
Semantics-aware Virtual Machine Image

Management in IaaS Clouds

Nishant Saurabh∗†, Julian Remmers†, Dragi Kimovski∗, Radu Prodan∗† and Jorge G. Barbosa‡

∗Institute of Information Technology, University of Klagenfurt, Austria
†Institute of Computer Science, University of Innsbruck, Austria

‡LIACC, Faculdade de Engenharia da Universidade do Porto, Portugal

Abstract—Infrastructure-as-a-service (IaaS) Clouds concur-
rently accommodate diverse sets of user requests, requiring
an efficient strategy for storing and retrieving virtual machine
images (VMIs) at a large scale. The VMI storage management
require dealing with multiple VMIs, typically in the magnitude
of gigabytes, which entails VMI sprawl issues hindering the
elastic resource management and provisioning. Nevertheless,
existing techniques to facilitate VMI management overlook VMI
semantics (i.e at the level of base image and software pack-
ages) with either restricted possibility to identify and extract
reusable functionalities or with higher VMI publish and retrieval
overheads. In this paper, we design, implement and evaluate
Expelliarmus, a novel VMI management system that helps to
minimize storage, publish and retrieval overheads. To achieve this
goal, Expelliarmus incorporates three complementary features.
First, it makes use of VMIs modelled as semantic graphs to
expedite the similarity computation between multiple VMIs. Sec-
ond, Expelliarmus provides a semantic aware VMI decomposition
and base image selection to extract and store non-redundant
base image and software packages. Third, Expelliarmus can also
assemble VMIs based on the required software packages upon
user request. We evaluate Expelliarmus through a representative
set of synthetic Cloud VMIs on the real test-bed. Experimental
results show that our semantic-centric approach is able to
optimize repository size by 2.2− 16 times compared to state-of-
the-art systems (e.g. IBM’s Mirage and Hemera) with significant
VMI publish and retrieval performance improvement.

Keywords—Virtual machine image management, semantic sim-
ilarity, storage optimization.

I. INTRODUCTION

The evolving Cloud architecture [4], [7], [17], [25], [28]
requires efficient and scalable on-demand provisioning and
management of computing services over a federated and
heterogeneous infrastructures. Virtualization [2], [24] emerged
as a key technology for enabling and provisioning of such
computing services. One common virtualization technique
that facilitates the computing services is the virtual machine
(VM) [6], [8], [26], [27], instantiated using a user-created
template called VM image (VMI) [13]. Such VMIs comprise
an operating system (OS) and user-specific customized soft-
ware package(s). The ever increasing number with size of
each VMI in the magnitude of gigabytes induces important
management issues such as VMI sprawl [23], hindering the
elastic resource management and provisioning process. For
example, Amazon Elastic Compute Cloud (EC2) alone consists
of more than 30, 000 public VMIs [3], where typical operations
like cloning, versioning, sharing, storing and transforming
VMIs in dedicated repositories introduce a high amount of
storage redundancy and maintenance costs.

To solve VMI management challenges such as sprawl,
prior research in this domain primarily focused on leveraging
VMI deduplication [14], [16], [18] and caching [11], [19],
[22], [29] by identifying similar byte segments [10], [12],
[20]. Such techniques optimize the VMI storage and reduce
redundant content by up to 80%, but limit the benefits of the
virtualization technology, such as exploiting stronger isolation
between software packages, and keeping a provenance record
of changes and reusable functionality in the VMI at a semantic
level [23].

Nevertheless, few of the recent works, namely IBM’s
Mirage [23] and Hemera [15] improve upon the previous
studies and explore VMI management at a more fine grained
file-system level. Both systems improve upon the VMI sprawl,
but with significant VMI publishing and retrieval overheads.

To address these challenges, we propose a novel VMI
management system called Expelliarmus that represents the
VMI and its components as structured graph [1], presenting the
functional requirements between the base image and different
software packages within the VMI. For each VMI semantic
graph, we also extract two induced subgraphs, called the base
image subgraph and software package subgraph. The purpose
of this operation is to merge one or more semantically similar
VMIs into a single VMI master graph, clustering the software
packages of one or more VMIs with a semantically similar
base image. This approach reduces the similarity computa-
tion overhead by comparing every VMI to the master graph
instead of individual VMI graphs. To facilitate the semantic
aware decomposition, we employ techniques to only extract
the unique software packages that are not yet existing in
the repository. Moreover, we devise a base image selection
algorithm and define a novel semantic compatibility metric to
select from a pool of semantically similar base images, one
that is functionally compatible to existing software packages
replacing the redundant ones. Our approach also provide means
for VMI assembly, either with identical uploaded software
packages or compatible with a base image already existing in
the repository. To study the benefits of semantics aware VMI
management, we performed an extensive series of experiments
using a representative set of synthetic Cloud images, currently
limited to Linux VMIs only. The results demonstrate that
Expelliarmus significantly optimizes the storage cost with
improved VMI publish and retrieval times compared to re-
lated [15], [23] state-of-the-art systems.

The paper is organized as follows. Section II summarizes
the related work. Section III presents the model together
with the VMI semantic representation, and formulates the

VMI semantic similarity and compatibility metrics. Section IV
describes the architecture of the Expelliarmus system and
its design components, including the VMI publishing, base
image selection and VMI retrieval algorithms. Section V
provides implementation details and Section VI presents the
experimental results. Finally, Section VII concludes the paper.

II. RELATED WORK

One key factor affecting the performance of IaaS Cloud
management systems is the rapidly increasing number and size
of each stored VMI exceeding multiple GB. This introduces
critical challenges to VMI management such as VMI sprawl,
and hence impacts elastic resource management and provi-
sioning. Moreover, these VMIs are usually excessively similar
with a high a high degree of redundancy, addressed in the
community through deduplication, due to its wide adaptation
in archiving systems.

Jin et al. [11] explored the effectiveness of the block level
deduplication, both with fixed and variable size chunking using
Rabin fingerprinting [21] schemes. They showed that VMIs
with the same guest OS and different software packages share
considerable amount of data. This study also emphasizes that
VMI deduplication at block level with fixed size chunking
scheme is more efficient than variable size chunking, detecting
up to 70% of identical content between VMIs.

