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Abstract  

Methods for nanoscale material characterization are in an ever-increasing demand, especially 

those, which can provide a broader range of information at once. Near-field techniques based 

on combinations of scanning probe microscopy (SPM) and Raman or photoluminescence 

spectroscopy (TERS or TEPL) belong, thanks to their capabilities and fast development, to 

strong candidates for becoming widespread across the scientific community as did the SPM 

and Raman microscopy only a decade or two ago. However, in particular for monolayer, 2D 

materials, the utilization of the tip-enhanced methods has relied so far mostly on the ‘gapped’ 

mode, which necessitates the material to be transferred onto a metallic substrate, incurring 

damaging changes in the process. The present work shows that even the gap-less TEPL 

performed directly on as-grown MoS2 monolayer samples without any pretreatment is also 

capable of providing nanoscale hyperspectral imaging. The mapping resolution down to few 

tens of nanometers clearly distinguishes homogeneous layer interiors from defective edge 

fronts in the grown monolayers, in contrast to mechanically exfoliated flakes, which show 

topography- and contamination-related heterogeneities in the whole flake area. The TEPL 
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interpretation is aided by local surface potential and capacitance measurements, performed 

with the same AFM tip. 

 

Standard optical techniques such as Raman or photoluminescence (PL) microspectroscopies 

give plentiful information about both structural and optoelectronic properties of layered 

transition metal dichalcogenides (TMDs). [1] However, the spatial resolution of these techniques 

is diffraction limited where the Abbe diffraction limit of the resolution, d, is equal to d = λ/2 

NA with λ the wavelength of the irradiated light and NA the numerical aperture of the objective. 

For a typical Raman or PL experiment, with visible light and an objective with a NA around 1 

results in a diffraction limited resolution of several hundreds of nanometers which hinders the 

understanding of the material’s properties at the nanoscale. One possibility to overcome this 

issue is using an apex of an atomic force microscope (AFM) or scanning tunneling microscope 

(STM) tip (nanoantenna) to improve the intensity of the optical signal in the near-field due to 

the combination of a lightning rod effect and a surface plasmon resonance at the metallized tip. 

[2] In general, tip-enhanced techniques improved greatly during the last years, reaching a 

resolution around tens of nanometers and enhancement factors of 107-1010 in the near-field [3] 

Even so, most works deal with single spectrum acquisition and only the past few years saw 

studies concerning tip-enhanced imaging methods, e.g. refs [4–7]. 

TMDs usually exhibit a strong PL associated to an exciton transition. In particular, MoS2 

monolayer presents two direct optical transitions of the A and B excitons at approximately 

1.8 eV and 2 eV respectively which PL energy can easily be shifted towards higher or lower 

energies depending on environment conditions.[8] For instance, the PL of chemical vapor 

deposited (CVD) MoS2 monolayers have been found to shift towards lower energies after 

transferring to a different substrate with a polymer due to defects generated during the 

transfer.[9] Moreover, one can find a great variety of results in the literature when comparing 

quantitative values of PL due to the diverse synthesis or exfoliation methods used.[10,11] 
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Nanoscale heterogeneities such as defects and wrinkles are most likely responsible of this issue, 

as shown for graphene previously.[12] In this sense, the at least 10 to 20 times improved spatial 

resolution of tip-enhanced methods can help us to understand how nanoscale heterogeneities 

may affect the optoelectronics properties of these materials and eventually improve the 

synthesis methods to obtain optimal CVD flakes for a specific application. Some works on 

Raman nanoscale characterization of TMDs materials have been reported so far, most of them 

obtained in the so-called ‘gap mode’ when the layers were first transferred on gold substrates 

to localize and intensify the near-field between the tip and the substrate.[13] However, while 

both the enhancement and spatial resolution are improved, the transfer inevitably leads to 

damage in the interrogated material. The obtained information on the quality and properties of 

the grown layers has thus only a limited value. Moreover, PL is quenched when MoS2 is 

supported on a freshly prepared gold[14] avoiding the possibility of measuring tip-enhanced 

photoluminescence (TEPL) under this favorable conditions. 

Here, we report a study of different CVD grown MoS2 flakes by TEPL in the ‘gap-less’ regime, 

i.e. where the near-field is produced solely by the tip. We have measured TEPL of as-grown 

MoS2 on SiO2/Si substrates with no transfer or other treatment. Different CVD flakes were 

examined in order to verify heterogeneities of the flakes, such as variations of PL at nanoscale 

due to defects. The results are compared to data obtained on mechanically exfoliated MoS2, 

with a special attention paid to the edges of the flakes.  

 

Figure 1a shows the topography image of a MoS2 flake grown by CVD. Thickness of the flake 

is approximately 0.7 nm, which is consistent with the thickness reported for a monolayer.[15] 

The height profile (Figure 1c) reveals that edges are 2 nm taller than the interior of the flake. 

