

Dr. Pierre Girard Sindelfingen, December 6, 2019

THALES

We enable trust in two interlocking ways...

...by developing secure, innovative software.

Our solutions are at the heart of modern life

We also secure cars (CES 2015)

We also secure cars

- Car access granted for the next 48 h
- Young driver: speed limited to 90 km/h
- Insurance limitation: geo-fencing within EU

Which security solution shall be used?

Agenda

- Motivating example
- Security needs and classical solutions for IT world
- X Sorting-out the available solutions for embedded world
- ★ Introducing Multiple Levels of Security

Why trust?

- Management of sensitive devices
 - ★ Car engine, batteries, doors, ...
- × Management of sensitive transactions
 - × Car sharing, car renting, mobility as a service
 - × Energy: (not) consuming, storing ...
 - × Peer-to-peer transactions
- Management of sensitive data
 - ➤ Location / presence, behavior / driving patterns, voice streaming, ...

Trust relationships

How to enable trust?

Security mechanisms

Security assurance

Security life cycle management

What do we need as (security) developers?

Simple implementation

Distributed implementation

THALES

Classical IT solutions

Classical hardware

Security dedicated HW-

eUICC

Removable

- Tamper resistant
- Managed
- Highly tested
- Certified

HW architecture of a Secure Element

Tamper resistance at chip level

- X Blocks can be easily identified
- × No shield
- × No glue logic
- X Buses clearly visible

- × Shield
- X Glue logic
- X No Buses visible
- Memories and buses encryption
- × Sensors

SW architecture of a Secure Element

Agenda

- Motivating example
- X Security needs and classical solutions for IT world
- Sorting-out the available solutions for embedded world
- Introducing Multiple Levels of Security

Which security are we looking for?

	Confidentiality	Integrity
Code	Proprietary algorithms	Business logic
Data	Keys	Certificates

The Root of Trust model for non monolithic hardware

Which attack model?

Mapping some attacks

Harder to protect against

Secure hardware classification

Dedicated memory?

TEE 101

- XTEE = Trusted Execution Environment
- Relies on ARM Trust Zone hardware feature
 - X Trusted / Untrusted world partition (extended to peripherals)
- ×Rich OS runs in Untrusted world, TEE runs in Trusted world
- XTEE and Rich OS run on the same processor, no tamper resistance

	Rich OS	TEE
Attack surface	Very large	Very limited
New features	Frequent	Very limited
Vulnerabilities discovery	Frequent	Very limited
Focus	Features, speed	Security

System architecture with TEE

Remarks: not all TEE allow third party developers to write and load their own TA

Secure hardware classification

Dedicated memory?

System on Chip approach with crypto-coprocessor: NXP iMX.n

Secure hardware classification

Dedicated memory?

System on Chip approach with dedicated core: ARM CryptoIsland

- A programmable security enclave to extend fixed function CryptoCell family
- TrustZone CryptoIslands an additional family of security solutions by Arm
- Aimed at providing on-die security services, in a physically isolated manner (host CPU agnostic)
- Axiom: less sharing of resources leads to smaller attack surface and fewer vulnerabilities
- Certification, at a reasonable cost (i.e. reuse)

Support ARM v8-m & v7-m

arm TechCon 2017

Hardware security robustness on 4 solutions

Generic / common Specific / isolated

Hardware security robustness on 4 solutions

Generic / common Specific / isolated

And what about certification?

- × Assurance versus resistance
- ★ Target of Evaluation (IP versus product)
- Complexity limits?
- × Production?
- X Typical certification
 - **X** TEE: EAL2+/3
 - × SE: EAL5+/EAL6+

Agenda

- Motivating example
- X Security needs and classical solutions for IT world
- Sorting-out the available solutions for embedded world
- Introducing Multiple Levels of Security

The ideal world: Multiple Levels of Security

Case study: TLS on PikeOS / iMX.6 + SE

Layered Software Architecture

Take away

- X Hardware security landscape still needs clarification
- Security model and requirements are key to pick a solution
- X Security design patterns still need to be established
- Certification is mandatory to establish trust

