
Time Series or Relational Database for Edge and IoT

Anže Luzar
XLAB Research

XLAB d.o.o.
Pot za Brdom 100

1000 Ljubljana, Slovenia
anze.luzar@xlab.si

Sašo Stanovnik
XLAB Research

XLAB d.o.o.
Pot za Brdom 100

1000 Ljubljana, Slovenia
saso.stanovnik@xlab.si

Matija Cankar
XLAB Research

XLAB d.o.o.
Pot za Brdom 100

1000 Ljubljana, Slovenia
matija.cankar@xlab.si

ABSTRACT
In Fog and Edge computing data management and process-
ing is moving from the Cloud closer to the IoT devices.
To perform the work in edge devices, different, more light-
weight, small-footprint and specialized tools need to be em-
ployed. In this paper we perform a side-by-side comparison
of relational and time series databases of their speed and re-
source consumption. The Results show better performance
of time series over relational databases.

Keywords
database, SQL, timeseries, relational, cloud, fog, IoT, edge

1. INTRODUCTION
Nowadays plenty of databases are available for storing actual
timestamped data to a database. In the past several years,
there are growing appeals for reading and storing data from
IoT devices [8]. In the close future, storing and manipulat-
ing time series data will play an important role in IoT [1].
A common technique is to gather the data using cloud or
fog devices that read IoT sensors [4] and temporarily store
it in relational or time series databases. As not all sensor
readouts are required to be stored in the Cloud, it is useful
to filter and process the sensors on the Edge near them and
thus save Cloud resources and bandwidth. To achieve this,
one of the most important and desired abilities for Edge de-
vices is to handle volumes of time series data quickly with
minimum latency and footprint in order to give the observer
results as quickly as possible [11], [9]. IoT devices can rely
on different database types behind them and the best choice
mostly depends on the type and format of the data that
is being stored and on the requirements of the edge device
[6]. Among available database types that can be used for
IoT devices are NoSQL (e.g. MongoDB) with its subtype
time series database (e.g. InfluxDB, Prometheus, Time-
caleDB) and relational database (e.g. PostgreSQL, MySQL,
MSSQL). Global trends unveil that time series databases are
currently the fastest growing database type [7].

This paper explores the efficiency of relational and time se-
ries databases on edge devices by measuring and comparing
response times and memory footprints of two representa-
tives. From the results a reader can conclude which type of
the database is better for a specific edge device or fog-like
environment.

The research of the database performance will be further
used in a fog-to-cloud application called Smartboat, which
is developed as a use case for EU H2020 funded project called
mF2C[5]. The application’s goal is to establish support for
boats that would simplify sailing and detect different types
of threats across the sea. The IoT sensors that are installed
onto the boats are used to collect certain amount of data, for
example they can retrieve the temperature, GPS position,
pressure, humidity, they can detect whether doors are open
or not, generate flood alarms and so on. Based on that data
it is important to take different actions. And since it’s im-
portant when to take these actions, a database that supports
storing and aggregating the data annotated with timestamps
is required. Different databases that fulfill the requirements
for the project were reviewed in order to select the best one
for the use case considering this article. Then a comparison
between databases and testing of parameters, most impor-
tantly time efficiency and memory footprint, were made.

The paper continues as follows: Section 2 presents the prob-
lem, its background and the key parameters to evaluate the
database. The experiments and results are presented in Sec-
tion 3 followed by the discussion and conclusion in the last
section.

2. DATA STORAGE IN EDGE DEVICES
Storing data always requires time and has a memory foot-
print – that means some CPU and memory usage. On top
of that there are many performance problems that can arise
due to several reasons that are occasionally hard to deter-
mine. The following section provides additional information
for understanding the problem of storing the data and the
problem itself.

2.1 Sensors, edge devices and cloud storage
In a combined fog and cloud environment the processing of
data is distributed between edge devices and cloud. Process-
ing in the cloud has no resource restrictions such as opposed
to processing at the edge. To provide the best and to the
user transparent experience of using cloud and edge envi-
ronment, the appropriate software has to be applied to each



segment of the fog to cloud hierarchy. A similar stack is
presented in Figure 1, which is similar to the one proposed
by mF2C project. We focus on data management close to
sensors, i.e. edge devices, such as routers or small computers
like Raspberry Pi devices that store, filter and transmit data
collected from IoT sensors. Beside being able to store and
transmit data, edge devices can serve light-weight services
and issue notifications based on thresholds. These devices
are capable in variety of functions, but do not have an ex-
cess of resources, therefore the software needs to be selected
carefully.