Figure 1b shows the contact potential difference (CPD) image measured by Kelvin Probe Force 

Microscopy (Frequency Modulated, KPFM-FM). The CPD image shows a homogeneous 

potential in the interior of the flake and only at the edges one can observe different values, 
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correlating fairly well with the topography image. The CPD inside the flake is approx. 400-500 

mV lower compared to the substrate. The edge shows CPD values lowered by an additional 100 

mV compared to the flake interior (Figure 1d). No noticeable variation in CPD is detected inside 

the flake probably due to a lower resolution of the KPFM compared to the topography. Finally, 

micro Raman and PL spectra (far-field) collected at the center of the flake are shown in Figure 

1(e-f).  

 

 
Figure 1. CVD grown MoS2 monolayer: (a) topography and (b) CPD images. (c) Height profile 

across the edge, and (d) CPD profile across the edge, (e) Raman spectrum, (f) 

photoluminescence (PL). Scale bar is 500 nm. 

 

Raman spectrum present the E2g and A1g modes separated by less than 21 cm-1, a value typical 

for CVD-grown monolayer MoS2 [6]. In the PL spectrum, A and B excitons appear at 1.81 eV 
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and 1.96 eV respectively. These features are typical for CVD MoS2 monolayer, which confirm 

the monolayer thickness. 

At this point, it would be beneficial to gain information of the PL with a similar resolution as 

the AFM images. As commented above, micro PL resolution is limited to hundreds of 

nanometers and one approach to overcome the diffraction limit is to perform TEPL 

measurements.  

TEPL measurements were obtained by side illumination of a silver coated AFM tip with a red 

laser excitation (633 nm). Far and near-field images were collected by switching the AFM from 

tapping to contact mode, respectively, while scanning the sample in tapping mode and 

measuring the PL spectrum at each point when the tip is close to the sample (near-field 

spectrum) and far from the sample (far-field spectrum). Side illumination results to a rather 

strong far field and non-circular laser spot at the sample.[16] To obtain the sole near-field 

contribution, it is necessary to subtract the far-field contribution to obtain the actual near-field 

spectrum for each map point. In all the cases, both far and subtracted near-field PL spectra were 

fitted to a single asymmetric pseudo-Voight function to account for the superposition of both 

the neutral (A0) and charged exciton (A-, trion), which are difficult to deconvolute during high-

speed TEPL mapping. Figure 2a shows the near-field (blue line), far-field (black line) and 

corrected near–field PL spectra (red line) collected in the interior area of the flake. The spectra 

in the Figure 2b, correspond to the edges of the flake where the PL enhancement is higher. 

Figure 2c-d shows maps of the intensity and the energy, respectively, of the A0 exciton in the 

near-field conditions, after subtracting the far-field contribution. PL intensity and energy values 

vary only slightly in the interior of the flake and only the edges, approx. 80 nm wide, show a 

significant change in the PL. The recognition of the features at the edges are possible only 

thanks to the dramatic improvement of the lateral resolution compared to the far-field 

measurements (Supporting Information, Figure S1). 
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Figure 2. TEPL of CVD MoS2 monolayers: PL spectra in the near-field (blue line), far-field 

(black line) and subtracted (red line) collected at (a) the interior area of the flake and (b) the 

edge of the flake. The sharp peaks in the spectra are Raman bands of silicon and MoS2 (from 

left to right) (c) Near-field PL intensity and (d) energy maps. Green and blue marks indicate the 

areas where spectra in (a) and (b) were collected, respectively.  Histograms of (e) near-field PL 

intensity and (f) PL energy from the whole map. (g) PL intensity and (h) PL energy profiles 

across the flake edge in the near-field map Scale bar is 500 nm. 

 

Figure 2 reveals two clear conclusions: (i) Even in the gap-less mode, TEPL on single layer 

MoS2 on a dielectric substrate can provide high enough enhancement to conduct hyper-spectral 

mapping with lateral resolution down to tens of nanometers allowing to resolve very detailed 

features compared to the far-field imaging.  (ii) The resolved PL is clearly more intense at the 

edges of the flake and blue-shifted compared to the flake interior. We have extracted both the 

intensity and energy profiles from the near-field image across the flake edge (Figure 2g-h). The 

profiles clearly show the correlated abrupt increase of PL intensity and energy approaching the 

edge. The intensity increase at the edge is almost two-fold, the energy blue-shifted by 

approximately 25 meV. This can also be observed in the histograms presented in Figure 2e-f. 

