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SUMMARY 
 

Space available for aquaculture, in Europe as elsewhere, is in limited supply and high demand. 

Additional tools are required to support the identification of potential new sites and to assess 

their suitability and sustainability for various aquaculture segments. In this report, various 

aquaculture indicators that were derived using satellite Earth Observation and modelling 

approaches as part of Tools for Assessment and Planning of Aquaculture Sustainability 

(TAPAS) are presented. These cover far-field, regional ecosystem-scale coastal and offshore 

aquaculture segments in different parts of Europe. Indicators specific to shellfish and finfish 

biology and farms are presented, as are more general biogeochemical indicators, and include 

the identification of current and forecasted future opportunities for aquaculture, as well as 

environmental risks to the industry.   

Specifically, satellite ocean-colour observations are used to produce maps of optical water 

types and suspended particulate matter extremes for the North East Atlantic and 

Mediterranean, and of harmful algal bloom risk in north-western European waters for the 

current period (Section 2; PML). Output from a 3D hydrodynamic-biogeochemical ocean 

model (POLCOMS-ERSEM) is used to produce indicators of current (early-century) and future 

(mid- and late-century) aquaculture suitability for the Mediterranean Sea and the North West 

European shelf sea, notably water temperature, phytoplankton and zooplankton biomass, and 

degree day modelled maps of Pacific oyster spawning and metamorphosis potential, under 

different climate scenarios (Representative Concentration Pathways 4.5 and 8.5; Section 3; 

PML). Section 3 output is used in further pan-European modelling of Pacific oyster growth 

potential via dynamic energy budget (DEB) theory, transformed into industry-relevant 

indicators for the early- and late-century scenarios (Section 4; UN). The evaluation of 

Mediterranean finfish Aquaculture Allocated Zone carrying capacity, through the modelling of 

near-surface currents, chlorophyll-a, and dissolved inorganic nutrients used to calculate 

environmental indicators and an overall environmental index, also made use of Section 3 

outputs (Section 5; HCMR). Additional 3D hydrodynamic-biogeochemical ocean modelling 

(A20) outputs have been used for macro-siting of offshore salmon and mussel aquaculture in 

the North Atlantic and Nordic Seas, using thresholds of several output variables to establish 

and map environmental suitability indices for each (Section 6; NIVA).  

The compiled approaches and proposed indicators are relevant to diverse European 

aquaculture segments and situations, and could be individually selected or mix-and-matched 

to best respond to the particular context or question. Using far-field models, large-scale zones 

of interest are highlighted for broad aquaculture planning and policy development, which can 

be then considered in higher resolution at subsequent planning and decision-making steps. 

Long-term sustainability and uncertainties were considered through the implementation of 

various climate and management scenarios in modelled forecasting of indicators. Such 

consideration of different scenarios helps zones of interest to be identified, and also serves to 

highlight which factors are expected have the greatest impact on the given aquaculture sector. 
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1. Introduction 

Both population and per capita seafood consumption are projected to continue to increase in 

Europe, as elsewhere (FAO, 2018). Europe is already one of the largest consumers of seafood 

globally, but imports supply more than 60% of EU seafood consumption (STECF, 2018), 

leaving it vulnerable to international dynamics. On the global scale, aquaculture is currently 

on par with fisheries contributions to seafood production, with the latter stagnating and the 

former on the rise (Fig.1.1; FAO, 2018). In Europe, however, despite declines in capture 

fisheries, aquaculture only contributes approximately 20% of seafood production (STECF, 

2018) and this proportion is growing at a much slower rate than aquaculture production 

worldwide; very few new farming licences have been issued in more than a decade (Hofherr 

et al., 2015). The top two hindrances to aquaculture expansion in Europe have been cited as 

being lack of available space in the coastal zone and lack of coherent priorities and 

management (Hofherr et al., 2015).  

 

Figure 1.1. “World and EU28 seafood production (capture and aquaculture): 1996-2016. Data 

source: FAO, 2018”. From STECF (2018). 

 

Several advantages to expanding aquaculture further offshore have been identified, in addition 

to fewer space constraints and use conflicts typically encountered there. These include less 

exposure to anthropogenic pollutants, enhanced production and carrying capacity, and less 

acute impacts on the environment compared with near-coastal cultivation, and coincide with 

technological advances that at least partially overcome or compensate for some challenges 

associated with offshore, open-water conditions (Holm et al., 2017). Adequate spatial planning 

in the offshore as in the nearshore environment remains crucial to the sustainable 

development of the aquaculture industry. Regulators and decision makers can circumvent 

negative perceptions and use conflicts that have been known to plague aquaculture by 

proposing allocated zones for aquaculture, within which companies can assess the suitability 

of and select sites based on their foreseen production (Sanchez-Jerez et al., 2016). Such 

long-term and comprehensive planning can benefit from the use of full-coverage spatial data 

over large areas, such as that only possible to obtain through Earth Observation and modelling 

(Meaden et al., 2013).  
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Future climate change and related uncertainties further complicate the identification of and 

planning for sustainable aquaculture, whether at existing or new sites. Changes to many of 

the biogeochemical variables crucial to many marine aquaculture sectors are projected to be 

dramatic, including to water temperature, productivity, acidification, freshwater inputs, and 

dissolved oxygen concentrations, but to be highly variable over space and depending on the 

climate model and emissions scenario (IPCC, 2019; FAO, 2018). Generally, mariculture 

potential is expected to decline substantially by the end of the century under a “business-as-

usual” scenario (IPCC, 2019). Biogeochemical model projections can be made under various 

climate change scenarios and for various future time periods, and thereby provide a range of 

possible aquaculture outcomes to assess the sensitivity of different sectors in different regions. 

Here, several approaches to transforming rich spatiotemporal datasets from EO, 

hydrodynamic-biogeochemical modelling, and shellfish growth modelling into tangible 

aquaculture indicators for use in pan-European and long-term planning and policy 

development are presented for shellfish and fin-fish aquaculture. These are accompanied by 

specific examples and interpretation, but provide a flexible framework that regulators and 

decision makers can adapt and combine to best inform the specific challenges and questions 

they face. The uncertainties related to ongoing climate change facing the aquaculture industry 

and all of society are considered by producing indicators under different future climate 

scenarios. While there are many climate models and potential emissions scenarios, those 

chosen here demonstrate an approach to spatially assessing the sensitivity of various 

aquaculture segments to climate change; other scenarios could foreseeably be applied as 

desired. Broad areas of interest, in terms of their current potential and stability under changing 

climate scenarios, have been highlighted using the approaches presented here. Such far-field 

approaches are therefore expected to be of particular interest in prioritizing or establishing 

allocated zones for aquaculture at the international (i.e., European), national, or regional 

scales over the long-term, within which more detailed investigation of site-level suitability could 

be undertaken, for example using the complementary near-field approaches developed in 

TAPAS Work Package 5 (Falconer et al., 2019).  
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2. Assessing current suitability for aquaculture across Europe based 

on satellite observation 
 

2.1 Introduction 

This section presents only indicators of current aquaculture suitability in European seas, 

derived from ocean colour satellite observations. In particular, we present maps of optical 

water types (Section 2.2), of suspended particulate matter extremes (Section 2.3) and of risk 

of harmful algal blooms (Section 2.4). The indicators derived from satellite observations do 

not represent all conditions and indicators of water quality that will affect aquaculture 

suitability. 

2.2. Optical water type indicator 

Coastal waters cover a wide range of optically-complex conditions, from clear blue open 

ocean, to harmful coastal blooms and sediment plumes. Conditions are typically highly 

dynamic in both spatial and temporal dimensions. This diversity of conditions precludes the 

adoption of single algorithms to retrieve in-water concentrations (for example, of total 

suspended sediment (TSM) and chlorophyll (CHL)). To reduce the complexity of this problem, 

we have applied an optical water typing approach to European coastal waters (Moore et al., 

2014). In contrast to previous approaches using in situ data (Spyrakos et al., 2018), our 

approach is based on using remotely-sensed observations to derive the representative 

spectra indicative of a given optical water type (OWT). This approach is similar to that used 

by the European Space Agency (ESA) Ocean Colour Climate Change Initiative (OCCCI; 

Jackson et al., 2017), but revisited with coastal environments as a focus. 

Under TAPAS, this fuzzy classification has been optimised to allow for hundreds of millions of 

remote sensing spectra to be considered as part of the training library, while attributing any 

single spectrum a membership to every class. This approach supports the spatial binning of 

algorithms, which in turn removes ‘hard boundaries’, which may occur in the case of switching 

algorithms, and also allows for optical complexity to be better represented. This approach can 

be applied to any optical sensor, but has been applied here to a catalogue of ESA Ocean and 

Land Colour Instrument (OLCI) and MEdium Resolution Imaging Spectrometer (MERIS) 

scenes that contain as diverse a set of coastal environments as possible. The method 

iteratively converged on twelve representative spectra, with each spectrum corresponding to 

an OWT (Fig. 2.1). 

Remotely sensed reflectance can now be compared to in situ observation data of both 

reflectance and derived water column properties, on a type-by-type basis that will allow the 

mapping of suitable algorithms to each OWT. This provides the necessary flexibility in the 

system to produce satellite products in locations where in situ observations are lacking. 

However, it also exposes gaps in the in situ observation data sets where insufficient calibration 

and validation data are available to optimise and assess the accuracy of OWT-specific 

algorithm solutions. 
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Figure 2.1. Representative spectra associated with the 12 optical water types identified by 

the coastally-focussed clustering algorithm. Each water type is associated with a set of 

optimised algorithms for chlorophyll-a and turbidity or total suspended matter 

concentration. 

 

 

Although OWTs can be used to determine algorithm selection, they are also useful in their 

own right. Changes in OWT at a given location may be indicative of changes in the underlying 

environmental paradigm. Consequently, the OWTs have been mapped to the North East 

Atlantic and Mediterranean self-organising map zones (Figs. 2.2, 2.3). These maps are 

produced at 300 m resolution (the native resolution of OLCI), and will be subset to specific 

regions once the full processing (two years) is complete. 
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Figure 2.2. Spatial distribution of dominant optical water types across the North East Atlantic 

(NEA) self-organising map region for March 2017. 
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Figure 2.3. Spatial distribution of dominant optical water types across the Mediterranean 

(MED) self-organising map region for March 2017. 

 

OWTs 1 (“open water”), 2 (“transitional water”), and the further coastal types 6, 9, and 10 are 

most frequently encountered, with the latter three capturing gradual changes in optical 

complexity around coastal regions. Turbidity and TSM algorithm sets have been validated for 

these OWTs, using data collated from the ESA OCCCI in situ data set, Centre for 

Environment, Fisheries and Aquaculture Science smart buoy network, Scottish Environment 

Protection Agency estuarine moorings and various cruise data. No turbidity and TSM 

algorithms have been assigned to the other OWTs due to a lack of validation data. The 1%, 

5%, 95%, and 99% values for TSM and turbidity will also be provided for each pixel on an 

annual and month-by-month basis, providing information on the environmental envelopes 

associated with each region. CHL algorithm selection is currently in process. CHL products 

will be generated using the same approach as TSM. 

