveillance radar architectures don’t have
such a cumbersome requirement and are generally superior in maintain-
ing situational awareness, due their ability for constantly searching on a
360◦ area for targets. Nevertheless, the available automatic UAV classi-
fication methods for this type of radar sensors are relatively inefficient.
This work proposes the incorporation of the deep learning paradigm
in the classification pipeline, to provide an alternative UAV classifica-
tion method that can handle data from a surveillance radar. Therefore,
a Deep Neural Network (DNN) model is employed to discern between
UAVs and negative examples (e.g. birds, noise, etc.). The conducted ex-
periments demonstrate the validity of the proposed method, where the
overall classification accuracy can reach up to 95.0%.
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1 Introduction

Considering their increasing popularity, UAVs have been devised to assist people
in their daily activities because of their ease of use and robustness across various
environments. They have been rendered as an efficient solution to a number of
useful applications ranging from advanced cinematography to wildlife surveil-
lance and package delivery. On the other hand, it is not uncommon for those
technological advancements to be also used for malicious purposes. In particular,
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UAVs have been reported in many illegal activities, such as espionage, carrying
explosives for terrorist attacks or provocative messages in crowded events. Find-
ing an effective solution to this potential threat, that can reliably detect and
classify incoming UAVs, around a protected area has been an active research en-
deavor. Different modalities have been explored both in scientific literature and
industry for UAV detection and classification, including optical, thermal, acous-
tic and radar data. The latter have been proved to be very effective in detecting
flying vehicles and objects, and is being employed for decades in pertinent appli-
cations. Yet, typical radar sensors designed for detecting manned aircraft, with
large Radar Cross Section (RCS) measurement [1] and high velocity, are not
suitable for detecting very small and slow moving objects, flying at low altitude
such as UAVs [2]. Moreover, UAVs share similar cues with birds and thus clas-
sifying between the two targets is another major challenge. Towards this end,
specifically designed radar architectures have been devised for this demanding
application that overcome such burdens.

The available radar architectures employed in literature for target detec-
tion can be divided in two broad categories: surveillance and tracking radars
[3]. Surveillance radars provide 360◦ continuous coverage as they operate with
a rotating antenna to detect and track multiple targets at the same time [4].
On the other hand, tracking radars retain their antenna to a specific direction
of a designated target, illuminating it for sufficient time which enables for tar-
get classification through the analysis of time variations of the Fourier spectra
(e.g. target velocity, Doppler and micro-Doppler signatures [5]). In particular,
the micro-Doppler (m-D) signature of UAVs has been widely employed within
literature for classification purposes [2, 6–9]. The typical detection and classi-
fication pipeline is to perform radar signal processing algorithms for detecting
targets (e.g. CFAR detection algorithm) [4] and extract intrinsic features from
the processed signal (m-D signature) [8, 10] for automatic classification.

Despite the promising classification capabilities that tracking radars have
proved to withhold, the volatile nature of UAVs can make this type of solution
ineffective in a real world application. Extracting the m-D signature from a non
cooperative target with high maneuverability can prove to be a challenging task
and most of the research has been conducted in ideal scenarios, in close flight
range. On the other side, a surveillance radar seems like a more appropriate
choice for the task at hand because it is designed to constantly search the pro-
tected space for new targets, hence providing 360◦ coverage and protection at
all times. Nevertheless, the time for which a surveillance radar illuminates the
target is not long enough to allow for deeper analysis of the intrinsic charac-
teristics of the target through the Fourier spectra which creates a drawback in
the classification capabilities of the radar. This has driven UAV classification
methods with surveillance radars in the literature to utilize mostly target mo-
tion information by creating handcrafted kinematic features (e.g. motion tracks,
velocity) [11] or building probabilistic motion estimation models [12] and less
often through radar signature features derived from Range Profiles and Range
Doppler matrices (e.g. RCS, Signal to Noise Ratio (SNR), mean amplitudes,
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etc) [13]. However, those methods heavily rely on specific handcrafted features
omitting the rich information cues available on the Range Profiles Matrix.