There are two distinct maxima in the PL energy distribution, one centered at 1.81 eV for the 

flake interior and the second one at 1.84 eV for the edges (Figure 2e). The PL blue-shift and 

intensity increase is strongly reminiscent of the effect of the decreasing population of charged 

excitons, the trions, by electric field,[17] molecular doping,[18] or defects.[10] As the excessive 
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charges are neutralized, the lower energy trion PL peak becomes weaker and, in the same time, 

the higher energy neutral exciton PL peak becomes significantly stronger. The same effect can 

be facilitated by defects. For example, Tongay et al.[10] reported a three times increase of the 

PL integrated intensity as well as a blue-shift of the PL maxima by 20 meV caused by α particles 

irradiation in the presence of electron-withdrawing N2 molecules which are bound to the formed 

defect sites. The generated defect density was estimated to 6 × 1011 cm-2.[10] A similar effect 

can be observed because of the most likely incomplete growth on the edge.[7] The surface 

potential change further corroborates the influence of charge/defects on the populations of 

excitons and the observed changes in PL. 

 

It is well known that MoS2 growth by CVD is very sensitive to the synthesis conditions, and 

flakes with different shape can be obtained by varying the reaction conditions.[19,20] Depending 

on the local sulfur concentration along the sample, MoS2 flakes with different shapes were 

selected and TEPL was measured to verify the universality of the edge-related changes. PL near 

field maps of both a triangular and hexagonal MoS2 flakes are presented in Figure 3a-b (PL 

intensity) and 3c-d (PL energy). Detailed topography analysis can be found in Figure S2. In 

these cases, “interior” PL is centered at approximately 1.82 and 1.83 eV for the triangular a 

hexagonal flake, respectively (Figure e-f). Apparently, besides the slight shift of the PL 

distribution, the results are very similar to the previous case and once again, the edges exhibit 

more intense and blue shifted PL compared to the central part of the flake, as can be observed 

in the intensity and energy profiles (Figure 3g-h).   
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Figure 3.  TEPL of CVD MoS2 monolayers with different shape: Near-field PL intensity maps 

for (a) triangular and (b) hexagonal. Near-field PL energy maps for (c) triangular and (d) 

hexagonal flake. Histograms of the PL energy distribution for triangular (e) and (f) hexagonal 

flake. PL intensity and energy profiles across the flake edges (indicated by dashed yellow lines 

in the maps for (g) triangular and (h) hexagonal flake. Scale bar is 500 nm. 

 

We can assume that despite the local variation in sulfur concentration resulting into the growth 

of flakes with different shapes, edges and growth kinetics, the defect occurrence at the edges 

connected with electron depletion is universal in our type of growth. The evidenced PL intensity 

increase at the edges is, actually, inverse to a previous study, conducted with TEPL on as-grown 

MoS2 from MoO3 precursor.[6] The reasons for the difference can be looked for in the growth 

process, however, many parameters varied between our and the mentioned work (precursor: 

MoO2 vs. MoO3, growth temperature: 850 °C vs. 700 °C, carrier gas: Ar vs N2, in the presented 
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work and in ref. [6], respectively). It is clear that further detailed investigations are necessary to 

uncover the details of the growth process and relate them to the structural and excitonic 

properties of the material.    

 

We have successfully applied gap-less TEPL to characterize as-grown CVD MoS2 flakes. To 

put our observations in contrast, we focus now on a mechanically exfoliated flake. Topography 

image is shown in Figure 4a and it shows a flake formed by different number of layers 

(increasing from the edge). Additional AFM images are shown in Figure S3 (Supporting 

information). A big wrinkle (100 nm wide, 15 nm high), through the whole length in the middle 

of the image, and two smaller ones, approximately perpendicular to the edge, can be observed 

in the monolayer region. These features and the separation between layers are better observed 

in both CPD and capacitance images (Figure S3).  
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Figure 4. TEPL of exfoliated MoS2 flake. (a) AFM topography image. Green and blue marks 

indicate the areas where spectra in (f) and (g) were collected, respectively (b) Far- and (c) 

near-field PL intensity maps and (d) far- and (e) near-field PL energy maps. PL spectra in the 

near-field (blue line), far-field (black line) and subtracted (red line) collected at (f) the ‘flat’ 

area of the flake and (g) the big wrinkle. (h) PL intensity and energy profiles along near-field 

maps. Scale bar is 500 nm. 

 

 

In Figure 4b-e the far- and near-field PL intensity and PL energy maps of the exfoliated flake 

are shown for comparison. Both the big and small wrinkles are distinguished in the near-field 

maps. Selected spectra are shown in Figure 4f-g. The spectra obtained from the big wrinkle 

(Figure 4g, blue marked in Figure 4a) show a slightly higher enhancement than the flat 

monolayer region (Figure 4f, green marked in Figure 4a). From the maps we can conclude that 
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the three wrinkles exhibit higher PL intensity than the rest of the flake as well as shifts in the 

energy. Curiously, the big wrinkle red-shifts the PL energy, which is counterintuitive, since 

small compressive strain should cause band-gap opening, i.e. PL energy increase. [21] On the 

other hand, in a similar case, albeit with few layer MoS2 and much wider wrinkles, the 

unexpected red-shift was explained by the effects of energy funneling. [22] In contrast, the PL 

energy at the small wrinkles is blue-shifted, i.e., probably the compressive effects dominate in 

that case. However, the most important observation with respect to the CVD samples, is the 

rather uniform PL in terms of both intensity and energy going from the interior of the flake 

towards the edge. No tonality can be observed in the CPD and capacitance images either (Figure 

S3), confirming the defect front at the edges in the CVD samples is inherent to the growth 

process, and not to, e.g., ageing of the sample in laboratory conditions. 