 

2.3 Suspended particulate matter (SPM): extreme levels as indicator 

Extreme levels of suspended particulate matter (SPM) have the potential to limit aquaculture 

due to its impact on food and light availability. We therefore mapped regions which regularly 

see SPM levels above a moderate threshold (60 mg/L) and two high thresholds (120 and 190 

mg/L), based on existing analysis of the impacts of SPM on oysters (Gernez et al. 2014). SPM 

was calculated using OCCCI v4.1 satellite reflectance data and the SPM algorithm of Han et 

al. (2016), which was tuned to be able to detect high SPM levels. Daily reflectance data was 

downloaded for the period 1997-2019. We then converted this to SPM using the Han et al. 

(2016) algorithm, and calculated the maximum SPM in each year, and then identified regions 

where this maximum exceeded the three thresholds in the majority of years. These regions 

(figure) are largely restricted to coastal regions of high riverine input. Shellfish aquaculture 
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sites across most of the English, Dutch, Belgian and German coasts are likely to experience 

moderate SPM levels (> 60 mg/L). In contrast, the Mediterranean, and Spanish coasts largely 

see non-harmful levels of SPM. Most of the North French sees few regions of high SPM, 

however the Atlantic coast sees large regions with incidences of high SPM. Regions with high 

SPM levels are more restricted geographically. There is no detectable region where SPM 

regularly exceeds 190 mg/L.A small number of regions has SPM levels exceeding 120 mg/L, 

including the East Anglian Plume, parts of the central western French coast, and the northern 

Belgian coast. 

 

 

Figure 2.4. Proportion of years between 1997 and 2018 where SPM is above 60, 120, and 195 

mg/L. SPM was calculated using daily OCCCI reflectance data and an algorithm for estimating 

SPM in highly turbid waters (Han et al. 2016). 

 

2.4. Long-term risk of certain HAB species from satellite ocean colour 

indicators 

There have been many previous applications of satellite ocean colour data for the aquaculture 

industry, mostly focussed on the near-real time early warning of harmful algal blooms (HABs) 

affecting aquaculture sites. As we continue to improve and validate HAB risk maps (Fig. 2.5; 

Kurekin et al., 2014), the estimation of the long-term probability of particular HAB types around 

the UK is increasingly feasible through analysing historical data.  
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Figure 2.5. Examples of harmful algal bloom (HAB) discrimination using EO ocean colour data. 

a) Classification of spectra of each pixel in the image based on similarity to known Karenia 

mikimotoi harmful blooms. b) Accounting for unknown cases to prevent misclassification. 

c) Composite HAB risk over seven days of satellite data to minimise cloud gaps (Kurekin et 

al., 2014). 

 

We have generated an initial seven-year analysis of the risk of Karenia mikimotoi occurrence 

in NW European waters, a species which can kill farmed salmon. Figure 1.6 depicts the total 

number of times events were classified as ‘Harmful’ in weekly EO risk maps from 2011 to 

2017; note that this is not normalised to the varying quantity of valid ocean colour data due to 

cloud cover. Even the light purple regions have seen significant blooms of this HAB type; but 

if these only last a few weeks and do not appear every year in the same place, they do not 

aggregate a high probability over the seven-year integration. A similar analysis has been 

attempted for Pseudo-nitzschia, a potentially toxic species that can result in the closure of 

shellfish farms. This is undergoing further validation and improvements. 
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Figure 1.6. Number of harmful algal bloom events captured in weekly EO Karenia mikimotoi 

HAB risk maps. 

 

 

Figure presents a time series of the same Karenia mikimotoi HAB risk dataset, for the entire 

UK continental shelf region shown in Fig. 2.6. It is also possible to generate this analysis for 

sub-areas to compare the seasonal and interannual variability of risks for different regions. 

These innovative satellite-based long-term HAB risk maps can support the aquaculture 

industry by enabling region-specific risk assessment. Patterns and trends will help to plan for 

new sites and to assess any potential change in risk at existing sites. 
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Figure 2.7. Number of weekly Karenia mikimotoi harmful algal bloom pixels in the EO ocean 

colour time series, for the entire UK continental shelf region shown above. 
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3. Assessing future suitability for shellfish aquaculture across Europe, 

based on projections from a POLCOMS-ERSEM model 
 

3.1. Introduction 

This section presents indicators of current and future suitability for aquaculture in European 

seas, derived from the output of an ecosystem model that covers both the Mediterranean Sea 

and the North west European shelf sea (Section 3.2). In particular, we present maps of 

indicators such as water temperature (influencing the physiology of commercial shellfish 

aquaculture species), phytoplankton and zooplankton biomass (influencing food availability 

for the upper marine trophic levels) and maps of degree days for Pacific oyster (Crassostrea 

gigas) expansion (Section 3.3). 

 

3.2. The European marine ecosystem model 

POLCOMS-ERSEM is a 3D hydrodynamic-biogeochemical ocean model suitable for 

modelling environmental conditions in coastal and shelf seas. POLCOMS (the Proudman 

Oceanographic Laboratory Coastal Ocean Modelling System, Holt and James 2001) provides 

the physical components: it models the motion of the water and the transfer of energy and 

momentum under the forcing provided by the surface conditions. ERSEM (the European 

Regional Seas Ecosystem Model, Butenschön et al., 2016) is the biogeochemical model: it 

includes key processes such as 

plankton photosynthesis, respiration 

and excretion, nutrient uptake and 

calcification. Carbon, nitrogen, 

phosphorus and silicon are each 

tracked separately and the biological 

components are represented by four 

phytoplankton functional types, three 

zooplankton and bacteria. There is also 

a benthic component modelling 

processes at the sea floor. The two 

models are coupled so that POLCOMS 

provides ERSEM with information 

about physical variables such as 

temperature and light levels and 

models the advection of nutrients and 

biological material. The model domain includes the North East Atlantic, the North Sea and the 

Mediterranean (Figure 3.2); the model resolution is 0.1° (approximately 11 km).  

This modelling system was used to project environmental conditions for European seas over 

the 21st century under two scenarios of atmospheric greenhouse gas concentrations These 

scenarios used two of the standard Representative Concentration Pathways (RCPs) used by 

the Intergovernmental Panel on Climate Change (van Vuuren et al., 2011): RCP 4.5 is a 

moderate scenario, with concentrations rising until mid-century then stabilising, and RCP 8.5 

Figure 3.2 Model domain and bathymetry. Figure 3.3 Model domain and bathymetry. 
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is a more extreme scenario, with concentrations higher and rising all century. The model was 

driven using global climate model MPI-ESM-LR1. MPI-ESM-LR was selected as best 

representing the range of conditions projected by those models for which regionally-

downscaled atmospheric model outputs and a consistent set of river run-off values were 

available. At the atmosphere-ocean interface meteorological conditions were taken from the 

downscaled regional climate model MPI-ESM-LR-RCA42 (resolution 0.11°; downloaded from 

EURO-CORDEX, www.euro-cordex.net). Global model outputs were used at the open ocean 

boundary, for both physical and biogeochemical conditions. Daily projected values for river 

discharge and N and P loadings were taken from the hydrological model E-HYPE3 (Donnelly 

et al. 2016), using the same global climate model and assuming current patterns of land use 

and other factors affecting river nutrients. Projections of change at the Baltic boundary were 

not available, so climatological water and nutrient flows were used, and these were kept 

constant through the modelled period. This means that modelled conditions in the Norwegian 

Trench may not fully reflect the effect of climate change. In addition, nitrate levels in the 

Norwegian Trench are overestimated compared to observed values: projections for the 

Norwegian Trench should be treated as relatively unreliable. 

Outputs include key physical and biogeochemical variables for the pelagic and benthic 

systems, at daily and monthly frequency; also, sea surface elevation at hourly frequency.  

The model outputs for sea surface temperature and chlorophyll concentration have been 

compared to satellite values for 1998-2015. Satellite chlorophyll data were sourced from the 

ESA Climate Change Initiative Ocean Colour project (http://www.esa-oceancolour-cci.org/, 

v3.1). Sea surface temperature is from the OSTIA dataset, downloaded from CMEMS 

(http://marine.copernicus.eu/, products SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001 

and SST_GLO_SST_L4_REP_OBSERVATIONS_010_011). 

There is a good spatial and temporal match between modelled and satellite-derived sea 

surface temperature (Table 3.1 and Figure 3.2). Model-satellite correlation is high in all 

regions; correlations are weaker for the Atlantic regions than for the North Sea and 

Mediterranean. The model also broadly reproduces the temporal and spatial patterns of 

chlorophyll concentration across the region, but model estimates tend to be higher than 

satellite estimates, especially in regions of high chlorophyll. Model outputs are lower than 

satellite estimates in northern Europe during the winter, though it should be noted that satellite 

estimates can be inaccurate in these conditions because of high cloud cover and the 

confounding effect of CDOM and suspended particulate matter. The model-satellite correlation 

is weakest in shallow coastal areas, however satellite chlorophyll estimates are less reliable 

in these areas than for open seas.  

  

                                                
1 Max‐Planck‐Institute Earth System Model, Low Resolution; 
http://www.mpimet.mpg.de/en/science/models/mpi-esm.html 
2 Max‐Planck‐Institute Earth System Model, Low Resolution driving the Rossby Centre Regional 
Atmospheric model, version 4 
3 HYdrological Predictions for the Environment, European domain 
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Table 3.1 Model-satellite comparison for sea surface temperature and surface chlorophyll-a, using 

monthly data for 1998 to 2015, for the whole model domain and sub-regions. The Atlantic (North) region 

is from 46°N to 65°N, Atlantic South from 25°N to 46°N. Bias = model mean – satellite mean; RMSD = root 

mean square difference between model and satellite; Spearman-r = Spearman rank correlation coefficient. 

 
Sea surface temperature (°C) Surface chlorophyll-a (mg m-3) 

Region Bias RMSD  Spearman-r Bias RMSD Spearman-r 

whole 0.07 1.26 0.98 0.67 1.61 0.60 

Mediterranean -0.19 1.14 0.97 0.22 0.64 0.48 

North Sea 0.55 1.24 0.96 1.12 2.50 0.45 

Atlantic (North) 0.37 1.28 0.90 0.82 1.74 0.58 

Atlantic (South) -0.46 1.06 0.94 0.92 1.56 0.57 

 

 

 
Figure 3.4 Spearman correlation between monthly mean and satellite values of (a) sea surface 

temperature and (b) surface chlorophyll concentration, 1998-2015. 

 

3.3. Summary of European aquaculture drivers and indicators under 

changing climate scenarios 
 

Projections of long-term changes in key aquaculture indicators were derived from POLCOMS-

ERSEM model output. These indicators are summarized in Table 3.2. Each indicator was 

derived for a baseline historical period (1985-2005), a mid-century (2040-2059) and a late-

century period (2080-2099) for both RCP 4.5 and 8.5.  

Indicators were chosen on the basis of their relevance to multiple species and taking account 

of the list of regional sustainability indicators presented in Milestone M6.3 of TAPAS. Changes 

in nutrient availability, as indicated by variables such chlorophyll, phytoplankton, zooplankton 

and nitrogen, will influence future productivity of aquaculture. Similarly, physical variables such 

as temperature, salinity and current velocities will significantly impact the biological growth 

(a) (b) 
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potential of aquaculture and will influence the physical challenges of aquaculture. Finally, 

measures such as degree days are key indicators of ecological sustainability and the potential 

risk for aquaculture species to become invasive (Herbert et al. 2016). 