Deep Neural Networks (DNNs) have been proved very efficient in discovering
high-level and abstract features directly from data [14]. This work proposes a
novel UAV classification method based on a custom Convolutional Neural Net-
work (CNN) [15] architecture that classifies detected targets between UAVs and
negative examples (i.e. birds, noise, etc.). The proposed network learns directly
from the Range Profiles Matrix signature of the detected target alongside with
radar signature features derived from both Range Profiles and Range Doppler
matrices, such as Radar Cross Section (RCS), Signal to Noise Ratio (SNR) and
radial velocity. We train and evaluate our proposed network with real radar mea-
surements performed from a X-band Linear Frequency Modulated Continuous
Wave (LFMCW) surveillance radar operating at 9.35 GHz. To the best of au-
thors knowledge, this is the first attempt to utilize the available radar signature
information, as an input to a DNN model, so as to learn the intrinsic character-
istics of the targets directly from data. The main contributions of this work can
be summarized as:

• Demonstrate how the Range Profiles Matrix data can be utilized for auto-
matic UAV classification.

• Propose a custom CNN network architecture that discriminates detected
targets between UAVs and negative examples.

2 Related Work

The brief literature review is focused on UAV detection and classification meth-
ods for tracking and surveillance radars.

2.1 Tracking Radars

In recent years, the m-D signature has been the most commonly employed fea-
ture for UAV classification in the field of counter-UAV radar based applications.
It is mainly utilized as a signal pre-processing step to extract features combining
them with state of the art machine learning and deep learning algorithms for
automatic target classification. Among the first who utilized the m-D signature
for UAV classification were [7]. The authors extracted the m-D signature with
the Short Time Fourier Transform (STFT) and proposed to utilize key charac-
teristics such as rotation rate, blade tip velocity, rotor diameter and number of
rotors to classify between four different rotary wing UAVs. In a similar work,
Harmanny et al. [9] proposed to extract m-D features from spectrograms and
cepstrograms with a low power Continuous Wave (CW) tracking radar operating
at X-band for a potential two step classification process that initially classifies
UAVs versus birds and subsequently classifies the type of UAVs based on the
number of rotors. Molchanov et al. [2] studied the problem of UAV classification
for a CW tracking radar operating in X-band at radio frequency of 9.5 GHz.
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Eigenpairs were extracted from the correlation matrix of the m-D signature and
were employed as intrinsic features to train three classifiers, a linear and a non-
linear Support Vector Machine (SVM) and a Naive Bayes Classifier (NBC) to
classify between different UAV wing types and birds. De Wit et al. [6] considered
a m-D feature extraction method based on singular value decomposition (SVD)
to classify UAVs and birds with a X-band CW tracking radar sampled at 96
kHz. The authors proposed three main features to allow for quick classification:
target velocity, spectrum periodicity, and spectrum width.

In an effort to extract the m-D signature with a non-Fourier algorithm, Oh
et al. [8] proposed an empirical-mode decomposition (EMD) based method for
automatic UAV classification. A nonlinear SVM was trained for target class label
prediction after feature normalization and fusion. The authors validated their
method on the same dataset as [2] outperforming common Fourier based m-D
extraction methods.

The first work that utilized CNNs to learn directly from the m-D signature
spectrograms and classify UAVs was [10]. The authors employed GoogleNet [16]
and trained it with spectrograms from real UAV measurements from a FMCW
radar. In addition, they proposed a method to improve the m-D signature results
by merging it with its frequency domain representation, namely the cadence
velocity diagram (CVD). Mendis et al. [17] utilized a deep belief network (DBN)
[18] for UAV classification using a S-band CW tracking radar. The authors
experimented with three different UAV types two rotary and one fixed wing. The
spectral correlation function (SCF) was employed to identify unique modulations
caused by the many dynamic components of the target of interest.

2.2 Surveillance Radars

UAV classification methods that utilize a surveillance radar are not as common
in literature. A similar work to ours is [13] where the authors proposed a binary
classification method to distinguish between UAV and bird tracks with data
captured under a surveillance radar. The authors adopted a set of twenty features
based on movement, velocity and target RCS extending the works of [11] and
[19] that initially proposed a similar approach to classify aircraft and bird tracks.
The handcrafted features are combined with a Multi Layer Perceptron (MLP)
classifier demonstrating high classification accuracy. We utilize a deep learning
network to learn directly from the data combining some typical radar features
instead of relying on handcrafted features entirely. Furthermore, we work on
each detection separately instead of utilizing tracks, which are groups of multiple
detections across time.