Figure 1: The proposed mF2C architecture.

2.2 The performance degradation issue
From the experience we gained by working on Fog, Edge
and IoT use-cases, we found that the relational database,
PostgreSQL, can became unstable and an overkill due to
the lack of resources. The issue occurs when data is con-
tinuously being written into the database for a long period
of time. Performance degradation seems to be a common
problem in PostgreSQL [10] and sometimes hard or even
impossible to solve [3]. For shorter continuous periods of
recording (e.g. single day) issue does not manifest due to
the small amount of the data and also because the database
requires a reasonable amount of RAM. When recording lasts
longer (e.g. more than one day) writing becomes slower. To
solve the issue different approaches of saving and different
databases were taken into consideration.

2.3 Benefits of using relational or time series
databases and their comparison

2.3.1 Criteria for filtering the databases
Before performing the evaluation of the databases, a selec-
tion of the testing candidates was required, one from each
type of database. Our methodology preferred databases
with better support for the following attributes:

Supported platforms Applications should run on all ma-
jor platforms like Linux, Windows and macOS, there-
fore we required to be sure that there will not be any
complication for the applications to use the database.

Official Docker support Docker, currently the most pop-
ular container technology for Linux that allows cre-
ating and packaging an application along with all its
dependencies, was also very important for the imple-
mentation of the services in our project.

Rapsberry Pi Our project was focused and prototyped
around the Raspberry Pi, therefore the options that
include this were preferred.

Supported languages More supported languages are a plus,
but our main focus was on Java and Python support.

Data types The support or special/faster handling of floats
and timestamps was considered as a better option.

License An open-source solution is preferred due to better
flexibility and potential costs if the databases would
run on a large amount of edge devices.

All databases, relational and time series, were evaluated by
those parameters and the best candidates of each type were
selected for the testing phase. The attributes for databases
are collected in the Table 1.

2.3.2 Relational database selection process
We chose PostgreSQL as the initial relational database for
our endeavors because of its standards compliance, it of-
fering a native JSON object storage which we aspired to
use elsewhere in the application and because it was eas-
ily integrated into other frameworks already in use. Other
databases may also be appropriate for this purpose, how-
ever PostgreSQL proved to be the most compatible choice
at that point in development. The key parameters of our
comparison, based on two comparative sources [12, 2] are
shown in Table 1.

2.3.3 Time series database selection process
These days, time series data applications such as sensors
used in IoT analytics, are growing rapidly due to their sim-
plicity and SQL based query language. For the comparison
we have chosen 8 time series databases (Table 1) and finally
selected InfluxDB as the best candidate mainly because of
official Raspberry Pi Docker support. Other databases were
not selected because they did not fulfill expectations regard-
ing Docker or Raspberry Pi support (OpenTSDB, TimescaleDB),
a proprietary license (Kdb+), low data type flexibility (Prometheus,
RRDtool) and a lack of Java support (Graphite, Druid).

3. EXPERIMENT AND RESULTS
3.1 The test between time series and relational

databases
The performance was evaluated by integration of InfluxDB
into our application and comparing it with the performance
of PostgreSQL.

3.2 Measurement environments
The databases could be manipulated through their own ter-
minal clients or by libraries that provide support for differ-
ent programming languages. To eliminate the probability of
poorly written library or additional latencies based on the
language overhead, the tests were performed in both envi-
ronments – through a Java program and through the ter-
minal with official client. According to the presented lim-
itations, the following tests were performed: reading and
writing to the InfluxDB and PostgreSQL databases using
different methods like Java, bash console, reading from file
and so on. So we tested the database and created a ta-
ble (Table 2) showing first stage results for measuring time
taken for writing and reading. All times presented in the
table are for writing ten million records to database or for
retrieving one million lines from the base.



Table 1: Relational and time series database feature comparison table

Table 2: Time taken table with first-stage results.