Jayram et al. [10] built upon similar work comparing
different VMI deduplication techniques and providing metrics
for estimating VMI similarity. Their study showed that the
appropriate chunk size selection is essential to decide the block
level deduplication factor used for similarity computation.

Zhao et al. [31] proposed a scalable VMI file system called
Liquid that enables large scale VM deployment through a
fixed size block level deduplication, resulting in a low storage
consumption. The system also improves the I/O performance
with a peer-to-peer networked VMI sharing and distribution.

Chun-Ho et al. [18] took a step forward and propose a VMI
backup system based on a block level reverse deduplication
that removes duplicates from old VMIs, while keeping the
new VMI layout as sequential as possible.

Xu et al. [29], [30] proposed a VMI backup system named
Crab that also uses deduplication at block level, but imple-
ments an additional a k-means clustering method to group
VMIs and consequently speedup the index lookup overhead.

Reimer et al. [23] and Ammons et al. [1] proposed a new
VMI format called Mirage represented as VMI structured data,
performing file system indexing together with file level dedu-
plication to improve the inventory control and VM deployment.

Liu et al. [15] also approached the VMI as structured data
in a rigorous database structure called Hemera that, in contrast
to the Mirage, transforms the VMI operations into database
operations based on simple SQL queries.

All these works proposed optimization to VMI manage-
ment and employed VMI deduplication at content level with
restricted possibility to identify and extract reusable function-
alities. Although, Mirage and Hemera use additional semantic
data to access VMI at a more fine grained file-system level,
but with significant VMI publishing and retrieval overheads.

Our work improve over these approaches on both aspects.
Instead of splitting the VMI into chunks or files, our semantic-
aware decomposition and base image selection approach splits
the VMI at semantic level into a base image and one or
more software packages, such that no redundant package and
base image is stored twice. On the contrary, aforementioned
approaches store additional non-redundant content of all base
images. Moreover, we assemble the VMIs not necessarily with
the same base image, but also using a semantically similar
one. Second, semantic-centric optimization to VMI storage
exploited by our system, reduces the VMI content size to
transfer from and into the repository with significant VMI
publish and retrieval performance improvement.

III. VMI SEMANTIC MODEL

This section presents a formal model and a set of basic
definitions essential to this work.

A. Virtual machine image (VMI)

A virtual machine image (VMI) I = (BI, PS,DS,Data)
consists of a base image BI with a standalone OS, a set of
software packages PS and DS installed on top, ranging from
database to application servers, and a set user data Data.

A primary package set PS is a suite of software packages
eligible to be hosted on an OS within a VMI. We assume that
every VMI consists of one or more primary packages, required
by the user upon instantiation.

A dependency package set DS contains libraries or other
packages internal or external to the OS within the base image,
used to build or install the primary packages within the VMI.

The Data component corresponds to the user data (e.g.
files, directories) not recognized by the guest OS package
management (e.g. home directory in a Linux file system).

B. VMI semantic graph

The VMI semantic graph is a high-level intermediate graph
representation expressing the rich VMI structure in terms of
functional requirements and relationships between base image,
primary packages, and dependency packages. We define the
semantic graph of a VMI I as a directed cyclic graph GI =
(VI , EI), where VI = BI ∪ PS ∪ DS represents the set of
vertices including the base image, primary and dependency
packages, and EI ⊆ VI × VI is the set of edges, where a
direct edge e = (v, v′) ∈ EI denotes a dependency of the
base image, primary package, or dependency package v on v′.

Figure 1a shows a typical VMI semantic graph con-
sisting of a Debian base image, two primary packages
(MariaDB and Tomcat8), and several required depen-
dency packages (i.e. bash, openjdk, gawk, libc6, dpkg,
debconf, perl-base, ucf and coreutils). The libc,
perl-base and dpkg have a cyclic dependency, meaning
that always they need to be provided and installed together.

C. VMI attributes

Each base image BI of a VMI I has a quadruple of
attributes attrs(BI) = (type, distro, ver, arch), expressing
the guest OS name or type (e.g. Linux), its distribution

An architecture attribute of “all” means that the package is
portable and available on base images with any architecture.

Further, we compute the size similarity between two pack-
ages P1 and P2 as the ratio between the maximum size of
the two packages divided by maximum size of all packages
from both VMIs. Precisely, the size denotes the amount of disk
space consumed by software package within a VMI, including
any software package updates. Hence, we take the maximum
value for sizes between the two software packages normalized
over the union of all package sizes, which allows our model
to compute a weighted composition of content and semantic
similarity [5] of matched package within two VMIs:

simsize (P1, P2) =
max {size (P1) , size (P2)}

max
∀P∈V1∪V2

{size(P)}
.

Finally, we model the VMI semantic similarity based on
the Jaccard index [9], also known as intersection over union,
which computes by what percentage a VMI semantic graph
G1 is similar to G2. Hence, we formulate it as a product of
the similarity between base images and the matched software
packages with normalized package size in the numerator, and
the union of all packages in both VMIs in the denominator:

SimG (G1, G2) = simBI (BI1, BI2) ·

·

∑
∀(P1,P2)∈V1×V2

simsize (P1, P2) · simP (P1, P2)

∑
∀(P1,P2)∈V1×V2

simsize (P1, P2)
.

G. Semantic compatibility

We define the semantic compatibility between a base image
subgraph GI(BI) = (VBI , EBI) and a primary package sub-
graph GI(PS) = (VPS , EPS) as the product of the similarity
values of their packages with a homonym pkg attribute:

comp (GI [BI], GI [PS]) =
∏

∀(P1,P2)∈VBI×VPS

∧pkg(P1)=pkg(P2)

simP (P1, P2) .

If the semantic compatibility has a value of 1, the primary
packages can be installed and used together with the base
image. Otherwise they are incompatible.

H. VMI master graph

A VMI master graph GM [T,D, V,A] is a graph represen-
tation of all VMIs with same type, distribution, version and
architecture base image attributes (T,D, V,A) stored in the
repository. The master graph contains one single base image
subgraph semantically compatible to all primary package sub-
graphs of VMIs represented in the master graph. The purpose
of the VMI master graph is to reduce the similarity computa-
tion overhead between multiple VMI semantic graphs with one
single master graph similarity comparison. We therefore model
the master graph as the union of one base image and one or
more primary package subgraphs originating from VMIs with
the same base image attributes:

GM [T,D, V,A] =
⋃

∀I∈Repo∧
attrs(BI)=(T,D,V,A)∧
comp(GI [BI],GI [PS])=1

(GI [BI] ∪GI [PS]) .