A different approach based on motion information only is [12]. The authors
proposed a probabilistic motion model estimation method based on calculating
the time-domain variance of the model occurrence probability in order to classify
between UAVs and birds with data originating from a surveillance radar. They
validated their approach on simulated and real data showing promising results.
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3 Proposed Pipeline

3.1 Radar Parameters

The radar sensor that is utilized to acquire data, constantly scans within the
range and azimuth domain. Thus, this 2D radar omits altitude information from
the localization of the detected target. In particular, it is a X-band LFMCW
surveillance radar that operates at 9.35 GHz, with a transmitted power of 4
W and a Pulse Repetition Frequency (PRF) of 3.3 kHz. The radar antenna
elevation angle is usually set to around 20◦ and the radar antenna performs
20 full revolutions per minute. The max detected range is configurable, ranging
from 600m up to 4km, with different range resolutions. Both short range and
long range configurations were picked during the data creation process.

3.2 Signal Processing

The raw data acquired by the 2D radar are a matrix of complex values, referring
to In-phase and Quadrature receiver channels. The two dimensions of the matrix
represent fast time and slow time signal information [4]. Each column represents
a sweep, and rows represent the sampling of the LFMCW signal. The number
of rows is fixed by the sampling frequency of the received signal (around 600
samples), the number of columns depends on the PRF and on the duration of
the acquisition.

Raw data are processed by calibration, radar equation correction, and Fast
Fourier Transform (FFT) along the direction of fast time, in order to obtain
the Range Profiles Matrix of RCS values [4]. The Range Profiles Matrix is also
a matrix of complex values; although, its two dimensions now represent range
and slow time values. Slow time instances can be also interpreted to identify
azimuth values. To detect targets, Range Profiles are divided in samples, each
sample refers to a specific range cell (rows of the matrix) and the slow time
or azimuth instance correspondents (columns of the matrix). These samples are
processed by FFT along slow time direction, also referenced as Doppler direction
in literature [4], and the result is a list of detections. This process produces the
Range Doppler Matrix of RCS values in range and radial velocity dimensions.
The local maximum points of the Range Doppler Matrix represent potential
detected targets. These points are processed by clustering and produce a list
of detections in range and radial velocity domain (rows and columns of Range
Doppler Matrix). The same rows and columns correspondents can be used to
extract the Range Profile Matrix signature of each detection. This is the first
input to the proposed DNN model.

A set of radar signature features can be extracted from the Range Doppler
Matrix and are used as the second input to our DNN model. Those would be
RCS of the target, which is the detection amplitude. The Signal to Noise Ratio
(SNR), which is the ratio between the detection amplitude versus the mean
amplitude in the same range of the detection. And finally, the radial velocity of
the detected target.
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Fig. 1. UAV classification Network architecture

3.3 UAV Classification Pipeline and DNN Model

UAV Classification Pipeline. The input to our proposed UAV classification
method is a list of detections and radar features derived from classic radar signal
processing algorithm [4]. Our DNN model yields an inference whether a detected
target is a UAV or a negative example (e.g. bird, noise, etc.) based on the signa-
ture of the target, provided by the radar. The network is trained in a supervised
manner, by utilizing a dataset consisting of multiple UAVs and negative example
detections.

Network Architecture. The basic building block of our proposed model are
the Convolutional Neural Networks (CNNs) [15]. Driven by their unprecedented
success in tasks, such as image recognition [20] and object detection [21], we
designed our model from scratch, following a similar architectural design, as it is
depicted in Figure 1. To the best of our knowledge, there are no recommended
DNN architectures based on literature that solve the problem at hand.

We opt for a two branch architecture to handle the analysis of Range Profiles
Matrix signature, separately from the radar features, and concatenate the output
feature maps of both branches before the fully connected layer for joint training.
The Range Profiles Matrix branch is consisted of two 1D CNN blocks with 128
and 64 output convolution filters each followed by a ReLU activation layer, an
average pooling layer and a dropout layer. The radar features branch consists
of a single 1D CNN layer with 64 filters followed by a ReLU activation and a
dropout layer. The output of the fully connected layer is the probability of the
input sample under test, to be one of the two existing classes (UAVs and negative
examples) assigned by a Softmax activation function.
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4 Experiments

4.1 Training and Testing Settings

The proposed DNN is trained from scratch and we use the Xavier initialization
for the initial weight values. The dropout layers probability is p = 0.5 and
is applied to prevent overfitting effects. The objective function is set to be the
categorical cross entropy. We utilize the Adam optimizer with initial learning rate
of 0.001. To achieve the best UAV recall possible, we keep every prediction with
a probability above 0.5 for UAV class as a UAV prediction. The Range Profiles
matrix input samples have size of 126 × 4 and we utilize the magnitude of each
complex number before feeding it as input to the DNN. The three additional
radar signature features are concatenated beforehand and then are being fed to
the model. The network was trained for 100 epochs with a batch size of 128. All
experiments were performed on a NVIDIA GeForce 1070 with 8GB memory.