Table 3.2 Summary of indicators calculated for climate change scenarios. Climatological indicators have 

been calculated for historical (1986-2005), mid-century (2040-2059) and late-century time periods (2080-

2099) for the emissions scenarios RCP 4.5 and 8.5. 

Indicator Time scale Indicator Time scale 

Chlorophyll-a Monthly mean Salinity Monthly mean 

Phytoplankton 
carbon 

Monthly mean Mixed layer depth Monthly mean 

Zooplankton carbon Monthly mean Ratio of 
dinoflagellates to 
diatoms 

Monthly mean 

Surface current 
velocities 

Monthly mean Total microplankton 
and nanoplankton 
carbon 

Monthly mean 

Particulate organic 
carbon 

Monthly mean Ratio of silicate to 
nitrogen 

Monthly minimum 
and maximum 

Dissolved oxygen at 
the surface 

Monthly minimum Ratio of silicate to 
phosphate 

Monthly minimum 
and maximum 

Sea surface 
temperature 

Monthly mean Ratio of phosphate 
to nitrogen 

Monthly minimum 
and maximum 

Seabed current 
velocities 

Monthly mean Nitrogen Monthly mean 

Silicate Monthly mean Phosphate Monthly mean 
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Figure 3.3 shows changes in sea surface temperature across the region during the 20th century 

under RCP 4.5 and 8.5. Temperature increases are universal across both scenarios, with the 

exception of regions at the model boundary, which are likely an artefact of boundary condition 

issues. Temperature increases are higher under RCP 8.5 at the end of the century, with 

increases of 3-4°C across much of the Mediterranean and 2-3 °C in much of the North Sea. 

 

Figure 3.3. Left: Mean annual sea surface temperature for 1986-2005. Right changes in mean 

annual SST under the emissions scenarios RCP 4.5 and 8.5 by mid-century (2040-2059) and 

late-century (2080-2099). 

 

Changes in phytoplankton and zooplankton carbon are shown in figures 3.4 and 3.5. Under 

both emissions scenarios there is a clear reduction in plankton carbon available in the North 

Sea, British Isles, and the French and northern Spanish coasts. This has the potential to 

negatively influence shellfish aquaculture production in these regions. There is an increase in 

plankton production in the Norwegian Trench, however this is likely a result of the boundary 

conditions issue discussed in section 3.2. In contrast, there is an increase in plankton carbon 

available across the Mediterranean Sea, implying that increased food availability could partly 

offset the negative impacts of temperature increase in this region. 
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Figure 3.4. Left: historical baseline annual climatology of phytoplankton carbon. Right: 

absolute changes in mean annual phytoplankton carbon under the emissions scenarios RCP 

4.5 and 8.5 by mid-century (2040-2059) and late-century (2080-2099). 

 

 

Figure 3.5. Left: historical baseline annual climatology of zooplankton carbon. Right: absolute 

changes in mean annual zooplankton carbon under the emissions scenarios RCP 4.5 and 8.5 

by mid-century (2040-2059) and late-century (2080-2099). 

A key indicator for whether a species can potentially become invasive is whether it can 

complete its life cycle. For Pacific oysters, this indicator can be split into two key sub-

indicators: whether environmental conditions are sufficient for adults to spawn and 2) whether 
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post-spawning conditions are sufficient for larvae to metamorphose (Herbert et al. 2016, 

Thomas et al. 2016). Analysis of existing empirical data has shown that 600 degree days, 

using a biological zero of 10.55°C, is the approximate threshold for conditioning and spawning, 

while 825 degree days has been established as the requirement for larval metamorphosis 

(Syvret et al. 2008). In addition, there is an approximate threshold of 18°C for the triggering of 

spawning (Thomas et al. 2016), however there are suggestions from field studies that this 

threshold is too high (Shelmerdine et al. 2017). We therefore took an approach that took a 

simplified degree day method to mapping regions where oysters can spawn and 

metamorphose. This approach ignores changes in pH, food and fishing pressures which may 

have important impacts in regions (Lemasson et al. 2018, Pernet et al. 2016).  

We mapped the regions where in the present, mid-century and end-of-century the 600 and 

825 degree day threshold would be exceeded in the majority of years. The methodology for 

this was as follows. First, we calculated the degree days for each day. For each year we then 

calculated the running cumulative sum of degree days. We then identified the first day of the 

year when there were a total of 600 cumulative degree days and that temperature exceeded 

18°C. This was classified as the earliest potential spawning date. Regions that met these 

criteria were classified as having spawning potential. In these regions we then calculated the 

number of degree days that occurred after the earliest potential spawning date. If this 

exceeded 225 degree days we classified a region as having metamorphosis potential.  

Figure 3.6 shows that there will be a large northward shift in regions which exceed these 

thresholds. In the historical baseline period Pacific oysters are incapable of reaching the 

metamorphosis stage on the entire English Coast, with the exception of the East Anglian 

Plume reach, and the species is furthermore incapable of reaching the spawning stage on the 

Irish or Scottish coasts. Under the high emissions RCP 8.5 scenario Pacific oysters are 

capable of reaching metamorphosis across almost the entire English coast and southern and 

central North Sea. In the lower emissions scenario RCP 4.5 approximately half of the English 

coast has conditions which allow oysters to metamorphose. A key difference between the 

scenarios RCP 4.5 and 8.5 is that oysters are incapable of spawning on the Irish coastline in 

RCP 4.5, but are capable of spawning across over a third of the Irish coast in RCP 8.5. It is 

therefore clear that there will be both significant potential for new Pacific oyster aquaculture in 

northern regions (see also Thomas et al., 2016), but also potential ecological consequences 

of an invasion of this species (Reise et al. 2017). These maps have the potential to identify 

areas which are currently unfarmed, but with aquaculture potential, and also to show those 

that are likely to become potential aquaculture sites in future.   
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Figure 3.6. Regions of recruitment potential for Pacific oyster. Blue regions are those wherein 

the majority of years temperatures meet the requirement for conditioning and spawning, but 

not for metamorphosis (600 degree days attained by September and that SST exceeds the 

18°C threshold required for spawning). Red regions are those where temperatures are also 

sufficient for larvae to metamorphose (600 degree days available for conditioning and 

spawning and a further 225 degree days after a time when temperature exceed 18°C). Degree 

days are calculated using a biological zero of 10.55°C. 825 degree days is required to achieve 

larval metamorphosis. 
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4. POLCOMS-ERSEM-driven Dynamic Energy Budget modelling of 

Pacific oyster growth potential: aquaculture indicators for the 

offshore environment 

 

4.1. Background 

The increase in and expansion of aquaculture and other human activities in the nearshore 

coastal environment has resulted in this limited space being under increased competition 

between potential uses. At the same time, projected population growth and the increasing role 

of aquaculture in overall seafood provision, are expected to further increase the demand for 

marine aquaculture (FAO, 2018). Extending aquaculture production further offshore than has 

traditionally been practiced has been identified as one potential solution to this issue (Gentry 

et al., 2017). Moving offshore, even if coupled with other offshore industries, such as wind 

energy farms (Buck and Langan, 2017) to leverage infrastructure investments, requires 

substantial initial and ongoing investments. Site selection to ensure the feasibility and 

sustainability of aquaculture investments and activities is therefore crucial (Gentry et al., 2017, 

Brigolin et al., 2017, Barillé et al., submitted). Furthermore, aquaculture is relatively novel in 

the offshore environment, compared to the nearshore coastal environment where it has 

conventionally taken place over the past decades and even centuries. More information about 

whether and where cultivated organisms can be expected to thrive in these new environments 

is needed. In the context of site selection, such information needs to be spatially-explicit. 

A further consideration in assessing the cost-benefit and feasibility of investing in offshore 

aquaculture are whether and where these would be expected to be sustainable, particularly in 

light of ongoing and uncertain climate change. Although what climate conditions will be over 

the next century remains highly uncertain, dependent upon a range of possible emissions 

scenarios now and into the future (Moss et al., 2010; Gattuso et al., 2015), biogeochemical 

and hydrodynamic models improve our understanding of how ocean conditions can be 

expected to change as a result (IPCC, 2019). Such model outputs, from POLCOMS-ERSEM 

(see Section 3), are used here to drive Dynamic Energy Budget (DEB) modelling of Pacific 

oyster, Crassostrea gigas, in order to assess its offshore growth potential over a broad 

geographic scale from north-western Africa to northern Europe. In addition to providing maps 

and insight into baselines for Pacific oyster growth potential based on an early-century 

reference period, POLCOMS-ERSEM data were generated for two late-century climate 

scenarios and used in DEB modelling to forecast future sector potential and assess the 

variability in oyster growth potential in light of climate change uncertainty. Multi-temporal 

growth maps for all scenarios are transformed into industry-relevant indicators of the current 

growth potential and future sustainability in light of climate change. Such information supports 

decision-making and management at the regional scale, providing information on which areas 

should be prioritized for further consideration for finer-scale site selection. 

4.2. Description of the modelling approach  

Dynamic energy budget (DEB) theory is a generic way to mechanistically model energy flow 

through an individual organism (Kooijman, 2010), from food ingestion through maintenance, 

growth, and reproduction. It has been adapted and applied to many species, and an adaptation 
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put forth by Pouvreau et al. (2006) for the Pacific oyster, Crassostrea gigas, and further 

parameterized by Bernard et al. (2011) and Thomas et al. (2016), is used here (Fig. 4.1). In 

the Pacific oyster DEB applied here, ingestion and maintenance are affected by water 

temperature (Temp. in Fig. 4.1), and ingestion is further affected by food (phytoplankton) 

abundance (Food in Fig. 4.1), modulated by a calibrated model parameter, the half-saturation 

coefficient (Xk). Given the range of turbidity variability in the offshore ocean, the impact of too 

high turbidity on the half-saturation coefficient was not taken into account.  All model equations 

and other parameter values can be found in Thomas et al. (2016 S1). 

 

Figure 4.1. Schematic of dynamic energy budget (DEB) model used to model Pacific oyster 

growth and reproduction.  

Input data for the current Pacific oyster DEB modelling was chlorophyll-a (chl-a) concentration 

as a proxy for food abundance, and water temperature output at the daily time step and 0.1° 

spatial resolution from the surface layer (~ 5 m depth) of the three-dimensional coupled 

hydrodynamic-biogeochemical ocean model, POLCOMS-ERSEM, described in greater detail 

in Section 3 of this report. Chl-a was provided for four particle size ranges. The smallest size 

class (picoplankton; < 2 μm) was excluded, as this is not retained by the gills of C. gigas; 

concentrations of the remaining three classes were summed to produce the chl-a time series 

maps used. In addition to the daily chl-a and water temperature maps, daily salinity (psu) and 

current speed (m s-1) maps were also generated. A single bathymetry map of the model 

domain for the three scenarios was also used. These were used to constrain threshold-based 

suitable areas within which to map DEB-modelled growth potential, to then generate industry 

indicators.  

In situ measurements to calibrate the ingestion half-saturation coefficient (Xk) of the DEB 

model, and to validate model outputs are rare, given the novel and often experimental or 

confidential nature of offshore oyster cultivation. However, data from two regions within the 

POLCOMS-ERSEM domain for which DEB modelling of Pacific oyster was carried out were 

identified (Fig. 4.2): the German Bight of the North Sea (published in Pogoda et al., 2010; Fig. 

