
Citadel Search: Open Source Enterprise Search

Pablo Panero1, Ismael Posada Trobo2, Carina Rafaela de Oliveira Antunes3 and Andreas Wagner4

Abstract— Nowadays, the amount of digital content that is
created increases at a very fast pace. In many of these cases, the
produced content is meant to be publicly available, and it will be
discoverable through most of the existing search engines. Even
though enterprises and organisations are no exception in the
amount of produced content, not all of it can be made publicly
available and should only be discoverable and accessible
if the user fulfills certain authorization and authentication
requirements. In addition, the organisation-specific nature of
the information takes us into the field of enterprise search.

Citadel Search is an Open Source enterprise search solution
that makes use of state of the art technology such as
Elasticsearch and the Invenio Framework for large-scale digital
repositories. This enables users to create tailored data models
for different information sources, have fine grain access control
over this information, and obtain relevant results upon search
queries.

This paper describes the design and architecture of
Citadel Search and its components. Furthermore, it presents
implementation details and results of using Citadel Search for
several large document collections at CERN. Namely, CERN’s
Engineering Data Management Service (EDMS), the Indico
application for event organisation, archival and collaboration,
and finally CERN’s large information space made of more than
14000 Web sites.

I. INTRODUCTION

Using a centralized enterprise search solution that
aggregates all data presents several challenges [1]. In
addition, CERN’s search as a service paradigm adds more
challenges that need to be tackled. For example, providing
support for different data and access control models, isolation
among collections and different levels of scalability. Hence
a high level of customizability is required to fulfil the users’
needs.

As it can be seen in Figure 1, the global Citadel Search
system could be generalized as a set of different instances,
being therefore isolated, and where each one would use a
specific data and access control model. Each instance would
have its own persistent storage database, document index,
cache and message broker. However, all these instances
must also expose their content through a central entry point,
though still honoring each instance-specific access control
rules. This would allow the re-use of all indexed content
from a global enterprise search portal.

1CERN pablo.panero@cern.ch
2CERN ismael.posada.trobo@cern.ch
3CERN carina.oliveira.antunes@cern.ch
4CERN andreas.wagner@cern.ch

Fig. 1: Citadel Search components overview, with three specific
instances connected to the global search portal.

II. DESIGN AND IMPLEMENTATION

From a zoomed-out perspective, it can be seen that there
are two main things required to fulfil the previously stated
needs: A place to store vast amounts of heterogeneous
content (from the data model point of view) and a method
to query it, obtaining the most relevant results.

In conclusion, what is needed is a large scale repository,
which provides indexing and search capabilities. This is the
definition of what the Invenio Framework [2] provides, and
therefore Citadel Search has been built on top of it.

A. Architecture

As a consequence of using the Invenio Framework, the
infrastructure architecture of Citadel is similar to other
Invenio instances. Names of the specific technologies used
at CERN can be found between parentheses:

• Application server: It runs the Citadel Search
application, and therefore the logic behind this
enterprise search system (uWSGI). Citadel Search is a
Python application supporting Python version 3.6 and
above.

• Persistent Storage: All indexed documents are stored
in JSON format in a SQL relational database
(PostgreSQL). The reason behind the use of a SQL
database is its transactional capabilities, which ensures
data consistency. In addition, single document look ups



(by primary key) are usually much more efficient than
when performed over a document store.

• Document storage, search and indexing: Indexing,
querying and getting relevant documents from those
queries is left to the document storage / search engine
(Elasticsearch).

• File Storage: In order to store files and other binary
content, Citadel makes use of object storage. Thanks to
Invenio, multiple storage back-ends can be used at the
same time (Local, migration to S3 planned).

• Caching: For fast temporary storage (user sessions,
rendered pages, etc.) Citadel makes use of in-memory
caching (Redis).

• Background processing: In order to perform
long-running and bulk operations the system makes
use of multiple queues (RabbitMQ).

In addition, a load balancer can be set up in front of
the application servers in order to scale out easily. In the
production deployments at CERN, the Nginx web server is
set up as a load balancer.

More details can be found in the official Invenio
documentation [3]. Moreover, due to the interoperability
provided by the Invenio Framework technologies such as
MySQL, Apache, HAProxy, among others could also be used
to run Citadel Search.

There are currently eight instances of Citadel Search
deployed at CERN. This deployment is done on
CERN’s software container application platform based
on OKD/OpenShift, and a container template has been made
available [4].

B. Customizable data model

Citadel Search makes use of what the Invenio Framework
calls record. Namely, an object abstraction that can contain
anything that can be represented in JSON format. In
consequence, all documents are ingested as a collection
of key value pairs following the JSON Schemas [5]
specifications. This is what it is called data model.