4.2 Dataset description

To train and evaluate our proposed model, we performed real radar data ac-
quisitions with multiple UAVs flying under different flight plans, both close to
the radar (50 to 600m), as well as far away (up to 2km). External GPS trackers
were attached on top of the deployed UAVs, to provide ground truth trajecto-
ries, thereby enabling easier annotation for the training and evaluation of the
proposed method. Each radar detection has a ground truth label assigned to it,
for measuring how close is the detection to the GPS ground truth trajectory. A
total of 4.5 hours of recorded data were collected to form a dataset with sufficient
amount of data for a DNN model. By this dataset, two acquisitions were utilized
for evaluating the DNN model, which include multiple UAVs (up to 5 drones)
that soar in the sky with distinct patterns. The samples that were utilized for
the training of the classifier were evenly selected, with respect to a balanced dis-
tribution between the available classes. The selected samples utilized for training
purposes, include 2536 UAV and 2594 negative samples. Furthermore, the two
test acquisitions utilized for testing the method include 2038 UAV and 1371
negative samples.

4.3 Evaluation

Table 1 illustrates the confusion matrix with detailed classification results of
our DNN model, for both classes and all the detection samples under testing
examination. The metrics that are utilized are the per class precision, recall
and F-1 score, as well as the overall classification accuracy. Per class metrics
are depicted in Table 2. It can be observed that the model yields a substantial
performance in all metrics, achieving a remarkably high score, where the average
precision and recall are 94.48 % and 95.55 % respectively. It turns out, the model
can reliably distinguish between radar signatures, which belong to UAVs and
those that can be whatever object, such as a bird or noise. Another factor that
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indicates the superior classification capabilities of the model, is the near perfect
UAV precision score of 98.79 %. By the total number of samples, only 23 negative
ones are falsely classified as UAVs. The model’s overall classification accuracy
(correctly classified samples to total samples) is 95.0 %.

Table 1. Confusion matrix with classification results for the testing set

Classified UAV Classified Negative GT samples

Label UAV 1891 147 2038
Label Negative 23 1348 1371

Table 2. Per class Precision, Recall and F1 score metrics for the testing set

Precision (%) Recall(%) F1 score(%) GT samples

Label UAV 98.79 92.78 95.69 2038
Label Negative 90.16 98.32 94.07 1371

AVG/Total 94.48 95.55 94.88 3409

The two distinct flights employed for testing the model’s performance, were
carried out under close range configuration, flying in distances up to 450m from
the radar. In Figure 2 we adduce the per distance UAV precision and recall
metrics, in an attempt to examine how the range factor affects the performance
of the classifier. It can be observed that relatively closer to the radar (up to 200m)
the proposed model seems to classify some of the UAV samples as negative, thus
the UAV recall is below 90 %. However, at mid-range (≥ 200m) both UAV
precision and recall are above 90 %. Finally, we present qualitative results of our
model on Figure 3, where we have included the model predictions for one of the
testing acquisitions. On the left part, the flight plan GPS trajectory followed by
5 UAVs flying next to each other is depicted. On the right part, we present the
predicted results of our model on the radar detections of this flight. We show
UAV predictions with blue color and negative example ones with red. Our model
can reliably recognize the UAVs that are flying within the area covered by the
surveillance radar.

5 Conclusion

This work presents a deep learning based UAV classification pipeline that uti-
lizes data from a surveillance radar. The proposed method has been evaluated
on a dataset of real radar data acquisitions with UAVs. This study provides
an alternative pathway to the radar research community, for automatic target
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Fig. 2. Per distance precision and recall for the both recordings of the testing set.

classification algorithms. As future work, we intend to extend the model’s archi-
tecture, so as to recognize the wing type of UAV and also to incorporate earlier
samples from the sequence, thus taking into account, besides the appearance, the
relative position of the samples, as an additional cue for classification purposes.

Fig. 3. Flight plan trajectories from external GPS attached on multiple UAVs flying in
similar way on the left. Proposed model predictions on the right, blue color represent
UAV predictions and red negative examples.
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