 VMI Upload

 Multiple

Running VMs

 Semantic

 Analyzer
VMI Decomposer

VMI Assembler

 VMI Store

User

User

Capture running

VMI State and

requests storage

 VMI

 Request

 VMI

retrieved

 VMI DATABASE

 Base Image

ID_base

(....)

 VMI

ID_VMI

(....)

 Package

ID_soft

(....)

 Upload VMI with a list of primary packages

1. Creates a new VMI

 Semantic Graph.

2. Create primary package

 Graph.

3. Compute Similarity.
1. Check the existing software packages

and compatible base image in

repository.

2. Extract non-redundant ones, store

and index them.

3. Create master graph if it doesn’t exist,

else add software packages to existing

compatible Mastergraph.

Fetch the semantic data to Assemble VMI

1. Fetch the stored base image and

 software packages for requested VMI.

2. Reset VMI and create local repository.

3. Import and install all software packages

Initiate assembling for requested VMI

 VMI Repository to store VMIs,

 and semantic graphs

Step 1:

Step 2: Semantic Analysis

Step 5: VMI Retrieval

Step 4:

Step 3: Initiate VMI Publishing

Fig. 2: Expelliarmus architecture and VMI management.

IV. SEMANTIC-CENTRIC VMI MANAGEMENT

This section describes the architectural design of Expelliar-
mus, including the VMI publishing and retrieval algorithms.

A. Architecture overview

Figure 2 describes the architecture of Expelliarmus through
a use-case in which multiple users initially upload a VMI for
storage in a proprietary Cloud image repository. Afterwards,
they download and instantiate the VMI multiple times at var-
ious Cloud locations. Every time the users update a VMI and
store it in the image repository, they introduce a considerable
amount of redundancy and other management costs in terms of
VMI publishing and retrieval, hindering the elastic provision-
ing and deployment process. At the same time, different VMIs
with varying software packages uploaded by different users
could also be composed of semantically similar base images
and software packages. Expelliarmus semantically decomposes
VMIs in reusable fragments so that similar software packages
and base images within different VMIs are stored only once
with reduced redundancy, publishing and retrieval overheads.

The publishing, storage and retrieval of a VMI in Expelliar-
mus takes place according to the following steps (see Figure 2):

1) The user uploads a VMI and a list of primary packages for
storage in the VMI repository;

2) The semantic analyzer creates a VMI semantic graph and
computes its semantic similarity with other VMIs;

3) To publish the VMI, the decomposer splits a VMI into a
base image and multiple software packages exploiting the
semantic similarity with other stored VMIs, such that only
non-redundant packages and base images are stored again;

4) The user requests the retrieval of a VMI;
5) The VMI assembler assembles the VMI according to the

user request and delivers it.

B. VMI semantic analyzer

The semantic analyzer takes the VMI and the primary pack-
age list as input and constructs the semantic graph, following

the model defined in Section III-B. This enables an automated
approach for optimizing and accessing semantic similarity of
monolithic VMIs without detailed content analysis, instead
caching a subset of VMI semantic data in the form of a graph.

The semantic analyzer creates a graph GI for every up-
loaded VMI I along with a subgraph representation of the
corresponding primary packages and base image. Afterwards,
the semantic analyzer compares the newly uploaded VMI
with the appropriate master graph GM having the same type,
distribution, version and architecture attributes, previously
stored in the repository according to the semantic similarity
defined in Section III-F. Every VMI master graph is specific
to a characteristic base image with one or more semantically
compatible primary package subgraphs. If no such master
graph exists in the repository, the semantic analyzer forwards
the VMI to the VMI decomposer in either case.

C. VMI decomposer

The VMI decomposer splits a VMI into a base image
and different software packages, exploiting semantic similarity
such that only non-redundant software packages and base
images are stored. To achieve this, decomposer employs two
algorithms: VMI publishing (Algorithm 1) and base image
selection (Algorithm 2).

1) VMI publishing algorithm: Algorithm 1 outlines the
step-wise VMI publishing process. The algorithm takes as
input a VMI I , its semantic graph GI , a VMI repository,
and list of primary packages PS. Initially, the algorithm
extracts the VMI’s primary package subgraph GI [PS] in
line 1. Afterwards, it iterates each primary package in the
subgraph, checks if it exists in the repository with same
semantic attributes (lines 2 – 5) and, if it does not exist, stores it
(line 4) in the repository. After checking all primary subgraph
packages, the algorithms stores the user data in line 6. Next,
line 8 removes the primary packages from the VMI, including
the user data and the dependency packages not used by any
software package still within the VMI (lines 10 – 11). At this
point, the VMI contains only the base image BI (line 12)
with all its required software packages already stored in the
repository. To prevent redundant storage of the same base
image, a base image selection algorithm (see Algorithm 2 in
Section IV-C2) called at line 14 returns a similar base image
together with a list of base images stored in the repository that
are no longer required. If Algorithm 2 returns the current base
image, we update the repository along with the corresponding
new master graph in lines 15 – 17. However, if the Algorithm 2
returns another already stored base image, line 19 retrieves its
master graph from the repository and updates the retrieved
master graph with the primary package subgraph GI [BI] in
line 21. Algorithm 2 also returns a list of base images that can
be replaced with the selected base image. Line 22 – 28 iterates
over this list and line 23 retrieves the master graph for each
replaceable base image from the repository. Each retrieved
master graph corresponding to a base image in the list is a
union of a base image subgraph and several primary package
subgraphs. Lines 24 – 26 iterate over the primary packages in
each master graph and update the master graph of the selected
base image GM with the extracted primary package subgraph
(line 25). Line 27 removes the obsolete base images and line 29
updates the master graph in the repository.

Algorithm 1: VMI publishing algorithm.