4.2b) and the centre of Bourgneuf Bay on the French Atlantic coast (from experimental work 

carried out there by an association supporting shellfish growers and fishers in the region 

(Syndicat Mixte pour le Développement de l’Aquaculture et de la Pêche en Pays de la Loire 

(SMIDAP); Fig. 4.2c). Data from one of the two years for which measurements are available 

from Bourgneuf Bay were used to calibrate Xk (Fig. 4.3a) through optimization regression, and 

the remaining French and German data were used to validate model outputs (Fig. 4.3b). For 

calibration and validation, the model was run for the specific date range for which 

measurements were available and using initial oyster sizes reported. Modelled values 

coinciding with the locations and dates of in situ measurements were extracted.  
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For measured data reported in Pogoda et al. (2010), only the month of measurement was 

reported, so this was taken to be the middle (15th) of each measurement month to 

approximate, and represents a source of uncertainty. Furthermore, although in situ 

measurements are from the location of a single cage, the spatial resolution (i.e., pixel size) of 

the POLCOMS-ERSEM data is 0.1°, which corresponds to approximately 11km. Although 

these spatial and temporal sources of uncertainty are expected to negatively affect validation 

results, modelled total weights are found to correspond well to those measured in situ, using 

a single calibrated Xk value (13.4).  

 

 

Figure 4.2. (a) Extent of ERSEM-POLCOMS domain, used as input for Pacific oyster DEB 

modelling; regions with in situ data used for model calibration and validation are highlighted. 

(b) Validation sites in the German Bight of the North Sea; Butendiek (BD), Helgoland (HE), and 

Nordergründe (NG), from Pogoda et al. (2011). (c) Calibration (2010) and validation (2008) data 

from Bourgneuf Bay, France. 

 

Figure 4.3. (a) Half-saturation ingestion coefficient, Xk, calibration using in situ data from 

Bourgneuf Bay (BB), France (2010. (b) Validation of Pacific oyster dynamic energy budget 

modelling with calibrated Xk (= 13.4) using separate in situ data from Bourgneuf Bay (BB), 

France (2008) and Germany (Butendiek (BD), Helgoland (HE), 2004; Nordergründe (NG), 2007 

(Pogoda et al., 2010)).  
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The calibrated Xk value was then used in model initialization along with set oyster sizes and 

date ranges for each production stage (spat pre-grow, adult grow-out, and fattening or finishing 

(Table 4.1) to run the DEB model for an early century reference and two climate change 

scenarios (Table 4.2). To assess potential climate change impacts on oyster growth and 

aquaculture potential, two of the four representative concentration pathways (RCPs) were 

selected, and POLCOMS-ERSEM data for the period 2090-2099 were generated for each: 

RCPs 4.5 and 8.5 (Table 4.2). Under RCPs 4.5 and 8.5, radiative forcing associated with 

greenhouse gas emissions stabilizes at 4.5 W m-2 and exceeds 8.5 W m-2 by 2100 respectively 

(Moss et al., 2010). The latter is therefore to be a more extreme climate scenario. Both are 

compared here with modelled POLCOMS-ERSEM data which assimilates ocean colour data 

observations for the period 2000-2004 (Table 4.2). This early century reanalysis reference 

data are expected to be more realistic than model projections alone, as modelled data are 

corrected toward observed values, and errors in both are accounted for (Ciavatta et al., 2016). 

 

Table 4.1. Model initialization of oyster size and modelled duration for the three production stages 

considered. 

Production stage Initial oyster size Start date End date 

Spat pre-grow 

0.5 g total weight 

April 1 December 1 1.9 cm shell length 

0.05 g dry flesh mass 

Adult grow-out 

14 g total weight 

April 1 December 1 5.7 cm shell length 

0.3 g dry flesh mass 

Finishing/fattening 

76 g total weight 

September 1 December 1 10 cm shell length 

0.9 g dry flesh mass 
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Table 4.2. Summary of the three scenarios for which ERSEM-POLCOMS data were generated and used to 

run DEB modelling. 

Scenario Years Modelled data 

Early century reference 2000-2004 Historic data assimilated 

Late century climate change RCP 4.5 2090-2099 RCP 4.5 projection 

Late century climate change RCP 8.5 2090-2099 RCP 8.5 projection 

 

Prior to mapping the oyster growth potential indicators, a suite of binary biological requirement 

thresholds based on reported Pacific oyster tolerance ranges was applied across the model 

domain for each of the three scenarios to constrain the suitable area for Pacific oyster 

cultivation. This made use of additional POLCOMS-ERSEM daily map data on salinity, 

bathymetry, and current, in addition to SST and chl-a, also used in DEB modelling. The 

tolerated ranges of Pacific oyster for each of these were obtained from the literature, and are 

summarized in Table 4.3. A given pixel was considered to be suitable if, over the full average 

year for the given scenario, it remained within the tolerance range within a 95% confidence 

interval, as per Kapetsky et al. (2013). The bathymetric range of <= 200m, related to technical 

industry limitations, from Gentry et al. (2017) was also applied. Neither SST nor salinity were 

found to limit the suitable range here. The suitable spatial extents for each of the other 

variables, and the combined resulting final suitable area are visualized in Fig. 4.4.  

 

Table 4.3. Documented Pacific oyster tolerance ranges for several variables used to constrain the suitable 

cultivation area, within which relative growth potential was assessed. 

Variable Documented tolerance range Reference 

Salinity 15-45 psu Nell & Holliday (1988) 

Current Current 0.1-1 m s-1 Kapetsky et al. (2013) 

SST  3-35°C Bayne (2017) 

Chl-a > 1 mg m-3; > 4 μm particles   Barillé et al. (1993) 
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Figure 4.4. Biologically feasible areas for Pacific oyster growth for several constraining 

parameters, (a-c) bathymetry, (d-f) Chl-a, and (g-i) current speed, and their combined masks, 

used here (j-l); other potentially-limiting factors (SST and salinity) were not found to be 

constrain any area in the input dataset used here. Bathymetry is considered a constraint from 

a technical perspective. 
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4.3. Model outputs & oyster aquaculture indicators 
 

Outputs from DEB modelling using the POLCOMS-ERSEM input data are maps of Pacific 

oyster shell length (L; cm), dry flesh mass (DFM; g), and total weight (TW; g) (e.g., Fig. 4.5), 

calculated allometrically from L, at the same temporal (i.e., daily) and spatial (i.e., 0.1°) scales 

as the input data, and for the spatial coverage (western Europe and north-western Africa) and 

date range defined in the model initialization; in this case April 1 to December 1 for both the 

spat pre-growing and adult grow-out phases, and September 1 to December 1 for the final 

fattening or finishing period (Table 4.1). The model was run, and these outputs were generated 

for each year of the three scenarios described above (early century reference, late century 

RCP 4.5, and late century RCP 8.5; Table 4.2). A mean year for each of these was then used 

to generate indicators and for comparison. 

 

 

Figure 4.5. Examples of modelled Pacific oyster (a) total weight, calculated allometrically from 

shell length and (b) dry flesh mass generated at the daily time step and for each 0.1° pixel of 

the ERSEM-POLCOMS input data. The date a target weight is achieved (i), or, inversely, the 

weight achieved by a certain date (ii), can then be mapped. Abrupt, negative spikes in (b) 

correspond to spawning events (iii, iv), the timing or number of which can also be mapped as 

indicators (from Palmer et al., submitted). 

 

Mapped growth time series were then transformed into a suite of industry-relevant aquaculture 

indicators associated with each of the production cycle stages (i.e., spat pre-growing, adult 

grow-out, finishing/fattening), and mapped for each of the reference and two climate change 

scenarios. An example of each, for the early century reference period and for the full model 

domain, is found in Fig. 4.6. Spat and adult indicators are related to the time it takes to reach 

a target total weight of interest, the total weight achieved by a date of interest, and the timing 

and number of spawning events (Figure 4.5; Table 4.4). In terms of finishing, Quality Index 

(QI) is the ratio of flesh to total weight. It is used to assess essentially the fullness of the oyster, 

and is related to French market classes (Normales (QI < 6.5%), Fines (6.5%< QI < 10.5%), 

and Spéciales (QI > 10.5%); Gosling, 2003; AFNOR, 1985), which are associated with 

increasingly higher prices. To estimate QI, since flesh weight is not modelled, it is calculated 
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here using the relationship between in situ measurements of DFM and flesh weight from an 

extensive French database of oyster growth monitoring, the Réseau d'observations 

conchylicoles (RESCO; R2 = 0.83, p < 0.001), applied to DFM output from the model.  

As these indicators depend on user-defined weight thresholds or dates of interest, these can 

easily be adapted to those of specific interest to a given user. For example, here we 

considered the timing of the main French market, which is early December, coinciding with 

the cultural tradition of eating oysters around Christmas. However, the secondary summer 

market may also be of interest, or may be the primary market elsewhere, and modifying the 

date range in transforming the growth data to the indicator would provide insight specific to 

this case (e.g., mapping total weight on July 15 rather than December 1) and is easily 

achieved. Similarly, we considered the minimum market weight threshold (30 g) here for adult 

oysters, and the T25 (14 g) threshold for spat resale, but a producer may be interested in 

heavier calibre adult or a different spat size to suit their infrastructure, production cycle, or 

markets, and the defined weight can be changed in producing the indicator. 

Closeups of adult weight on December 1 for several “hot spot” regions are presented in Fig. 

4.7, and reveal a high degree of regional spatial variability in indicator results over distances 

of only ~100km. For example, modelled weight for the area around Bourgneuf Bay, France, is 

approximately 40 g for this indicator and scenario, but only approximately 25 g just 100 km 

further northwest in South Brittany (Fig. 4.7c). More extreme is the example off the west coast 

of Africa (Fig. 4.7d), where modelled weights of > 55 g are less than 100 km from modelled 

weights < 15 g. This demonstrates the use of such indicators to both highlight broad regions 

of potential interest for aquaculture development, but also the potential to target sites of 

interest for further investigation within these regions. Several areas identified as having good 

offshore growth potential are in reasonably close proximity to areas wherein Pacific oyster 

cultivation currently takes place (e.g., the French Atlantic coast, around Scotland), albeit in the 

more nearshore coastal bays, estuaries, and fjords. This pre-existence of a shellfish industry, 

and Pacific oyster cultivation in particular, would be expected to facilitate an adjacent transition 

to the offshore environment, although major differences in production between the two 

environments – near- and offshore – are also expected. Likewise, certain areas where shellfish 

cultivation, including the European flat oyster (species), take place (e.g., the North Sea and 

its transitional waters with the Baltic Sea (Kattegat, Belt Sea)) have been mapped as having 

high Pacific oyster growth potential. In such areas, industry diversification to include Pacific 

oyster production would also likely be facilitated in many ways though existing related industry, 

but may not be desirable as competition between species may have a deleterious effect on 

the pre-existing industry (e.g., colonization of flat oyster aquaculture structures by Pacific 

oyster if in too close proximity). Further areas of high growth potential, where industrial 

shellfish aquaculture is not currently practiced, notably off the west coast of Africa, may 

suggest areas where new activity would be worth investigating.   
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Table 4.4. Example indicators produced here for each production cycle stage. 