Moreover, the loading, serialization and de-serialization
process is configurable. Consequently, a custom mechanism
to process records could be set in place. Allowing the user
to send data in a different format than the one specified in
the data model, calculating and/or transforming the missing
values in order to match the data model. This is useful for
metadata enrichment and access control.

In addition, a similar schema is created to store the
documents in Elasticsearch. This is called mapping, and
contains the specification of how the fields are stored and
indexed (e.g. which strings are to be treated as full text
and which as exact match, which are date values, in which
language should the stemming be performed).

Fig. 2: Citadel Search access control flow.

C. Access Control

As mentioned in the introduction, access control is one
of the biggest challenges that needs to be tackled. Both
authorization and authentication have to be addressed at
many levels.

Note that, as shown in Figure 2, Citadel Search aims
at providing enterprise search capabilities as a service.
Meaning that the users of the system are entities (e.g.
services with their own users) responsible for the content
they index, and therefore, in charge of controlling who has
access to what. Citadel will authenticate the entity (e.g.
service), and provide the necessary mechanisms to enforce
each particular access control model.

In Figure 2 the workflow that is followed to process a
search query from a user is shown. Nonetheless, before
explaining each one of the steps in detail, note that there
is a first step that is carried out (but only once and by the
entity). This is the step needed to authenticate the entity (e.g.
service), that will later on query the instance in the name of
its users. This authentication happens in the administration
web interface. The log in process can be done using basic
authentication or any of the OAuth clients that have been
integrated within Invenio 1 [6]. In addition, a Python signal
allows the customization of the authorization rules. Once the
entity is authenticated and authorized, it will obtain a token,
namely an API key, that will be used to authenticate itself
when interacting with RESTful API.

Coming back to the steps shown in Figure 2:
1) User Query: The user will query for the terms that she

is looking for.
2) Authenticate the entity: The back-end (RESTful API)

will authenticate the entity based on the API key that
is passed in the ”Authorization” HTTP header.

3) Calculate user access rights: Based on the users rights
(e.g. groups to which he belongs) the entity will
calculate the access rights. Note that this step is the
entity’s responsibility. However, later on this will be
converted to an Elasticsearch filter that will enforce
CRUD permissions over the documents.

4) Query Elasticsearch: Citadel Search (back-end) will
receive the user’s query and its access rights. It will

1Even though as of 2019 it is restricted the aforementioned methods, it
is in the roadmap to support other ones such as SAML.



translate them into an Elasticsearch query + filter and
will perform the search query. It returns the results to
the entity.

5) Return relevant content to the user: The entity will
mold the results according to the specific needs and it
is then shown to the user.

Therefore Citadel Search enforces access control at five
levels:

• Web User Interface: The web interface must only be
accessed by authenticated users. The administration
panel should only be accessed by authorized users.

• RESTful API: Only authenticated and authorized users
should be able to query the exposed endpoints.

• Instance level: Owners or administrators of the instance,
i.e. one or more users of the system, must have
superuser privileges over the whole instance.

• Collection level: Owners of the collection, i.e. one
or more users of the system, must have superuser
privileges over a specific collection.

• Document level: A document must provide CRUD
access control. This means that create, read, update and
delete operations might be allowed for a potentially
different set of users.

D. Search
One of the requirements of any enterprise search is to

provide an advanced method to perform queries. Citadel
Search uses the same query parser then Elasticsearch’s query
string. It allows to query for specific content in specific fields,
the use of wildcards (both * and ?), range filters for numeric
and date values, and the construction of complex hierarchies
of AND and OR statements. Some examples can be found in
Citadels official user documentation [7].

E. Storage
As it has been mentioned in the architecture subsection,

Citadel uses three types of storage: In-memory, relational,
and document oriented.

The in memory database is used to store users’ sessions
and cache rendered pages.

The SQL relational database is used due to its transactional
capabilities, which ensures data consistency. In addition they
are usually highly reliable as compared to some NoSQL
solutions. Almost all accesses to the relational database are
primary key look ups, which are usually very efficient in
databases.

Any other search queries are sent to the search
engine cluster which provides much better performance
than a relational database. The chosen search engine is
Elasticsearch due to it being fully JSON-based, and thus
it fits well together with storing records internally in the
database as JSON documents. Furthermore Elasticsearch
is highly scalable and provides very powerful search and
aggregation capabilities, such as geospatial queries.

When indexing content Citadel Search offers two options:
Direct indexing, which will directly index a record when
handling a request, and thus make the record immediately
available for searches. Alternatively, Citadel Search also
supports bulk indexing which is significantly more efficient
when indexing large number of records. The bulk indexing
works by the application sending a message to the message
queue, and at regular intervals a background job will
consume the queue and index the records. Also, several
bulk indexing jobs can run concurrently at the same time
on multiple worker nodes and thus it can achieve very high
indexing rates during bulk indexing.