Input : I = (BI, PS,DS,Data): VMI; GI : semantic graph of VMI I;

PS: primary package set; repo: VMI repository

1 GI [PS] = (VP , EP) ← extractSubGraph(GI)

2 forall P ∈ VP do

3 if ¬ exists(P, repo) then

4 store(P, repo)
5 end

6 store(Data, repo)
7 forall P ∈ PS do

8 remove(P, I)
9 end

10 removeUnusedDependencies(I)
11 remove(Data, I)
12 BI ← I
13 GI [BI] ← createSubGraph(BI)
14 (base, list) ← selectBaseImage(BI,GI [BI], GI [PS], repo)
15 if base = BI then

16 GM ←createMasterGraph(GI [BI])
17 store(BI, repo);

18 else

19 GM ← getMasterGraph(base, repo)
20 end

21 GM ← GM ∪ GI [PS]
22 forall b ∈ list do

23 GMb ← getMasterGraph(b, repo)
24 forall P ∈ GMb do

25 GM ← GM∪ extractSubGraph(GMb, P)

26 end

27 remove(b, repo)
28 end

29 update(GM , repo)

2) Base image selection algorithm: As a part of the VMI
publishing, Algorithm 2 returns an appropriate base image
and a replace list of previously stored base images no longer
needed. The selected base image is semantically compatible
with the primary packages corresponding to the base images
in the replace list. The algorithm takes as input a base image
BI , the primary package subgraph GI [PS] of an image I
and a VMI repository repo. Initially, line 1 initializes a triplet
list with the base image of a VMI I , the base image subgraph
and the primary package subgraph. Afterwards, line 3 retrieves
the list of all base images stored in the repository. Lines 4
– 12 iterate over the list of stored base images, and gets the
corresponding base image subgraph and master graph in lines 5
and 6. Next, the algorithm checks the semantic similarity
between the base image BI and the stored base images in
line 7. If the semantic similarity between the base images
exist, line 9 extracts each primary package subgraph from
the master graph, while line 10 adds into a triplet list the
stored base image, its base image subgraph, and the primary
package subgraphs. Afterwards, lines 13 – 26 iterate over
all base images in this triplet list. For each current base
image, the algorithm adds first into the replace list all other
base images BIj that are not identical but similar Bi, and
contain semantically compatible (see Equation III-G) primary
packages (see lines 15 – 18, meaning that the current base
image BIi can replace all the base images in its replace list).
If the replace list is not empty (line 20), line 23 computes the
total size of all packages of the base image Bi in the replace
list. Finally, line 25 adds the base image, the replace list, and
the total size of its primary packages into a new quadruple
list. The fourth boolean component (i.e. BIi = BI) of the
quadruple indicates whether this base image is new or already
existed in the repository. Once this procedure completes for
all base images in the triplet list, line 27 sorts the generated
quadruples list based on three criteria: the replace list size

Algorithm 2: Base image selection algorithm.

Input : BI: remaining base image after decomposition; GI [BI]: base image

subgraph; GI [PS]: primary package subgraph; repo: VMI repository

1 list3 ← [(BI,GI [BI], GI [PS])]
2 list4 ← ∅
3 baseList ← getBaseImageList(repo)
4 forall b ∈ baseList do

5 GI [b] ← getSubGraph(b, repo)
6 GMb ← getMasterGraph(b, repo);

7 if simBI(BI, b) = 1 then

8 forall P ∈ GMb do

9 GI [P] ← extractSubGraph(GMb, P)

10 list3 ← list3 ∪ {(b,GI [b], GI [P])}
11 end

12 end

13 forall i ∈ list3 do

14 (BIi, GI [BIi], GI [PSi]) ← i
15 forall j
= i ∈ list3 do

16 (BIj , GI [BIj], GI [PSj]) ← i
17 if BIi
= BIj ∧ comp(GI [BIi], GI [PSj]) = 1 then

18 replaceList ← replaceList ∪ {BIj}
19 end

20 if replaceList
= ∅ then

21 size ← 0
22 forall P ∈ GI [BIi] do

23 size ← size + size(P);

24 end

25 list4 ← list4 ∪ {(BIi, replaceList, size, BI = BIi)}
26 end

27 list4 ← sort(list4)
28 forall i ∈ list4 do

29 (BIi, replaceList, ,) ← i
30 if BIi = BI ∨ BI ∈ replaceList then

31 return (BIi, replaceList)
32 end

33 return (BI, ∅)

(i.e. the more replaced base images, the better), the total size
of its primary packages (the smaller, the better), and existence
of a similar base image in the repository (i.e. no unnecessary
storage). Lines 29 – 32 iterate over the sorted quadruples list,
and extract the base image and its replace list in line 29.
Finally, it checks the first quadruple that either specifies the
base image BI or exists in the replace list in line 30 and returns
it in line 31. If no quadruple exists with the base image BI ,
line 33 returns it with an empty replace list.

D. VMI assembler

Expelliarmus enables VMI assembly either with identical
or with differing functionality, provided that the requested soft-
ware package exists in the repository. To achieve this, the VMI
assembler employs a VMI retrieval algorithm (Algorithm 3)
that processes the VMI retrieval requests for deployment.

1) VMI retrieval algorithm: Algorithm 3 represents the
stepwise VMI retrieval procedure using two input parameters:
a (nonexistent) VMI I identified by its base image BI and
primary package set PS, and a VMI repository repo. Initially,
line 1 obtains the base image and primary package subgraphs
from the repository. If they exist and are compatible (line 2),
line 3 retrieves the base image BI from the repository and
resets it to an initial state in line 4. Line 5 imports the user
data into the VMI I . Lines 6 – 10 iterate over each vertex
in the primary package subgraph and check their existence
in the base image subgraph in line 7. If the vertex does not
exist, line 8 adds the vertex into the primary package set
PS. Finally, the VMI’s guest OS package manager installs the
primary packages in line 12 by importing the required software

Algorithm 3: VMI retrieval algorithm.

Input : I = (BI, PS, ,Data): VMI; repo: VMI repository

1 (GI [BI], GI [PS]) ← getSubGraph(I, repo)
2 if GI [BI]
= NULL ∧GI [PS]
= NULL ∧ comp(GI [BI], GI [PS]) = 1

then

3 BI ← getBaseImage(id, GI [BI], repo)
4 resetVMI(BI)
5 import(Data, I)
6 forall P ∈ GI [PS] do

7 if P
∈ GI [BI] then

8 PS ← PS ∪ P
9 end

10 end

11 forall P ∈ PS do

12 install(P, I);

13 end

14 end

15 return I

packages (including primary and dependency packages), if
necessary. Line 15 returns the assembled VMI.