Production stage Indicator 

Spat pre-grow Time to reach T20/T25 (14 g) 

Adult grow-out 

Time to reach market weight (30 g) 

Total weight on December 1 

Number of spawning events 

Finishing/fattening Quality index 

 

 

 

Figure 4.6. Example indicators detailed in the text and summarized in Table 4.4, applied to 

modelling for the early century reference period (2000-2004); (a) adult total weight (g) on 

December 1, (b) days until adults reach 30g, (c) number of spawning events per year, (d) days 

until spat reach 14g, and (e) quality index (%) associated with Normale (<6.5%), Fine (6.5-

10.5%), and Spéciale (>10.5%) classes. White areas were masked by thresholding criteria 

detailed in Table 4.3. 
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Figure 4.7 Closeups of adult total weight (g) on December 1 for the early century reference 

period (2000-2004) for (a) the UK and Ireland, (b) the North Sea and Baltic transitional waters, 

(c) the French Atlantic, and (d) the northwestern African coast. White areas were masked by 

thresholding criteria detailed in Table 4.3. 

 

 

4.4. Highlights of Pacific oyster aquaculture sustainability across Europe 

under changing climate scenarios 
 

In addition to the application of the aquaculture indicators described and demonstrated via 

mapping in the previous section for early century conditions, an increasingly important 

consideration in related policy, investment, and development decision making has to do with 

future climate change. Although increased sea surface temperature and decreased net 

primary productivity are generally expected under warming scenarios, changes to our climate 

system, and the effects and feedbacks thereof on a broad range of biogeochemical processes 

and ecosystems, are highly complex and associated with a high degree of uncertainty. To 

begin to address this in terms of oyster aquaculture indicators, the biogeochemical variables 

used to model Pacific oyster growth were modelled for two distinct future climate change 
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scenarios in addition to an early century reference period which benefitted from observation 

data assimilation: a “business as usual” scenario, whereby greenhouse gas emissions reach 

and exceed 8.5 W m-2 by the end of the century, and one whereby emissions level off to 4.5 

W m-2 by the end of the century (Moss et al., 2010). By assessing and comparing these two 

distinct future scenarios, we can begin to constrain and assess the potential uncertainty 

expected in future oyster growth potential and associated industry indicators. It should, 

however, be acknowledged, that we use a combination of three models (climate change, 

POLCOMS-ERSEM, and DEB), with each model being associated with its own inherent 

uncertainty, and therefore propagate the uncertainties in the final results.    

In addition to areas that have good current potential or are current “hot spots”, areas that are 

expected to remain stable in terms of growth potential projections, or even to increase under 

projected climate conditions can then be targeted. Alternatively, areas where growth potential 

is expected to decrease can be avoided. Furthermore, areas of stable or increasing growth 

potential under multiple contrasting climate scenarios, as assessed here, have the advantage 

of being more climate robust. In other words, the uncertainty associated with future climate 

conditions and their effects on crucial biogeochemical variables is found to affect growth 

potential less in these areas. Figure 3.8 outlines the series of steps and decisions that can be 

taken using the mapped indicators to highlight areas of interest to be prioritized for further 

exploration of aquaculture activity. First, areas that can be considered to have good potential 

under the baseline condition are identified using a user-defined criterion. In this case, the 

minimum market size threshold (30 g) is applied to the maps of total adult weight on December 

1; areas where oysters are modelled to reach or exceed 30 g by this date are retained for the 

next step. Then, areas that will also achieve this “good” status in any future scenario are 

retained. Finally, consistency between future scenarios is considered in terms of climate 

robustness, as described above; here, this is the absolute difference between the two future 

scenarios normalized to the indicator value itself (eq. 1). Areas that achieve all of these criteria 

are of high priority. 

 

|𝑅𝐶𝑃 8.5𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 − 𝑅𝐶𝑃 4.5𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟|/ max(𝑅𝐶𝑃 8.5𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 , 𝑅𝐶𝑃 4.5𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟) eq. 1 
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Figure 4.8. Schematic of aquaculture indicator mapping used in a decision support system to 

identify high-priority regions for further offshore aquaculture consideration. 

 

 

In Fig. 4.9, currently promising areas (panel (a); i.e., the first step in Fig. 4.8), as well as the 

extents that are also promising in the future and their climate robustness (panel (b))) are 

mapped. The example regions from Fig. 4.6 are similarly mapped in greater detail in Figs. 

4.10-4.13. Within each of these, the total weights are extracted from a smaller area (black 

squares in panel (b) of each) for each of the early and late century scenarios for further 

consideration (Fig. 4.14). 
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Figure 4.9. (a) Areas of current “good” growth potential within the full model domain, defined 

here as total adult weight reaching or exceeding 30 g by December 1 (dark red), and (b) climate 

robustness (weight-normalized absolute difference in future scenario-projected growth (eq. 

1)) mapped for areas of good current and future growth potential. Darker red areas are 

considered to be more climate robust. 
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Figure 4.10. (a) Areas of current “good” growth potential within the UK and Ireland, defined 

here as total adult weight reaching or exceeding 30 g by December 1 (dark red), and (b) climate 

robustness (weight-normalized absolute difference in future scenario-projected growth) 

mapped for areas of good current and future potential. Colour scales are as in Fig. 4.9. The 

black square in (b) indicates the area analyzed in Fig. 4.14. 

 

Figure 4.11. (a) Areas of current “good” growth potential for the French Atlantic, defined here 

as total adult weight reaching or exceeding 30 g by December 1 (dark red), and (b) climate 

robustness (weight-normalized absolute difference in future scenario-projected growth (eq. 

1)) mapped for areas of good current and future potential. Colour scales are as in Fig. 4.9. The 

black square in (b) indicates the area analyzed in Fig. 4.14. 

 

Additional areas of interest for future shellfish aquaculture activities may be highlighted by 

superimposing infrastructural considerations that are necessary for or which may open up new 

avenues for cultivation upon the maps of current and future climate-robust growth potential. 

This may be considered in either of two ways: existing or planned infrastructure may be used 

to constrain broader areas of interest from a growth potential perspective. Or, areas of 

exceptional biological potential, but with limited infrastructural resources, may be targeted in 



 
 
 This project has received funding from the EU 

H2020 research and innovation programme 

under Grant Agreement No 678396 
37 / 63 

 

planning for major infrastructural investments in support of aquaculture. For example, in Fig. 

4.12 the limitation to aquaculture development of port access in areas of high oyster growth 

potential in western Africa is contrasted with the European situation. A given area should be 

within 25 nm of a port to warrant aquaculture activity development, in terms of cost-

effectiveness (Kapetsky et al. 2013). To leverage observed potential in western Africa, 

developments in the aquaculture industry could proceed within the area where 25 nm to a port 

overlaps with high growth potential (e.g., Fig. 4.12c-i). Mapped areas of exceptionally high 

growth potential could also be used as part of the discussion around where to situate new 

ports (e.g., Fig. 4.12c-ii). The potential for offshore co-production of shellfish and wind energy 

has also received considerable attention over recent decades (Buck and Langan, 2017), 

particularly in the North Sea, where the offshore wind energy sector is both well-established 

and continues to develop. Essentially, the presence of wind farm platforms is leveraged to 

suspend longlines or floating cages for oyster or mussel cultivation, providing added-value to 

the initial platform investments within an integrated coastal management framework (Buck and 

Langan, 2017). In Fig. 4.13a, the locations of operational, under construction, and authorized 

wind farms since 2015 are superimposed on areas of current interest in the North Sea, in 

terms of growth potential, and on climate robust growth potential areas Fig. 4.13b. Several 

resulting priority areas, with high current growth potential that is expected to remain stable, 

are highlighted. 
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Figure 4.12. (a) 25 nm distance to a port for the full model domain considered here (green area 

along coasts). (b) Areas of current “good” growth potential for Western Sahara, defined here 

as total adult weight reaching or exceeding 30 g by December 1 (dark red), and (c) climate 

robustness (weight-normalized absolute difference in future scenario-projected growth (eq. 

1)) mapped for areas of good current and future potential. Colour scales are as in Fig. 4.9. The 

black squares in (c) indicate the areas analyzed in Fig. 4.14. Areas within 25 nm of existing 

ports are superimposed on indicator maps in (b) and (c) (green shading). 
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Figure 4.13. (a) Areas of current “good” growth potential for the North Sea-Baltic transitional 

waters (Kattegat; Belt Sea), defined here as total adult weight reaching or exceeding 30 g by 

December 1 (dark red), and (b) climate robustness (weight-normalized absolute difference in 

future scenario-projected growth (eq. 1)) mapped for areas of good current and future 

potential. Colour scales are as in Fig. 4.9. The black squares in (b) indicates the area analyzed 

in Fig. 4.14 (Kattegat, Nordergrunde). Here, the locations of wind farms that are operational, 

under construction or authorized since 2015 are superimposed (blue polygons). 

 

The current modelling and mapping exercises, considering (i) Pacific oyster tolerance ranges 

with regards to several biogeochemical variables and (ii) DEB-modelled Pacific oyster growth 

potential indicators, both under various climate change scenarios, as well as (iii) examples of 

technical infrastructural constraints and opportunities, highlights the utility and added spatial 

nuance possible to achieve through our approach. The results could be extended through 

more complete Spatial Multi-Criteria Analysis, incorporating additional socio-economic factors 

that further influence whether cultivation at a given site would be possible or that may hinder 

or be leveraged to the benefit of aquaculture. This is especially relevant as many regions and 

countries undertake or update Marine Spatial Planning, for which such spatial information is 

crucial. Although different oyster growth scenarios were produced, under varying future 

climate scenarios, there is also uncertainty in future conditions for many other issues that 

would affect the development, sustainability, and success of aquaculture, including changes 

to fisheries management. Furthermore, not all factors that would be expected to influence 

oyster biological growth potential are included in the modelling and constraint mapping here. 

For example, ocean acidification is expected to increase under all climate change scenarios, 

and to have a substantial impact on the ability of shellfish to thrive (Kroeker et al., 2010; Barton 

et al., 2012).  
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Figure 4.14. Comparison of Pacific oyster growth potential for early century baseline (blue) 

and two future climate scenario projections, RCP 4.5 (orange) and RCP 8.5 (grey), for example 

areas within several identified areas of interest. 

 

A valuable approach for integrating modelled data in support of aquaculture decision making 

is demonstrated, with important limitations and avenues for future work identified. With the 

availability of in situ data for DEB model calibration and validation, this approach could be 

used for other species of interest too (e.g., blue mussel (Mytilus edulis)). For Pacific oyster, C. 

gigas, a suite of industry-relevant indicators for current growth potential and future, climate-

related sustainability was proposed. Several broad regions of current and future interest were 

highlighted, within which more localized site selection and opportunities to leverage existing 

or to plan for future infrastructure were demonstrated. Results at this spatial scale are also 

expected to inform decisions on where more detailed investigation and modelling would be 

most beneficial.  



 
 
 This project has received funding from the EU 

H2020 research and innovation programme 

under Grant Agreement No 678396 
41 / 63 

 

5. Assessing the impact of aquaculture waste on environmental status 

in an eastern Mediterranean Allocated Zone for Aquaculture (AZA) 

using Aquaculture Integrated Model (AIM). 