3.3 IoT characteristics for databases
IoT devices, especially sensors, usually have the ability of
gathering the data accompanied by data analysis to detect
anomalies. Those devices write to database in bursts and
are often operating on a lot of data.

3.4 The experiment metrics
The metric chosen for performing the experiment is speed,
measuring the time for writing a million rows to the database
in chunks of 15 points, which appears to be a common re-
quest on an Edge device connected around a dozen IoT de-
vices.

3.5 The results
The results in Figure 2 present a comparison between In-
fluxDB and PostgreSQL. The x-axis shows the consecutive
block number of 15 records and the y-axis shows time re-
quired to save the block. While the results are dispersed
a trend curve showing the expected time taken is added to
the graph. The plots present three cases. From the Post-
greSQL plot (Figure 2) below we can see that most of the
blocks of fifteen records take 5–8 milliseconds to be stored
in database, which means that time is constant most of the

time with some deviations that are occurring periodically.
Most of the data in InfluxDB (Figure 2) is stored to database
very quickly and it takes between 0–1 milliseconds. There
are also some deviations of records that take around 50 mil-
liseconds to be stored to database. The curve that shows the
average time taken to write to database is also more diverse
than in PostgreSQL plot. To perform thorough testing an
InfluxDB faster batching was enabled to be included into the
evaluation. The threshold for storing was set to 10000 points
per batch or every 200 milliseconds. The result was lower
times for writing and faster program execution. However,
comparing InfluxDB results with and without faster batch-
ing (Figure 2) showed similar performance. The results un-
doubtedly show advantage of InfluxDB over the PostreSQL
focusing on time consumption. PostgreSQL has less variance
in time taken for transaction, but nevertheless InfluxDB is
better in the average case.

Table 3: Time for writing million lines to database
Database Time taken [s]

InfluxDB 58.92580
InfluxDBFasterBatching 5.25127
PostgreSQL 300.48325

3.5.1 Database setup times and resource consump-
tion

Beside runtime performance, setup time and resource con-
sumption were measured. The database setup times, includ-
ing connecting to the database and building tables and in-
dexes is significantly faster with InfluxDB, which is evident
in Table 3. The resource consumption comparison was per-
formed by writing and querying data for PostgreSQL and In-
fluxDB via CLI (Command Line Interface). 100000 records
were written to database using CLI and then retrieved back.
The results of this test are presented in Table 4, where it is
evident that InfluxDB uses less storage, prepares database



Figure 2: Plots for InfluxDB and PostgreSQL and InfluxDB faster batching.

faster, a query takes only 30 % of time. It seems that RAM
and CPU consumption is higher for InfluxDB.

Table 4: Different test methods performed in CLI
InfluxDB PostgreSQL

Writing time 0.694 s 223.374 s
Query time 1.492 s 5.617 s
Database size 5.5 MB 15 MB
Memory usage 63.98 MB 20.53 MB
CPU usage 107 % 98.3 %

4. CONCLUSION
This paper presented the approach towards comparing rela-
tional and time series databases including comparing charac-
teristics and performance. We explored several time series
databases and their use related to the Cloud, sensors and
IoT. The results indicates why time series database can be
a better solution when it comes to storing IoT-generated
data. We concluded that InfluxDB is a more suitable op-
tion for handling data gathered from IoT sensors and is also
significantly faster in comparison to a relational database.

5. ACKNOWLEDGMENTS
This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 730929.

6. REFERENCES
[1] A. Bridgwater. Iot time series data is ‘of the hour’.

https://internetofbusiness.com/iot-time-series-
data-hour-influxdata/, Dec 2017. Accessed on
2018-09-03.

[2] DB-Engines. Db-engines ranking of relational dbms.
https:

//db-engines.com/en/ranking/relational+dbms, Sep
2018. Accessed on 2018-09-05.

[3] J. DiLallo. Solving a postgres performance mystery.
https:

//medium.com/flatiron-engineering/solving-a-

postgres-performance-mystery-51544ceea584, Apr
2018. Accessed on 2018-09-06.

[4] J. W. Flory. How time-series databases help make
sense of sensors. https://opensource.com/article/
17/8/influxdb-time-series-database-stack, Aug
2017. Accessed on 2018-09-03.