V. IMPLEMENTATION

We implemented Expelliarmus in Python and publicly
released the complete source code including the reproducibility
artifact1 of our implementation and experimental validation in
GitHub2. In the following, we briefly discuss the implementa-
tion details of Expelliarmus with respect to VMI manipulation,
semantic graph creation, publish and retrieval, currently limited
to Linux VMIs only.

1) VMI access: Expelliarmus uses the libguestfs3

library to access, manipulate and modify VMIs. Apart from
performing modifications to a VMI file system, libguestfs
provides access to the guest OS through its virtual appli-
ance without instantiating the entire VMI. To achieve this,
libguestfs configures and launches a guestfs handle
that provides an interface to access VMIs.

2) VMI graph representation: We represent VMIs accord-
ing to semantic principles described in Section III-B and
store them in graph data structure using the Python-based
networkx4 module, implemented depending upon the suit-
able package management of the guest operating system (e.g.
APT or DNF). We execute the package management commands
through libguestfs on the VMI guest OS to fetch the
required semantic information (e.g. architecture, version) about
the base image, installed software packages and dependency
packages, associated to graph vertices and edges.

3) VMI publishing: comprises decomposition process, ac-
complished by recreating the binary package (e.g. .deb dis-
tribution files) for the required software packages and utilizing
the libguestfs calls to export them to the VMI repository.
Furthermore, we remove the specific package binaries, con-
figurations and the dependency packages no longer required
in the VMI, followed by cleaning up the cached repository
files. Finally, we employ the base image selection algorithm
to select the appropriate base image for storage.

1https://github.com/ExpelliarmusSuperComp/Expelliarmus/blob/master/
ReproducibilityArtifact.pdf

2https://github.com/ExpelliarmusSuperComp/Expelliarmus
3http://libguestfs.org
4https://networkx.github.io/

4) VMI retrieval: comprises the assembly procedure,
achieved by first resetting the base image using the
virt-sysprep tool (part of libguestfs), followed by
importing software packages and specific user data into the
VMI. Furthermore, we scan the imported software packages
that create the meta-data for each imported package read-
able by the package manager. Afterwards, we add a custom
repository configuration file (i.e. pointer to the software pack-
ages in the local repository) that enables the VMI’s guest
OS package management to install packages from the local
repository instead of the online ones. Finally, we remove the
local temporary repository including the custom configuration
file and restore the default repository configuration files (i.e.
pointer to the online package management repository).

VI. EXPERIMENTAL RESULTS

A. Experimental setup

We implemented Expelliarmus on a quad-core machine
with Ubuntu 16.04 (x86_64) OS architecture and external
SSD disk, with storage capacity of 1TB acting as a VMI
repository. We further used the SQLite5 database engine,
suitable for managing VMI meta-data due to its self-contained,
serverless, and zero-configuration characteristics. In principle,
our system is capable of running on any Linux-based OS with
support for libguestfs, qemu and SQLite software tools.

In the lack of any public VMI management benchmark, we
evaluate our approach using a synthetic VMI set based on the
Ubuntu Linux distribution with software packages recognized
by package management tools. We will address the manage-
ment of VMIs composed of software packages recognized by
non-package management tools (e.g. pip, snap) or installed
through compiled source code in future work. We create each
VMI using virt-builder6, an efficient tool for building
a variety of images for local and Cloud use. The minimal
script to create an image in our experiments is available in the
GitHub code repository7. For a fair comparison, the evaluation
set includes the four VMIs used in two previous studies [1],
[15], namely Mini, Base, Desktop, and IDE, in the same
configuration. To provide a representative set of Cloud images
for the evaluation, the VMI set also includes 15 images with a
similar software stack as provided at the Amazon Web Services
portal8 for free and enterprise use:

1) Mini image with non-desktop minimal installation of
Ubuntu Linux distribution;

2) Base image with LAMP software stack;
3) Desktop image with X Windows and desktop productivity

tools including LAMP software stack, FTP/NFS and
email servers;

4) IDE image with integrated development environment in-
cluding Eclipse, JDK, and Python;

5) AWS infrastructure software images with application
servers (e.g. LAPP, LEMP, Jenkins, Tomcat, MongoDB,
CouchDB, Django, RabbitMQ, Redis, Cassandra, Post-
greSQL, Elastic stack), and project management tools (i.e.
Redmine, ownCloud).

5https://www.sqlite.org/index.html
6http://libguestfs.org/virt-builder.1.html
7https://github.com/ExpelliarmusSuperComp/Expelliarmus
8https://aws.amazon.com/marketplace

TABLE II: Experimental VMI characteristics.

VMI VMI Mounted Number Similarity Publishing Retrieval

number name size [GB] of files [SimG] time [s] time [s]

1 Mini 1.913 75749 0 39.52 24.64

2 Redis 1.914 75796 0.97 10.28 22.05

3 PostgreSql 1.963 77497 0.59 39.699 33.91

4 Django 1.969 79751 0.71 18.916 27.30

5 RabbitMQ 1.956 77596 0.56 25.620 33.87

6 Base 1.986 78471 0.89 42.236 47.17

7 CouchDB 1.965 77725 0.70 37.99 42.58

8 Cassandra 2.531 79740 0.71 42.58 35.66

9 Tomcat 2.049 76356 0.37 60.65 36.37

10 Lapp 2.107 77816 0.53 56.71 61.79

11 Lemp 2.112 77360 0.97 25.093 57.11

12 MongoDb 2.110 75820 0.15 90.465 29.33

13 Own Cloud 2.378 90667 0.76 80.942 100.43

14 Desktop 2.233 90338 0.50 201.721 102.34

15 Apache Solr 2.338 79161 0.84 71.555 92.57

16 IDE 2.727 81200 0.52 135.333 63.62

17 Jenkins 2.515 79695 0.87 63.504 81.24

18 Redmine 2.363 95309 0.79 112.908 97.08

19 Elastic Stack 2.671 103719 0.64 166.001 99.91

Table II lists the characteristics of the VMIs including their
mounted disk use, number of files in their file system, semantic
similarity, as well as the publishing and retrieval times to
and from the repository. We average the evaluation results
across five trials, as their variance is relatively small in all
experiments. We assume that the repository is initially empty
and the VMIs are randomly uploaded to the repository for the
first execution. To maintain the uniformity of evaluation over
five trials, we perform the remaining four executions in the
same sequence listed in Table II.