 

5.1. Background 

The input of dissolved inorganic nutrients from fish farms may affect the ecological regime of 

the surrounding areas (Sara, 2007ab). The dispersion of waste largely depends on the 

hydrography in the vicinity of the fish farms, with effluents often being accumulated at 

significant distances from the farms (Tsagaraki et al., 2011). Consequently, planning and 

licensing of cage aquaculture can be complex, particularly in Allocated Zones for Aquaculture 

(AZAs) with potential cumulative impacts from multiple farms. Decision makers therefore need 

help to assess if a site is suitable for cages and to determine acceptable biomass limits. 

Coupled physical–biogeochemical numerical models can be used to examine the impact of 

the fish farms on the marine ecosystem of the surrounding areas, offering a low-cost solution, 

as compared with systematic in situ monitoring. More importantly, they can be used, through 

a series of scenario simulations, as management tools in order to obtain a sustainable and 

efficient spatial planning of the fish farms, considering the area carrying capacity and the 

overall effect on the ecosystem.  

 

5.2. Description & limitations of the modelling approach 

The Aquaculture Integrated Model (AIM; Tsagaraki et al., 2011; Petihakis et al., 2012) was 

used in an AZA (Vourlias Bay, Greece) to examine the fate of seabass/seabream aquaculture 

wastes under different scenarios (e.g., fish production, changing climate) and assess their 

potential impacts on the surrounding ecosystem, in terms of good environmental status (see 

TAPAS D5.3 for a more detailed description). The modelling tool consists of a high-resolution 

3D coupled hydrodynamic/biogeochemical model, with a mass balance model (Tsapakis et 

al., 2006) used to calculate nutrient inputs from the fish cages, based on fish feed data. A 

series of nested models is used to consistently downscale the hydrodynamics and 

biogeochemistry from the coarser resolution (~3 Km) model of the wider area (Aegean) to the 

high-resolution model (~50m) of the fish farm area. The model was validated against available 

satellite (Chl-a) and collected in situ (Chl-a, nutrients, mesozooplankton) data. The model 

produces maps of near surface currents, Chl-a, and dissolved inorganic nutrients (phosphate, 

nitrate, ammonium, silicate) that can be used to calculate environmental indicators (i.e., 

environmental index; Primpas et al., 2010) describing the environmental status of the area 

and assess the AZA carrying capacity.  
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Figure 5.1. Aquaculture Integrated Model schematic, showing the series of nested models 

(Aegean/3Km resolution, Argolikos Gulf/500m resolution, Vourlias bay/50m resolution) on the left, 

the biogeochemical and mass balance model schematics on the middle and an example of AIM 

model output (Environmental status index and currents) on the right panel. 

The use of a comprehensive biogeochemical model, such as ERSEM allows the complex food 

web response, triggered by the nutrient inputs, to be investigated. The high resolution (~50m) 

of the hydrodynamic model and its progressive downscaling through nesting with coarser 

models allows a realistic simulation of circulation, which is crucial for the correct dispersion of 

aquaculture effluents.  

The main prerequisite for the initial model setup is a relatively high-resolution bathymetry of 

the area and initial fields for the hydrodynamic (temperature, salinity) and biogeochemical 

(dissolved inorganic nutrients) models that are usually obtained from coarser regional-scale 

models (e.g., of the Aegean Sea) and/or existing climatologies. In addition, fish feed data are 

also required to calculate fish farm wastes. The main limitation of the modelling system is that 

it is computationally very demanding, (e.g., two days for a one-year simulation in a 40-CPU 

server), mainly due to the very high resolution of the near-field model. Moreover, in situ 

measurements (inorganic nutrients, Chl-a, currents), needed for a more detailed model 

validation, may require some additional cost and effort for the tool application. We should note 

that a realistic simulation of circulation on such local scale, without employing any data 

assimilation, is rather challenging (see TAPAS D5.3), as small-scale coastal features are 

largely driven by the larger scale circulation, obtained through the open boundary nesting with 

the coarser model. Data assimilation (e.g., satellite altimetry) in the coarser model, or even in 

the fine-scale model if high-resolution data are available, is expected to further improve the 

model precision. The uncertainty of coastal hydrodynamics is even higher in future climate 
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simulations, as the climate forcing obtained from relatively coarser atmosphere-ocean models 

is less relevant at coastal scales. 

5.3. Aquaculture indicators 

The tool has been implemented to assess the current environmental impact of the fish farms 

in the Vourlias AZA (Argolikos Gulf, Greece) and to investigate the system carrying capacity 

through additional scenarios adopting an increased fish production. The tool was also 

implemented to investigate the potential changes in the AZA environmental status due to 

changing climate conditions (i.e., increase of temperature/stratification, etc.), under future 

scenarios for the 2030-2050 and 2080-2100 time-windows. The environmental status was 

assessed calculating the Environmental Index (E.I., Primpas et al., 2010), using the model 

simulated nutrients and Chl-a concentration: 

 

E.I.=0.279*PO4 + 0.261*NO3+ 0.296*NO2+ 0.275*NH4+ 0.214*Chl-a  

 

and the following environmental scaling:  <0.04 very good, 0.04 - 0.38 good, 0.38 - 0.85 

moderate, 0.85 - 1.51 poor, > 1.51 bad. 

The environmental conditions in the AZA were found to be “good” during the well-mixed winter 

period and “moderate” to “poor” during more stratified summer periods (see Figure 5.2). The 

environmental conditions in the vicinity of different fish farms were found to be correlated to 

the fish farm production and the predominant current speed, with some fish farms 

characterized by relatively better environmental conditions, despite their high fish production 

due to the stronger prevailing currents that result in the more efficient off-shore dispersion of 

fish farm wastes (see TAPAS D5.3). A scenario simulation, adopting a doubled fish production 

was performed, investigating the carrying capacity of the AZA. An additional increased 

production scenario was also performed, distributing this increase based on the environmental 

index variability, thus allocating more production increase in fish farms characterized by better 

conditions. In this case the deterioration of conditions in fish farms was more balanced, 

avoiding extremes (i.e., fish farms #3, #4; Figure 5.3).  
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Figure 5.2. Seasonal variability (1=winter, 2=spring, 3=summer, 4=autumn) of simulated 

environmental index over the 2012-2014 period. 

 

 

Figure 5.3. Mean 2013 simulated summer environmental index (E.I.) in the vicinity of the fish 

farms, comparing reference fish production, doubled fish production, and doubled fish 

production distributed across different fish farms taking initial E.I. variability into account. 

The red line indicates the E.I. threshold identifying “poor” environmental conditions (1.51). 

 

For the future climate simulations, the model was forced with climatic atmospheric forcing 

(obtained from the Swedish Meteorological Hydrological Institute), while open boundary 

conditions (temperature, salinity, inorganic nutrients) were obtained from PML Mediterranean 

basin scale future climate simulations (Kay and Butenschon, 2018), adopting an “anomaly” 

approach (i.e., multiply the open boundary conditions of the hindcast simulation with a 

changing factor, future/present, obtained from PML boundary conditions).  

Future climate conditions were mostly characterized by an increase in temperature (from 

+0.4oC in 2030 under RCP 4.5 to +2oC in 2080 under RCP 8.5), resulting in a slight decrease 

in plankton biomass due to their increased metabolism (Figure 5.4), and an increase in open 

sea dissolved inorganic nutrients (obtained from the basin scale model). The latter is probably 
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due to the significant increase of open sea salinity predicted by the basin scale model, which 

results in increased winter mixing and nutrient enrichment. Overall, changes in the 

environmental status under future climate conditions were relatively small, as compared to 

present conditions (Figs 5.4-5.6) and were related to the combined effect of increased open 

boundary dissolved inorganic nutrients, the increased plankton metabolism, and the effect of 

changing stratification on the dispersion of aquaculture wastes. 

 

 

Figure 5.4. Mean summer fractional change (Future/present-1) of simulated average 

phosphate and Chl-a under future climate scenarios (2030-2050 & 2080-2100 rcm4.5 and 

rcm8.5), adopting temperature, salinity and dissolved inorganic nutrients (e.g. 2030-rcm45nut) 

or just temperature and salinity from the boundary conditions of the basin scale model. The 

decrease in Chl-a in the second series of experiments is related to the increased metabolism, 

resulting from temperature increase. 
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Figure 5.5. Mean simulated summer environmental index under present and future climate 

(2030-2050 & 2080-2100 RCP 4.5 and RCP 8.5) conditions. 

 

Figure 5.6. Mean summer environmental index in the vicinity of fish farms under present and 

future climate (2030-2050 & 2080-2100 RCP 4.5 and RCP 8.5) conditions. 
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5.4. Summary of Mediterranean finfish aquaculture environmental impacts 

under changing climate and exploitation scenarios  

Once setup and validated, AIM can be used to examine the impact of single or multiple (e.g., 

AZA) existing aquaculture units in terms of environmental status, using the model output (e.g., 

Chl-a, inorganic nutrients, oxygen) to calculate environmental indices (e.g., Primpas et al., 

2010). More importantly, it can be used to simulate different scenarios (e.g., comparing farm 

locations, level of production) as a management tool for the spatial planning and licensing of 

new farms or the increase of production for existing farms, providing decision support for 

government authorities and producers.  

The use of a comprehensive biogeochemical model, such as ERSEM, allows the complex 

food web response, triggered by the nutrient inputs, to be investigated. Currently, a first order 

simple benthic model is used, calculating the nutrient fluxes from the sediment. A further model 

development would be to implement the full ERSEM benthic model that would allow the effect 

of uneaten food and wastes from the fish cages to the underlying benthic ecosystem to be 

simulated, calculating a series of benthic indexes. This would however require some additional 

effort and cost for the tuning and validation of the benthic model. The high resolution (~50m) 

of the hydrodynamic model and its progressive downscaling through nesting with coarser 

models allows a realistic simulation of circulation, which is crucial for the correct dispersion of 

aquaculture effluents. As mentioned above, capturing the observed circulation on such a local 

scale, is rather challenging. Data assimilation would further improve the model skill on such a 

local scale.  

The tool can be used also to examine the potential changes in the environmental status and 

the impact from aquaculture wastes, under changing climate conditions (i.e., temperature, 

stratification, etc.), by means of future climate scenario simulations. In this case, the 

atmospheric forcing is obtained from atmosphere-ocean (climate) model simulations, while 

open boundary conditions are obtained from a coarser model future climate simulation. The 

uncertainty of these future climate simulations, however, is relatively high on such local scales, 

particularly with regard to near surface circulation, given that the usually coarser climate 

forcing is less relevant at coastal scales. Therefore, these scenario simulations may provide 

some useful insight on the potential changes of stratification, for example, and its effects on 

biogeochemistry, but should be considered with caution. 