Finally, files and binary content needs to be stored outside
of the databases. Citadel Search, provides object storage by
mimicking the Amazon’s S3 storage API [8] (e.g. using the
concept of buckets).

F. Full-text search

An important feature of an enterprise search solution is
to provide powerful search over the indexed documents’
metadata. Nonetheless, it is also important to be able to
search inside the documents content itself. For metadata only
documents (e.g. certain engineering files, which only contain
an identifier, a list of responsible people names and a free
text field with a description) this is already made possible
by the Invenio Framework built-in indexing of documents.

However, for binary 2 files its contents need to be
extracted. For this purpose Apache Tika, a toolkit to detect
and extract metadata and text from over a thousand different
file types, such as PPT, XLS, and PDF, among others,
provides OCR (Optical Character Recognition) capabilities.
Citadel Search stores the metadata of the file in what is called
record along with a reference to the bucket where the file
was stored, while the extracted content of the file is indexed
in order to make it searchable. Note that the file will be
stored, through the bucket, in the configured object storage
(local, S3, etc.).

G. Aggregation

A drawback of having different instances, with different
data and access control models, is that it is challenging to
provide a single point of entry to search all the collections.
It is not user-friendly having to perform the same query in
two or more places to find a document, it goes against the
principle of enterprise search.

However, using the concept of alias that Elasticsearch
provides, and exposing the different clusters. Many
collections can be exposed to a central entry point, the global
search portal. Note that in order to make this possible some
data model conventions must be followed:

• All searchable content must be set inside the data
field. This convention helps when querying more
than once collection (instance). It ensures that only

2For simplicity, understanding as binary files everything that is more than
plain metadata in JSON format. Including non-binary files such as txt.



Fig. 3: Using Elasticsearch aliases to provide instances’ isolation.

globally relevant fields will be queried, avoiding
collection-specific metadata that might produce
non-desired results.

• Collection specific filter fields, i.e. those that are not
useful for full-text search such as dates must be placed
outside the data field.

• Since every instance can have different access control
models (e.g. using groups, single user permissions by
email address, or a simple public/private mechanism),
the global entry point will only return as result those that
are public and/or follow CERN’s conventions (which is
the use of e-groups).

Another option to save computing resources usage when
the collections of the instances are small, or even in order
to avoid exposing Elasticsearch instances to the internet
and having to set up cross-cluster search, is to use the
same concept of alias to isolate instances inside the same
Elasticsearch cluster. This is shown in 3.

As it can be seen, inside the same Elasticsearch cluster
there are four collections: A, B, C and D. Each collection
provides an alias which means that querying that alias will
return only the enclosed collections. For example entity A
will query A and will obtain results belonging to A. In
addition, C has an agreement with A, and therefore a query
to C will include results belonging to A and C. When a user
queries the global search portal, documents belonging to A,
B and C. However, documents from A will not be duplicated
since an alias does not imply copying over data, but just
referencing it. Finally, note that entity D, did not wanted to
have their contents searchable in the global entry point (or
did not comply with the data and access control conventions)
and therefore the alias does not include its collection.

H. Harvesting

The idea behind as a service, is that the content is
pushed by each interested entity to their own instances and
then, upon agreement, used by the global search portal.
Nonetheless, it is neither optimal nor user friendly to ask
every website owner to push its content to its own search
instance. Therefore, CERN has built a web crawler based on
Scrapy.

This crawler is able to extract the content of all public
websites, render those that are built using JavaScript
frameworks (using Splash), and finally index it (in a specific
search instance) in a format that complies with the CERN
conventions and in consequence making it available in the
global search portal.

III. DISCUSSION AND FUTURE WORK

Citadel Search is new project that aims to became a
powerful enterprise search solution, in order to tackle as
many use cases as possible. It has been tested already on
collections of approximately half a million documents and
performs well. Nonetheless there is still much room for
improvements.

In the front-end world the future work includes
providing a user-friendly state of the art web interface
that includes features such as: auto-complete and ”did
you mean” suggestions, promoted results and complex
term highlighting. Currently a pre-alpha version has been
developed using the React-SearchKit [9].

Currently, a change in the data model implies the edition
of the JSON schema and its related Elasticsearch mapping,
invoking its creation in the Elasticsearch cluster, setting up
its aliases, and finally carrying out the data re-indexing if
needed. However, this is, once again, not very user friendly.
The plan is to enable administrators to create, modify
and remove collections (JSON schema and Elasticsearch
mapping) and re-index them (if no conflicts are found
between versions) from the web user interface.