B. VMI repository optimization

To evaluate the storage optimization achieved by Expel-
liarmus, we consider three separate scenarios. Initially, we
show the cumulative repository size by adding four VMIs
from previous studies [1], [15] namely Mini, Base, Desktop,
and IDE. In the second scenario, we upload the VMIs listed
in Table II to show the growth of repository at larger scale.
Finally and similar to previous studies [1], [15], the third
scenario evaluates the storage performance of the repository
by adding 40 IDE images obtained by successive builds. For
each scenario, we compare the Expelliarmus storage efficiency
with the following VMI encoding schemes:

• Qcow2 format with no compression9;
• Qcow2 + Gzip compressed format10;
• Mirage MIF [1] format that uses a manifest file to manage

the VMI content descriptors and store the image contents
in a global data store;

• Hemera [15] format that uses a file system and database
oriented hybrid approach for managing image content.

Figure 3a shows the cumulative repository growth for
the first scenario of adding four successive images (Mini,
Base, Desktop, and IDE). On a repository that stores only
four images with a cumulative size of 8.85GB in Qcow2
format, Expelliarmus performs better requiring only 2.3GB,
as compared to 3.2GB for images compressed with Gzip,
and 3.4GB for Mirage and Hemera systems. Figure 3b es-
timates the performance of these systems for adding 19 VMIs,

9https://people.gnome.org/∼markmc/qcow-image-format.html
10https://www.gzip.org/

Mini Base Desktop IDE
0

1

2

3

4

5

6

7

8

9

10

VMI

C
u

m
u

la
ti

v
e

re
p

o
si

to
ry

si
ze

(G
B

)

Qcow2

Qcow2 + Gzip

Mirage

Hemera

Expelliarmus

(a) 4 VMIs.

1 5 10 15 19

0

5

10

15

20

25

30

35

40

45

50

VMI

C
u

m
u

la
ti

v
e

re
p

o
si

to
ry

si
ze

(G
B

)

Qcow2

Qcow2 + Gzip

Mirage

Hemera

Expelliarmus

(b) 19 VMIs.

5 10 15 20 25 30 35 40

0

10

20

30

40

50

60

70

80

90

100

110

120

VMI

C
u

m
u

la
ti

v
e

re
p

o
si

to
ry

si
ze

(G
B

)

Qcow2

Qcow2 + Gzip

Mirage

Hemera

Expelliarmus

(c) 40 IDE VMIs.

Fig. 3: Repository size growth with different numbers of successively stored VMIs.

successively listed in Table II. For a cumulative repository
size of 41.81GB in the Qcow2 format, Expelliarmus requires
2.75GB, while Mirage and Hemera perform again similarly
requiring 8.81GB. In this scenario, the storage cost for Qcow2
images compressed with Gzip encoding scheme is worse
requiring 15GB. An important observation deduced from Fig-
ure 3a and Figure 3b is the improved performance of Mirage,
Hemera and Expelliarmus with increasing number of VMIs in
the repository over Gzip-based scheme. The performance of
Mirage and Hemera owes to file level deduplciation that stores
common files from the same and different VMIs only once.
Expelliarmus instead, not only relies on deduplicating similar
software packages, but also optimizes the VMI storage by
removing software packages not a dependency for the primary
ones, an opportunity not captured by Mirage and Hemera sys-
tems. Moreover, Expelliarmus’s base image selection reduces
the storage by selecting one from a pool of semantically similar
base images, while Mirage and Hemera store additional non-
redundant content of other base images. Evidently, the base
image is a major contributor to the higher repository size.

The advantage of Expelliarmus is better represented by
the third scenario shown in Figure 3c, including 40 IDE-
similar VMIs composed of the same base image and software
packages. For a cumulative repository size of 109.92GB,
Expelliarmus requires 2.94GB, while Mirage and Hemera-
based storage require 6.4GB. The storage cost for the Gzip
compressed scheme is even higher, requiring 48GB. In this
scenario, Expelliarmus performs 16 times better than Gzip,
and 2.2 times better than Mirage and Hemera, which in turn
perform 7.5 times better than Gzip.

C. VMI publishing and retrieval

We further evaluate the performance of publishing and
retrieving different VMIs to and from the repository. The time
of publishing a VMI in Expelliarmus represents the decom-
position time, comprising time to create guestfs handle
for VMI access, export semantically non-redundant software
packages, remove the unused software packages, and select the
compatible base image. On the contrary, the time to retrieve a
VMI reflects the assembly time comprising the time to create
a guestfs handle, copy the appropriate base image to the
local repository, reset the VMI, and import software packages.
We evaluate VMI publishing time for two scenarios. The first

Mini Base Desktop IDE

0

100

200

300

400

500

600

VMI

P
u

b
li

sh
ti

m
e

(s
ec

o
n

d
s)

Expellairmus

Mirage

Hemera

(a) Publishing time of 4 VMIs.

1 5 10 15 19

0

200

400

600

800

VMI

P
u

b
li

sh
ti

m
e

(s
ec

o
n

d
s)

Expelliarmus

Semantic

Mirage

Hemera

(b) Publishing time of 19 VMIs.

Fig. 4: VMI publishing time analysis.

scenario represents the sequential upload of four VMIs used
in previous studies [1], [15] (Mini, Base, Desktop, and IDE),
while the second scenario evaluates all VMIs listed in Table II
(including the ones from the first scenario).

Figure 4a shows the VMI publishing time for the first
scenario. The Expelliarmus optimizes not only the storage
cost as previously discussed, but also publishes VMI faster
compared to both Mirage and Hemera. The publishing time of
a VMI in Expelliarmus depends not only on the mounted VMI
size, but also on the software packages installation size. The
installation size is the amount of space required by the software
package to be installed on a disk, which is always larger than

1 5 10 15 19

0

20

40

60

80

100

120

VMI

R
et

ri
ev

al
ti

m
e

(s
ec

o
n

d
s)

Base image copy

Libguestfs handler creation

VMI reset

Import

(a) Retrieval time for Expelliarmus.