 

In conclusion, we have shown that gap-less Tip-Enhanced Photoluminescence on monolayer 

MoS2 is capable of providing signals intense enough to thoroughly investigate as-grown 

samples on a dielectric substrate with a lateral resolution down to tens of nanometers. 

Consequently, there is no need to transfer the samples to a metallic (gold, silver) substrate 

before such an analysis takes place, thereby avoiding modification (or even damage) and 

contamination of the sample by the transfer process. Fitting the spectra in every map point 

reveals that monolayer MoS2 flakes exhibit heterogeneities in samples grown by chemical vapor 

deposition and prepared by mechanical exfoliation. The edges of the CVD flakes feature, in all 

the samples, an increased intensity and a blue shift of the PL band. The PL results correlate well 

with surface potential measurements, which manifest different values between the edges and 

the flake interior. The changes in the PL signatures as well as in the surface potential can be 

explained by the presence of growth-induced defects and related charge compensation through 

moieties, which readily sorb onto the defect sites. On the other hand, the interior of the CVD 

flakes is rather homogeneous in the single layer limit. Both these observations are in a stark 
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contrast with measurements of exfoliated layers. In this case, the edges have similar PL intensity 

and energy compared to the flake interior. The variations in PL signature are clearly visible in 

the whole flake, caused by topographical corrugations like wrinkles or bubbles and 

contamination. 

 

 
Experimental Section  

 

Sample preparation 

The MoS2 monolayers were grown using chemical vapor deposition (CVD) using MoO2 (Sigma 

Aldrich #234761) and S (Sigma Aldrich #344621) as sources by atmospheric pressure CVD. 

[5,20] A 3 x 1 cm2 piece of Si/SiO2 (300 nm) substrate was cleaned with acetone and isopropanol 

and subsequently placed phase down on a quartz crucible containing 30 mg MoO2 powder. The 

crucible was installed in the middle of the oven and 90 mg S was placed just outside the oven. 

The tube was flushed with Ar gas at room temperature, hereafter the MoS2 growth was initiated 

with an Ar flow of 120 sccm. The temperature was gradually increased to the growth 

temperature of 1123 K at 40 K/min, and held there for 10 minutes. After the growth, the oven 

was opened and the sample was quickly cooled to room temperature in the Ar flow of 120 sccm.  

MoS2 exfoliated layer was prepared from MoS2 bulk (GQ graphene) by mechanical exfoliation 

onto PDMS and transferred with a customized transfer station on top of a SiO2/Si substrate 

previously cleaned with acetone and isopropanol. 

 

AFM and Raman details 

Topography, CPD and capacitance images were collected with AIST-NT SPM in KPFM-FM 

mode. ACCESS-EFM probes (tip-view), App Nano, k = 2.7 N.m-1, f = 60 kHz covered by Pt-

Ir. 
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Micro Raman and PL spectra were collected with LabRAM Evolution spectrometer using 532 

nm laser excitation with 1800 and 300 l/mm gratings, respectively.  

TEPL measurements were performed with LabRAM HR Evolution spectrometer coupled to 

AIST-NT SPM with 633 nm laser excitation, 300 l/mm grating and using side optical access. 

ACCESS-FM probes (App Nano, tip/view, k = 2.7 N.m-1, f = 60 kHz) were covered by approx. 

70 nm of silver by magnetron sputtering. 

 

Supporting Information 
Supporting Information is available from the Wiley Online Library or from the author. 
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Tip-Enhanced Photoluminescence in the gap-less mode, i.e. without the use of plasmonically 
active substrate, is utilized to discern local (tens of nm) inhomogeneities in the optoelectronic 
properties of as-grown MoS2 monolayers. The results are put in contrast to measurements on 
exfoliated MoS2. Special consideration is given to the edges, where photoluminescence 
enhancement and shift are observed in the grown MoS2.  
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Imaging Nanoscale Inhomogeneities in As-Grown MoS2 by Tip-Enhanced 
Photoluminescence in Gap-Less Mode 
 
ToC figure ((Please choose one size: 55 mm broad × 50 mm high or 110 mm broad × 20 mm 
high. Please do not use any other dimensions))  
 

 