[5] Horizon2020. mf2c project.
http://www.mf2c-project.eu/, Jan 2017. Accessed on
2018-09-05.

[6] R. Kumar. 4 steps to select the right database for your
internet of things system. https:
//thenewstack.io/4-steps-to-select-the-right-
database-for-your-internet-of-things-system/,
Apr 2018. Accessed on 2018-09-12.

[7] M. Risse. The new rise of time-series databases.
https://www.smartindustry.com/blog/smart-
industry-connect/the-new-rise-of-time-series-

databases/, Feb 2018. Accessed on 2018-09-05.

[8] D. G. Simmons. Pushing iot data gathering, analysis,
and response to the edge.
https://dzone.com/articles/pushing-iot-data-
gathering-analysis-and-response-to-the-edge,
Apr 2018. Accessed on 2018-09-02.

[9] E. Siow, T. Tiropanis, and W. H. Xin Wang.
Tritandb: Time-series rapid internet of things
analytics. https://arxiv.org/abs/1801.07947v1, Jan
2018. Accessed on 2018-09-13.

[10] A. Vorobiev. Performance degradation of inserts when
database size grows.
https://www.postgresql.org/message-id/BANLkTi%
3DVKBmRLVLDjy8qxpWx_6-rmbUaXg%40mail.gmail.com,
May 2011. Accessed on 2018-09-04.

[11] D. G. Waddington and C. Lin. A fast lightweight
time-series store for iot data.
https://arxiv.org/abs/1605.01435, May 2016.
Accessed on 2018-09-12.

[12] Wikipedia. Comparison of relational database
management systems.
https://en.wikipedia.org/wiki/Comparison_of_
relational_database_management_systems, Sep
2018. Accessed on 2018-09-05.

https://internetofbusiness.com/iot-time-series-data-hour-influxdata/
https://internetofbusiness.com/iot-time-series-data-hour-influxdata/
https://db-engines.com/en/ranking/relational+dbms
https://db-engines.com/en/ranking/relational+dbms
https://medium.com/flatiron-engineering/solving-a-postgres-performance-mystery-51544ceea584
https://medium.com/flatiron-engineering/solving-a-postgres-performance-mystery-51544ceea584
https://medium.com/flatiron-engineering/solving-a-postgres-performance-mystery-51544ceea584
https://opensource.com/article/17/8/influxdb-time-series-database-stack
https://opensource.com/article/17/8/influxdb-time-series-database-stack
http://www.mf2c-project.eu/
https://thenewstack.io/4-steps-to-select-the-right-database-for-your-internet-of-things-system/
https://thenewstack.io/4-steps-to-select-the-right-database-for-your-internet-of-things-system/
https://thenewstack.io/4-steps-to-select-the-right-database-for-your-internet-of-things-system/
https://www.smartindustry.com/blog/smart-industry-connect/the-new-rise-of-time-series-databases/
https://www.smartindustry.com/blog/smart-industry-connect/the-new-rise-of-time-series-databases/
https://www.smartindustry.com/blog/smart-industry-connect/the-new-rise-of-time-series-databases/
https://dzone.com/articles/pushing-iot-data-gathering-analysis-and-response-to-the-edge
https://dzone.com/articles/pushing-iot-data-gathering-analysis-and-response-to-the-edge
https://arxiv.org/abs/1801.07947v1
https://www.postgresql.org/message-id/BANLkTi%3DVKBmRLVLDjy8qxpWx_6-rmbUaXg%40mail.gmail.com
https://www.postgresql.org/message-id/BANLkTi%3DVKBmRLVLDjy8qxpWx_6-rmbUaXg%40mail.gmail.com
https://arxiv.org/abs/1605.01435
https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems

	Introduction
	Data storage in edge devices
	Sensors, edge devices and cloud storage
	The performance degradation issue
	Benefits of using relational or time series databases and their comparison
	Criteria for filtering the databases
	Relational database selection process
	Time series database selection process


	Experiment and results
	The test between time series and relational databases
	Measurement environments
	IoT characteristics for databases
	The experiment metrics
	The results
	Database setup times and resource consumption


	Conclusion
	Acknowledgments
	References