1 5 10 15 19

0

100

200

300

400

500

600

VMI

R
et

ri
ev

al
ti

m
e

(s
ec

o
n

d
s)

Mirage

Hemera

Expelliarmus

(b) Retrieval time comparison for VMIs listed in Table II.

Fig. 5: Retrieval time analysis of VMIs.

the size of a software packaged in the .deb or .rpm format.
The different software packages with varying installation sizes
largely affect the time to create a binary software package
(e.g. .deb) resulting in a higher export time of the same
to the repository. The total installation size of the exported
software packages for the Desktop VMI is the largest, and
hence requires more time to publish in Expelliarmus compared
to other images. In contrast, Mirage and Hemera require more
time for the IDE VMI, as the publishing time is proportional
to the mounted size and the file sizes within a VMI.

Another reason for the better VMI publishing time com-
pared to the file system-based approaches is due to lower
deduplication overheads. Mirage and Hemera require matching
content over thousands of files incurring time penalties in the
range of seconds to few minutes. In contrast, Expelliarmus
relies on VMI semantic graphs for similarity computation
and semantic clustering of similar VMIs into a master graph,
which allows the comparison of new VMIs with a single
master graph instead of multiple VMIs. In Expelliarmus, the
similarity computation incurs time penalties in the order of
less than 100ms for each VMI. This eradicates a large share
of VMI publishing overhead with low similarity computation
cost compared to Mirage and Hemera.

Figure 4b shows the publishing time over a repository
with 19 VMIs, successively added as listed in Table II,
representing the second scenario. In this case, we additionally
use for comparison a variant of Expelliarmus called semantic
decomposition that exports all the required software packages
without taking semantic similarity into account. While for the

Mirage and Hemera systems the Elastic Stack VMI requires
the highest publishing time due to its mounted size and large
number of files (100 thousand), the Desktop VMI had the
longest publishing time in Expelliarmus followed by Elastic
Stack. Interestingly, the total installation size of packages to
export for both Desktop and Elastic Stack VMIs is nearly
equal, yet the former takes more time to publish compared
to the latter. The reason is that the system requires to export
126 software packages for the Desktop VMI, compared to only
three packages for Elastic Stack. For semantic decomposition,
the longest publishing time is for Elastic Stack VMI, with
Expelliarmus performing better compared to its variant (ex-
pected, as it only exports the software packages that do not
exist in the repository). As previously discussed, the similarity
computation overhead in Expelliarmus is minimal, hence the
VMI publishing time is majorly dependent on the export of
software packages. However, with upload of more VMIs to
the repository, Expelliarmus require less software packages to
export with lower publishing time contrary to its variant.

To evaluate the VMI rerieval, we consider only one
scenario of a repository with 19 images listed in Table II.
Figure 5a shows the VMI retrieval in Expelliarmus as a
composition of four operations: copying the base image from
the repository, creating the guestfs handler, resetting the
VMI, and finally importing the required software packages
into a VMI. The first three operations share nearly equal time
for retrieving different VMIs, while the import time differs
invariably. Similar to VMI publishing, the VMI retreival in
Expelliarmus depends on the installation size of the imported
software packages, which is highest in case of Desktop VMI.

Figure 5b compares the VMI retrieval time, which is fastest
for Hemera and Expelliarmus than Mirage. Expelliarmus’s
better performance is due to selective package retrieval (in-
cluding only primary and corresponding dependency packages)
imported into a VMI that significantly reduces the total size
retrieved from the repository. Mirage’s VMI retrieval is worse
for two reasons: (1) it retrieves more data by reading many
files instead of reading linearly through one file, and (2) it
is inefficient in reading small files (below 1MB) from file
system-based repository. Hemera improves this overhead using
a hybrid approach that stores large files in the repository and
small sized files in the database, which optimizes VMI retrieval
as the database handles small files much faster than the file
system. Although, Hemera and Expelliarmus perform nearly
equal for most VMIs, the retrieval time of Elastic Stack VMI
is slightly different in both cases. While Expelliarmus retrieval
takes 99.9 s, Hemera needs 129.8 s mostly due to retrieving a
large number of files (more than 100 thousand).

VII. CONCLUSION

We introduced Expelliarmus, a new VMI management
system with a semantic-centric design for VMI storage with
optimized VMI publish and retrieval. Different from the ex-
isting VMI management systems that ignore VMI semantics,
Expelliarmus incorporates three features. First, it represents
VMIs as structured semantic graphs, efficiently expressing
the functional requirements between the base image and
the different software packages. Such an approach allows
clustering of multiple VMIs into a single master graph and
thus expedites similarity computation. Second, Expelliarmus

enables a semantic aware VMI decomposition and base image
selection to extract and subsequently store only non-redundant
base image and software packages. Third, Expelliarmus is
capable of performing VMI assembly on the fly, either by
fetching initially uploaded software packages or by selecting
compatible and semantically similar ones already existing in
the repository. We evaluated Expelliarmus over representative
set of synthetic Cloud VMIs on a real testbed. Results show
that semantic-centric management of VMIs is able to reduce
the repository size by 2.2 − 16 times compared to three
related systems, and significantly improves the VMI publish
and retrieval performance. Currently, Expelliarmus supports
Linux VMIs, while managing Windows VMIs is part of our
future work. We also plan in the future to extend Expelliarmus
to support automated containerization of a VMI with multiple
container service functionality.

REFERENCES

[1] G. Ammons, V. Bala, T. Mummert, D. Reimer, and X. Zhang. Virtual
machine images as structured data: The mirage image library. In
Proceedings of the 3rd USENIX Conference on Hot Topics in Cloud

Computing, HotCloud’11, pages 22–22, Berkeley, CA, USA, 2011.
USENIX Association.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
Proceedings of the Nineteenth ACM Symposium on Operating Systems

Principles, SOSP ’03, pages 164–177, New York, NY, USA, 2003.
ACM.

[3] B. Beach. Pro PowerShell for Amazon Web Services: DevOps for the

AWS Cloud. Apress, Berkely, CA, USA, 1st edition, 2014.