The modelling system can be relatively easily adapted for other areas. The main requirements 

for the initial model setup are a bathymetry of the area and initial fields for the hydrodynamic 

(temperature, salinity) and biogeochemical (dissolved inorganic nutrients) models, typically 

obtained from coarser sub-basin scale models and/or existing climatologies. In addition, fish 

feed data are also required to calculate the fish farm wastes. The main limitation of the 

modelling system is that it is computationally very demanding, mainly due to the very high 

resolution of the near-field model. Overall, the use of AIM as a management tool requires 

some effort and expertise (scientific for the model output interpretation and technical for the 

model implementation), but future plans include the dynamic model implementation through a 

web application that will make this tool more user-friendly.  
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6. Mapping regional-scale sustainability for offshore salmon and 

mussel aquaculture in the North Atlantic and Nordic Seas 
 

6.1. Background  

Offshore aquaculture presents a large potential growth area for sustainable exploitation and 

food provision, avoiding many of the environmental problems and land/water-use conflicts 

associated with traditional nearshore aquaculture (Benetti et al., 2010; Kapetsky et al., 2013; 

Jansen et al., 2016; Dale et al., 2017; Gentry et al., 2017; Troell et al., 2017; Oyinlola et al., 

2018). Long-term planning and policy development in this regard can benefit from initial 

broadscale assessments of site suitability, sometimes called “macro-siting” assessments, that 

can identify regions of interest for further investigation using more focused models and 

datasets (“micro-siting”, Jansen et al., 2016). Ocean biogeochemical models can enhance 

macro-siting assessments by providing: 1) more complete datasets than are available from 

observations, in terms of spatio-temporal coverage and available parameters, and 2) future 

projections of environmental conditions, allowing us to assess the stability of site suitability 

under climate change, as is crucial to enable long-term sustainable exploitation. Here we 

demonstrate the use of a basin-scale ocean biogeochemical model (A20) for macro-siting 

assessments of offshore salmon and mussel aquaculture in the North Atlantic and Nordic 

Seas, considering the past 30 years and the future 30 years under the RCP 8.5 climate change 

scenario. 

6.2. Description & limitations of the modelling approach 

The A20 model is based on a ROMS ocean model (Shchepetkin and McWilliams, 2005) 

configured on a 20 km-resolution, pan-Arctic grid developed by the Norwegian Meteorological 

Institute (Roed et al., 2014). The ecosystem dynamics are based on a version of the ERSEM 

biogeochemical model (Butenschön et al., 2016) that has been adapted at NIVA for 

representing high northern latitudes (AERSEM or “Arctic-ERSEM”). The physical and 

ecosystem models are coupled using the Framework for Aquatic Biogeochemical Models 

(FABM; Bruggeman and Bolding, 2014). A20 was run in hindcast mode between January 1980 

and December 2014, and in projection mode under RCP8.5 from December 2014 through 

December 2044, with all output saved as weekly averages. 

Inputs to the A20 hindcast (1980-2014) included physical initial/boundary conditions from 

SODA 3.0 (Carton et al., 2000, Carton and Giese, 2008) and biogeochemical initial/boundary 

conditions from NorESM-OC1.2 (Schwinger et al., 2016). The latter were bias corrected using 

in situ observational data from the World Ocean Database (Boyer et al., 2013), the 

International Council for the Exploration of the Sea (ICES, Copenhagen, 2013), the Global 

Ocean Data Analysis Project, version 2 (GLODAPv2, Key et al., 2015; Olsen et al., 2016), the 

CARINA Iceland and Irminger Sea Time Series version 2 (Olafsson et al., 2009a, 2009b), and 

various cruise datasets provided by the Shirshov Institute on Oceanology and the Norwegian 

Environment Agency. Tidal forcing was based on the global ocean tidal model TPXO7.2 from 

Oregon State University, by imposing surface elevation and corresponding barotropic velocity 

components at the open boundaries. Atmospheric forcings were based on the ERA-INTERIM 

archive (Uppala et al. 2005; Reistad et al. 2011) provided by the European Centre for Medium 

Range Weather Forecast (ECMWF), and CO2 concentrations from the NOAA Greenhouse 
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Gas Marine Boundary Layer Reference (Dlugokency et al., 2015). Freshwater input was 

mostly from seasonal climatologies, with decadal variability for the major Arctic rivers (Jeffries 

et al., 2015). 

Inputs for the A20 projections (2015-2044) were based on RCP8.5 projections from NORESM 

(Tjiputra et al., 2016), bias-corrected using the ERA-INTERIM/SODA output for 2006-2015 

and the monthly delta change approach of Key and Butenschon (2016). Tidal forcing was used 

for the hindcast, and riverine forcing was based on a climatology of the hindcast inputs for 

2007-2016. The hindcast output for December 2014 was used to set the initial conditions. 

Source code for creating the forcing files can be found here: 

https://github.com/trondkr/downscaleA20.  

The output for temperature and oxygen in the A20 hindcast and projection runs was bias 

corrected by first interpolating the hindcast output for 1984-2014 over space and time to the 

available in situ observations (from the above sources), then kernel-smoothing the (model-

minus-observations) residuals over (latitude, longitude, depth, month) onto the model grid for 

each month of the year. The resulting 4D bias field was subsequently interpolated to and 

subtracted from the A20 hindcasts and projections. 

6.3. Model outputs & aquaculture indicators 

The A20 model was used to hindcast ocean environmental conditions in the North Atlantic and 

Nordic Seas over the last 30 years, and to project future conditions over the next 30 years 

under the RCP8.5 climate change scenario. Model output was stored as weekly averages for 

physical ocean state and biogeochemical variables and fluxes within the simulated planktonic 

ecosystem (D6.3, Table A1). In addition, the following “basic sustainability indicators” defined 

in (M6.3, Table 1) are available as weekly averages: (1) Chlorophyll-a concentration, (2) 

Phytoplankton carbon, (3) Zooplankton, (4) Surface current velocities, (5) Particulate organic 

carbon, (9) Dissolved oxygen, (10) pH, (11) Water temperature, (12) Salinity, (15) Ratio 

dinoflagellates to diatoms, (16) Sum of microplankton + nanoplankton, (17) Phenology of 

phytoplankton functional types, (20) Ratio silicate-to-nitrogen, (21) Ratio silicate-to-phosphate, 

(22) Ratio phosphate-to-nitrogen, (23) Upwelling areas, (24) Seabed currents. We also 

computed the 3D weekly-average horizontal current speed ((u2+v2)1/2) as an important 

parameter for aquaculture site selection4.  

Furthermore, we calculated integrated or cumulative indicators (M6.3, Table 2) for Atlantic 

salmon (Salmo salar) and blue mussel (Mytilus edulis) aquaculture as described below.  These 

indices should be considered as simple first attempts that illustrate how 

physical/biogeochemical ocean model output can be exploited for aquaculture planning. See 

limitations given in Section 6.4.3. 

1)  Environmental suitability index for offshore Atlantic salmon farming.  

This considers water depth and other factors (temperature, dissolved oxygen concentration, 

horizontal current speed; as weekly averages over the surface 0-50 m) and defines an integer 

value (0 = not suitable, 1 = suitable) for each horizontal grid point and each year. We assume 

that water depth, estimated using high-resolution bathymetry products (IBCAOv3 (Jakobsson 

                                                
4 All output is available on request from Phil Wallhead (pwa@niva.no). 

https://github.com/trondkr/downscaleA20
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et al. 2012) and ETOPOv2), must exceed 80 m to allow for maximum 60 m cage depth and 

minimum 20 m clearance from the bottom (Dale et al., 2017). An upper depth limit is dependent 

on rapidly-developing mooring techniques/technologies and is difficult to determine at present: 

Kapetsky et al., (2013) used 100 m, but salmon farms in Norwegian fjords have been 

successfully moored in water >500 m depth, and an offshore farm has recently been moored 

down to 300 m. We used 500 m as an upper depth limit for present-day mooring technology. 

Temperature is required to be within the tolerance range of 3-18 °C for smolts (young) salmon 

(Norwegian Food Authorities, Dale et al., 2017). Lower limits for the dissolved oxygen 

concentration are based on experimental results for the limiting oxygen saturation (LOS, 

Remen et al., 2013), increased by 40% as recommended by Remen et al. (2013) to account 

for greater feeding and swimming activity in sea cages vs. the experimental conditions (Figure 

4.1). This lower limit was modelled as an exponentially increasing function of temperature and 

was further corrected upwards to account for the presence of a hypothetical fish farm. This 

latter correction assumed a balance between the net horizontal advection of dissolved oxygen 

and the consumption of oxygen by fish respiration within the cage (Stigebrandt et al., 2004; 

Stigebrandt 2011). Here we assumed typical cage dimensions of 40 m width and 30 m depth, 

and calculated temperature-dependent fish respiration using results from the MOM model 

(Stigebrandt et al., 2004; Fig. 4) assuming a median fish weight of 1.7 kg and a fish biomass 

of 667 tonnes per cage. The horizontal current speed was also corrected downwards by 80% 

to account for the presence of the cage based on results from Aure et al. (2009). An example 

of the corrected lower limit for the natural (no fish farm) dissolved oxygen concentrations is 

shown in Fig. 6.1, assuming a natural horizontal current speed of 0.1 m/s. Finally, an upper 

limit of 0.4 m/s for the fish-farm-corrected current speed was imposed in consideration of the 

tolerance limits of the smolts (Norwegian Food Authorities, Dale et al., 2017). If any of limits 

for water depth, temperature, oxygen, or current speed were exceeded for any week of a given 

year, the site was deemed unsuitable for that year (index value 0), otherwise the site was 

deemed suitable (index value 1).  

 

Figure 6.1. An example calculation of limiting oxygen concentrations for Atlantic salmon 

aquaculture, assuming a minimum weekly-average natural current speed of 0.1 m/s.  For 

comparison we also show the 100%-saturated oxygen concentrations for seawater with 

salinity 35 psu at 1 atm pressure (blue line) and in situ observational data for dissolved oxygen 

at depths between 0 and 50 m in water columns of depth >25 m (GLODAPv2, grey dots, Olsen 

et al., 2016; Key et al., 2015). 
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2)  Environmental suitability index for offshore blue mussel farming.   

This considers water depth and (temperature, food supply) averaged over years and the 

surface 0-50 m. Water depth is restricted to between 20 and 500 m, with regard to mooring 

feasibility, and annual mean temperature is restricted to a “favourable grow-out” range of 2.5‒

19°C (Kapetsky et al., 2013). Potential food supply to a hypothetical mussel longline is 

assumed to scale with the horizontal advective flux of particulate organic carbon, given by the 

product of the mussel-farm-corrected current speed and the ambient POC concentration (e.g. 

Duarte et al., 2008; Newell and Richardson, 2014). Drag due to friction with the mussel farm 

is assumed to reduce the current speed by 77.5% (Newell and Richardson, 2014). The food 

supply is calculated using weekly averages over all depths and is then averaged over 0-50 m 

and 1 year.  A combined suitability index is calculated by multiplying the annual average food 

supply by the 0-1 indicators for water depth and temperature. 