In terms of query relevance, CERN faces a challenge due
to the homogeneous nature of its content (not in the data
model, but in its content). Since CERN’s main mission is
physics related, it is obvious that some terms such as LHC,
ATLAS, CMS or Higgs will appear in many of the documents,
and the word CERN will appear in many more, if not in all.
Therefore some fields such as the title need to be given more
importance. This can be achieved through field boosting
at query time. However, with schema evolution this might
become a challenge to keep and maintain. Therefore, it is in
the plan to perform an integration with a suitable analytics
platform (e.g. Matomo) and feed the ranking system with it.
In addition, machine learning techniques such as learning to
rank [10] will be explored.

Finally, the harvesting crawler could be enhanced in order
to feed private content of websites. However, the challenge



there is to set up the correct access rights. Even though
websites are provisioned in CERN servers and access control
files such as .htaccess or Apache’s configuration files could
be parsed, it would require a great amount of effort to
develop, and even more to maintain since web technologies
evolve fast and change faster. Therefore, the plan is to set
those access rights in a central repository from where the
crawler could obtain that information.

IV. SOURCE CODE

Citadel Search is Open Source under MIT license. The
source code is available at https://github.com/
inveniosoftware-contrib/citadel-search.

REFERENCES

[1] D. Hawking. Challenges in enterprise search. In Proceedings of the
15th Australasian database conference-Volume 27, pages 15–24, 2004.

[2] Invenio Software. Invenio framework. online: https://
inveniosoftware.org/products/framework/.

[3] Invenio Software. Infrastructure architecture. online:
https://invenio.readthedocs.io/en/latest/
architecture/infrastructure.html.

[4] Citadel Search. Citadel search openshift template. online:
https://gitlab.cern.ch/webservices/cern-search/
citadel-search-openshift.

[5] JSON Schema ORG. Json schema specifications. online: https:
//json-schema.org/specification.html.

[6] Invenio Software. Infrastructure oauth client. online: https://
invenio-oauthclient.readthedocs.io.

[7] Citadel Search. Citadel search query. online: https:
//citadelsearch.docs.cern.ch/usage/operations/
#query-documents.

[8] Amazon. Amazon s3. online: https://docs.aws.amazon.
com/AmazonS3/latest/API/Welcome.html.

[9] Invenio Software. React searchkit. online: https://
inveniosoftware.github.io/react-searchkit/.

[10] 019s. Elasticsearch learning to rank. online: https:
//elasticsearch-learning-to-rank.readthedocs.
io/en/latest/.

V. ACKNOWLEDGEMENTS

Building an enterprise search system and making it
into an production service within only a year would not
have been possible without the help of Ismael Posada
Trobo, Eduardo Alvarez Fernandez, Andreas Wagner and
Bruno Silva da Sousa for their invaluable knowledge on
enterprise search and CERN specific insights. And to
Diego Rodriguez Rodriguez, Alexandros Ioannidis, Nicola
Tarocco, Lars Holms Nielsen, Esteban Gabancho, Jose
Benito Gonzalez Lopez and the rest of the Invenio Software
team for their patience and time to help understanding the
Invenio Framework and again their invaluable knowledge in
large-scale repositories deployment.

https://github.com/inveniosoftware-contrib/citadel-search
https://github.com/inveniosoftware-contrib/citadel-search
https://inveniosoftware.org/products/framework/
https://inveniosoftware.org/products/framework/
https://invenio.readthedocs.io/en/latest/architecture/infrastructure.html
https://invenio.readthedocs.io/en/latest/architecture/infrastructure.html
https://gitlab.cern.ch/webservices/cern-search/citadel-search-openshift
https://gitlab.cern.ch/webservices/cern-search/citadel-search-openshift
https://json-schema.org/specification.html
https://json-schema.org/specification.html
https://invenio-oauthclient.readthedocs.io
https://invenio-oauthclient.readthedocs.io
https://citadelsearch.docs.cern.ch/usage/operations/#query-documents
https://citadelsearch.docs.cern.ch/usage/operations/#query-documents
https://citadelsearch.docs.cern.ch/usage/operations/#query-documents
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://inveniosoftware.github.io/react-searchkit/
https://inveniosoftware.github.io/react-searchkit/
https://elasticsearch-learning-to-rank.readthedocs.io/en/latest/
https://elasticsearch-learning-to-rank.readthedocs.io/en/latest/
https://elasticsearch-learning-to-rank.readthedocs.io/en/latest/

	INTRODUCTION
	Design and implementation
	Architecture
	Customizable data model
	Access Control
	Search
	Storage
	Full-text search
	Aggregation
	Harvesting

	Discussion and Future work
	Source Code
	References
	Acknowledgements