[4] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Gener. Comput. Syst.,
25(6):599–616, June 2009.

[5] D. Campello, C. Crespo, A. Verma, R. Rangaswami, and P. Jayachan-
dran. Coriolis: Scalable VM clustering in clouds. In Proceedings of

the 10th International Conference on Autonomic Computing (ICAC 13),
pages 101–105, San Jose, CA, 2013. USENIX.

[6] R. J. Creasy. The origin of the vm/370 time-sharing system. IBM

Journal of Research and Development, 25(5):483–490, Sep 1981.

[7] A. V. Dastjerdi and R. Buyya. Fog computing: Helping the internet of
things realize its potential. Computer, 49(8):112–116, Aug 2016.

[8] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated
performance comparison of virtual machines and linux containers.
In 2015 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), pages 171–172, March 2015.

[9] P. Jaccard. The distribution of the flora in the alpine zone. New

Phytologist, 11(2):37–50, February 1912.

[10] K.R. Jayaram, C. Peng, Z. Zhang, M. Kim, H. Chen, and H. Lei. An
empirical analysis of similarity in virtual machine images. In Proceed-

ings of the Middleware 2011 Industry Track Workshop, Middleware ’11,
pages 6:1–6:6, New York, NY, USA, 2011. ACM.

[11] K. Jin and E.L. Miller. The effectiveness of deduplication on virtual
machine disk images. In Proceedings of SYSTOR 2009: The Israeli

Experimental Systems Conference, SYSTOR ’09, pages 7:1–7:12, New
York, NY, USA, 2009. ACM.

[12] A. Kochut, A. Karve, and B. Nicolae. Towards efficient on-demand vm
provisioning: Study of vm runtime i/o access patterns to shared image
content. In 2015 IFIP/IEEE International Symposium on Integrated

Network Management (IM), pages 321–329, May 2015.

[13] A. Liguori and E.V. Hensbergen. Experiences with content addressable
storage and virtual disks. In Proceedings of the First Conference on

I/O Virtualization, WIOV’08, pages 5–5, Berkeley, CA, USA, 2008.
USENIX Association.

[14] X. Lin, M. Hibler, E. Eide, and R. Ricci. Using deduplicating storage
for efficient disk image deployment. In TRIDENTCOM, 2015.

[15] H. Liu, B. He, X. Liao, and H. Jin. Towards declarative and data-centric
virtual machine image management in iaas clouds. IEEE Transactions

on Cloud Computing, page 1.

[16] N. Mandagere, P. Zhou, M.A. Smith, and S. Uttamchandani. Demys-
tifying data deduplication. In Proceedings of the ACM/IFIP/USENIX

Middleware ’08 Conference Companion, Companion ’08, pages 12–17,
New York, NY, USA, 2008. ACM.

[17] P.M. Mell and T. Grance. Sp 800-145. the nist definition of cloud
computing. Technical report, Gaithersburg, MD, United States, 2011.

[18] Chun-Ho Ng and P.P.C. Lee. Revdedup: A reverse deduplication storage
system optimized for reads to latest backups. In Proceedings of the 4th

Asia-Pacific Workshop on Systems, APSys ’13, pages 15:1–15:7, New
York, NY, USA, 2013. ACM.

[19] Chun-Ho. Ng, M. Ma, Tsz-Yeung Wong, P.P.C. Lee, and J.C.S. Lui.
Live deduplication storage of virtual machine images in an open-source
cloud. In Proceedings of the 12th ACM/IFIP/USENIX International

Conference on Middleware, Middleware’11, pages 81–100, Berlin,
Heidelberg, 2011. Springer-Verlag.

[20] B. Nicolae, A. Kochut, and A. Karve. Discovering and leveraging
content similarity to optimize collective on-demand data access to iaas
cloud storage. In 2015 15th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, pages 211–220, May 2015.

[21] M.O. Rabin. Fingerprinting by Random Polynomials. Center for
Research in Computing Technology: Center for Research in Computing
Technology. Center for Research in Computing Techn., Aiken Compu-
tation Laboratory, Univ., 1981.

[22] K. Razavi and T. Kielmann. Scalable virtual machine deployment using
vm image caches. In Proceedings of the International Conference on

High Performance Computing, Networking, Storage and Analysis, SC
’13, pages 65:1–65:12, New York, NY, USA, 2013. ACM.

[23] D. Reimer, A. Thomas, G. Ammons, T. Mummert, B. Alpern, and
V. Bala. Opening black boxes: Using semantic information to combat
virtual machine image sprawl. In Proceedings of the Fourth ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-

ronments, VEE ’08, pages 111–120, New York, NY, USA, 2008. ACM.

[24] J. Sahoo, S. Mohapatra, and R. Lath. Virtualization: A survey on
concepts, taxonomy and associated security issues. In 2010 Second

International Conference on Computer and Network Technology, pages
222–226, April 2010.

[25] W. Shi and S. Dustdar. The promise of edge computing. Computer,
49(5):78–81, May 2016.

[26] J. E. Smith and R. Nair. The architecture of virtual machines. Computer,
38(5):32–38, May 2005.

[27] C. Sun, L. He, Q. Wang, and R. Willenborg. Simplifying service
deployment with virtual appliances. In 2008 IEEE International

Conference on Services Computing, volume 2, pages 265–272, July
2008.

[28] B. Varghese and R. Buyya. Next generation cloud computing: New
trends and research directions. CoRR, abs/1707.07452, 2017.

[29] J. Xu, W. Zhang, S. Ye, J. Wei, and T. Huang. A lightweight virtual
machine image deduplication backup approach in cloud environment.
In 2014 IEEE 38th Annual Computer Software and Applications Con-

ference, pages 503–508, July 2014.

[30] J. Xu, W. Zhang, Z. Zhang, T. Wang, and T. Huang. Clustering-
based acceleration for virtual machine image deduplication in the cloud
environment. J. Syst. Softw., 121(C):144–156, November 2016.

[31] X. Zhao, Y. Zhang, Y. Wu, K. Chen, J. Jiang, and K. Li. Liquid: A
scalable deduplication file system for virtual machine images. IEEE

Transactions on Parallel and Distributed Systems, 25(5):1257–1266,
May 2014.