 

 

6.4. Assessment of Northern European offshore salmon and mussel 

aquaculture sustainability under a changing climate scenario 

6.4.1 Ecoregions for offshore Atlantic salmon aquaculture 

 

The simple criteria defined in section 6.3 were used to map regions of potential sustainable 

salmon aquaculture for a given year (e.g. 2014, see Fig. 6.2). Mooring constraints on water 

depth (80‒500 m) restricted production to the deeper parts of the continental shelves, 

excluding the southern North Sea and English Channel (Fig. 6.2a). For 2014, the annual 

minimum temperature of 3°C (averaged over 0-50 m and 1 week) imposes a northern border 

that includes southern Iceland and northern Norway but excludes northern Iceland, the east 

Greenland coast, and Svalbard (Fig. 6.2b), while the upper limit of 18 °C excludes the southern 

North Sea and English Channel (Fig. 6.2c). Natural (ambient) dissolved oxygen 

concentrations are not restrictive (Fig. 6.2d, cf. Fig. 6.1), nor is the upper limit of 0.4 m/s for 

fish-farm-corrected current speed (Fig. 6.2e). However, surface dissolved oxygen 

concentrations corrected for the presence of the fish farm may be restrictive in deeper oceanic 

waters with low current speeds (e.g. over the Lofoten basin, Fig. 6.2f).   
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Figure 6.2. An example of sustainability indicators for Atlantic salmon farming in the European 

sector of the A20 model domain during 2014.  All indicators are calculated from weekly and 0-

50 m averages (except for water depth).  Thick black contour lines show threshold indicator 

values.  White lines show lines of constant latitude/longitude.  Axis labels show horizontal 

coordinates in the A20 domain (1 unit = 20 km). 

 

For the salmon farm analysis, each indicator variable is associated with an integer index value 

(0 = unsuitable, 1 = suitable) for a given year. By averaging these indices over decades, we 

can examine the decadal variation in ecoregion extent (see Fig. 6.3).  Overall, the total suitable 

area has been quite stable over the last 3 decades, decreasing by 1% between 1985-1994 

and 1995-2004, then increasing by 5% between 1995-2004 and 2005-2014 (Fig. 6.3 d,h,l). 

These changes appear to be driven mainly by decadal temperature variations, with the 

northern border extending slightly further into the Barents Sea between 1995-2004 and 2005-

2014 (Fig. 6.3 a,e,i). 

 

Figure 6.3. Decadal sustainability indices for Atlantic salmon farming in the European sector 

of the A20 model domain during past decades.  Top, middle, and bottom rows show results 

for decades (1985-1994), (1995-2004), and (2005-2014) respectively. White lines show lines of 

constant latitude/longitude. 
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In the future, under the RCP 8.5 scenario, the A20 projections suggest that regional-scale 

sustainability will remain stable over the coming 30 years for offshore salmon aquaculture 

(Figs. 6.4). This stability is enabled by the weak projected trends in annual minimum/maximum 

(from weekly averages) temperature and dissolved oxygen concentration in the surface waters 

of the study region over 2015-2044.  These trends are on average consistent with the weak 

corresponding trends in the driving global model (NORESM).   

 

Figure 6.4. Decadal sustainability indices for Atlantic salmon farming in the European sector 

of the A20 model domain during future decades under the RCP8.5 scenario.  Top, middle, and 

bottom rows show results for decades (2015-2024), (2025-2034), and (2035-2044) respectively. 

White lines show lines of constant latitude/longitude. 

 

6.4.2 Ecoregions for offshore blue mussel aquaculture 

 

For blue mussel aquaculture, the water depth range (20‒500 m) includes almost all of the 

continental shelf regions in the study region (Fig. 6.5a), and the restrictions of annual mean 

temperature (2.5‒19 °C for the 0-50 m layer) exclude only the eastern Greenland and eastern 

Svalbard coasts (Fig. 6.5b). Annual mean POC from the model varies rather weakly over the 

study region (Fig. 6.5c), with lower values in the southern North Sea. Current speed varies 

strongly over the region (Fig. 6.5d) and appears to be the primary driver of variations in 

potential food supply (Fig. 6.5e). Combining the water depth and temperature limits with the 

potential food supply gives an overall sustainability index (Fig. 6.5f) that highlights regions in 

the German/Southern Bight and the English Channel, and off Brittany, Ireland, Scotland, the 

northern North Sea, the Faroe Islands, Iceland, the Danish and Norwegian coast (especially 

in the south), and parts of the Barents Sea and western Svalbard shelf. This pattern has been 

quite stable over recent decades, extending slightly northwards into the Barents Sea with 

warming between 2000 and 2010 (Fig. 6.6). 

 



 
 
 This project has received funding from the EU 

H2020 research and innovation programme 

under Grant Agreement No 678396 
54 / 63 

 

 

Figure 6.5. An example of sustainability indicators for blue mussel farming in the European 

sector of the A20 model domain during 2014. All indicators are calculated from annual and 0-

50 m averages (except for water depth). Thick black contour lines show threshold indicator 

values. White lines show lines of constant latitude/longitude. Axis labels show horizontal 

coordinates in the A20 domain (1 unit = 20 km). 

 

 

Figure 6.6. Decadal sustainability indices for blue mussel farming in the European sector of 

the A20 model domain in past decades.  Top, middle, and bottom rows show results for 

decades (1985-1994), (1995-2004), and (2005-2014) respectively. White lines show lines of 

constant latitude/longitude.  

 

In the future, under the RCP8.5 scenario, the A20 projections suggest that regional-scale 

sustainability will also remain stable over the coming 30 years for offshore mussel aquaculture 

(Fig. 6.7). Again, this projected stability is due to weak projected trends over the next 30 years, 

in this case for annual mean temperature and POC in the surface waters. 
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Figure 6.7. Decadal sustainability indices for blue mussel farming in the European sector of 

the A20 model domain in the future under the RCP8.5 scenario.  Top, middle, and bottom rows 

show results for decades (2015-2024), (2025-2034), and (2035-2044) respectively. White lines 

show lines of constant latitude/longitude. 

 

6.4.3 Caveats and limitations 

 

It must be emphasized that the indicators described above are rather simple and only partially 

determine the suitability of a given site for offshore salmon or mussel aquaculture.  Other 

factors include administrative/legal constraints (existing aquaculture, marine protected areas, 

coastal waterways, offshore windfarms), logistical constraints on distance from land (or 

manned station/rig for supply and servicing of the farm), and safety/technological constraints 

(e.g., significant wave height and frequency of navigable ocean conditions) (Dale et al., 2017).  

Also, there are limitations of the present (A20) model output used to calculate the indicators, 

notably the 20-km spatial resolution which is not sufficient to resolve ocean eddies at 

moderate/high latitudes (e.g., Holt et al., 2014), hence the impact of eddies on average current 

speeds and biogeochemical production (e.g., POC production and subsequent oxygen 

consumption) is not fully accounted for. Also, the simple nature of the indicators likely misses 

some important interaction effects, e.g. mussel production may require higher food supply at 

lower temperature. Nevertheless, such analyses appear to be a useful first step for highlighting 

broad-scale potential areas of future blue growth and may subsequently help to guide and 

focus more refined models and analyses at smaller spatial scales. 

6.4.4 Conclusions 

 

This case study demonstrates how basin-scale regional downscaling models can be applied 

to explore the sustainability of offshore salmon and mussel aquaculture. Our results suggest 

that large regions of the European/Nordic shelf seas could be utilized for offshore aquaculture, 

if logistical and administrative constraints can be overcome. Our future projections based on 

a single climate model and a pessimistic (high-emissions) climate change scenario suggested 

that the potential for sustainable aquaculture will not change significantly over the next 30 

years (based on environmental constraints) although a more rigorous analysis using an 

ensemble of climate models, and possibly higher-resolution climate models, should be 

employed to provide uncertainty estimates for these projections.      
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This type of large-scale “macro-siting” approach is useful for identifying broad regions of 

interest that can be further investigated using more focused models with higher spatial and 

process resolution but more limited geographic scope (“micro-siting”, Jansen et al., 2016).  It 

is therefore more likely useful for strategic, long-term planning of aquaculture and policy 

development (e.g. expansion into offshore areas as potential regions of future blue growth and 

sustainable exploitation).   

6.4.4 Broader applicability 

 

This case study demonstrates, within the caveats and limitations given, the potential utility of 

3D regional ocean biogeochemical models as tools to guide large-scale and long-term 

aquacultural planning and policy development.  While similar broad-scale “macro-siting” 

analyses have been performed using only observational data (e.g. Kapetsky et al., 2013; 

Gentry et al., 2017), the use of an ocean biogeochemical model (such as the A20 ROMS-

ERSEM coupled models used herein) has two major potential benefits: 1) The models can 

provide complete time series of variability at all depths and horizontal locations, not subject to 

gaps or sampling biases, and may thus provide more robust estimates of e.g. annual minimum 

oxygen concentrations; 2) The models can provide future projections, thus allowing us to 

investigate how different scenarios of anthropogenic change may impact conditions at a 

regional scale, allowing policy-makers to identify potential zones that could be used for 

aquaculture into the future, subject to local-scale assessment.  
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7. Conclusions 
 

Earth Observation (EO)- and modelling-generated biogeochemical variables crucial to the 

success and sustainability of the aquaculture industry have been used here to establish and 

demonstrate a range of far-field aquaculture indicators for Europe. Some of these variables 

(e.g., water temperature, dissolved oxygen concentration, current speed) are used by applying 

thresholding or similar approaches that make use of known tolerance ranges or biological cues 

from the literature to identify areas where certain aquaculture sectors would be possible or not 

possible. In other instances, these model outputs are used in further carrying capacity or 

organismal growth modelling, which are then transformed into environmental or industry 

indicators to further constrain which areas may be better suited within the identified tolerance 

range. The ensemble of approaches presented demonstrate the versatility and utility of EO 

and modelled physical and biogeochemical data to aquaculture planning and policy generally, 

with particular approaches and related indicators to be selected depending on the given need. 

Use of spatiotemporal data in developing such indicators has the advantage of full coverage 

for large areas, particularly compared with conventional in situ datasets, as well as the 

possibility to consider different periods in the case of model outputs. In all of the approaches 

presented here, the use of climatologies, taken to be largely representative conditions of the 

time period considered (e.g., a mean year of twenty years of modelled output), is expected to 

provide more reliable information for the comparison of different periods. The exploration of 

several possible future climate scenarios, given the high degree of related uncertainty and the 

effect thereof on ocean biogeochemistry and aquaculture, is incorporated into several of the 

proposed indicators, and the stability of a given indicator over time and in light of climate 

change is itself considered. Some approaches also applied different management scenarios, 

and were therefore able to highlight and discuss the respective degree of influence of modelled 

climate change and management practices on the respective aquaculture sector.  

Although TAPAS work at the near-field scale, corresponding to farms and water bodies such 

as bays, has revealed high spatial variability of aquaculture potential (see TAPAS deliverable 

5.5), the use of far-field biogeochemical satellite observation and modelling data is suggested 

to inform higher-level planning and policy development. Large-scale zoning, as presented 

here, has been demonstrated to highlight broad areas of particular interest for such purposes, 

which can be targeted for more detailed or high-resolution investigation for farm-scale siting. 

All of the approaches presented here consider the influence of multiple variables on 

aquaculture potential and sustainability, but they also acknowledge that there are many other 

factors that underly whether aquaculture will be possible at a certain location or not and, within 

this, where aquaculture would be best situated. Such factors include conflicting fisheries, 

military, or tourism uses and the presence of necessary infrastructure (e.g., ports within a 

reasonable distance), among many others. Although the consideration of these and other 

influencing factors are beyond the scope of the present work, which is to present and 

demonstrate the application of a suite of aquaculture indicators, large-scale zoning using our 

indicators would be further enhanced by including them in full spatial multi-criteria evaluation 

for marine spatial planning. 
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