

Towards a neutron noise solver based on discrete ordinates method

Huaiqian Yi, Paolo Vinai and Christophe Demazière

Division of Subatomic and Plasma Physics

Department of Physics

Chalmers University of Technology

Reactor neutron noise

• Fluctuations of the neutron flux around expected values due to stochastics, stationary fluctuations

$$X(\mathbf{r},t) = X_0(\mathbf{r},t) + \delta X(\mathbf{r},t)$$

Reactor neutron noise

• Neutron noise can be used for core monitoring and diagnostics

Neutron noise simulations

• For the analysis of neutron noise, it is necessary to model the reactor transfer function

Transport neutron noise equation in the frequency domain

$$\begin{split} & \left[\widehat{\Omega} \cdot \nabla + \Sigma_{t,g,0}(\vec{r}) + \frac{i\omega}{v_g} \right] \delta \psi_g(\vec{r}, \widehat{\Omega}, \omega) = \frac{1}{4\pi} \sum_{g'} \Sigma_{s,g' \to g,0}(\vec{r}) \delta \phi_{g'}(\vec{r}, \omega) \\ & + \frac{1}{4\pi k} \left[\chi_{p,g}(\vec{r}) \left(1 - \sum_{q} \beta_q(\vec{r}) \right) + \sum_{q} \chi_{q,g}(\vec{r}) \frac{\lambda_q \beta_q(\vec{r})}{i\omega + \lambda_q} \right] \sum_{g'} v \Sigma_{f,g',0}(\vec{r}) \delta \phi_{g'}(\vec{r}, \omega) + \left[S_g(\vec{r}, \widehat{\Omega}, \omega) \right] \end{split}$$

$$S_{g}(\vec{r}, \hat{\Omega}, \omega) = -\delta \Sigma_{t,g}(\vec{r}, \omega) \psi_{g,0}(\vec{r}, \hat{\Omega}) + \frac{1}{4\pi} \sum_{g'} \delta \Sigma_{s,g' \to g}(\vec{r}, \omega) \phi_{g',0}(\vec{r})$$

$$\frac{1}{4\pi k} \left[\chi_{p,g}(\vec{r}) \sum_{q} \left(1 - \beta_{q}(\vec{r}) \right) + \sum_{q} \chi_{d,q,g}(\vec{r}) \frac{\lambda_{q} \beta_{q}(\vec{r})}{i\omega + \lambda_{q}} \right] \sum_{g'} \nu \delta \Sigma_{f,g'}(\vec{r}, \omega) \phi_{g',0}(\vec{r})$$

A transport neutron noise solver

- Discrete ordinates method for angular discretization
 - Level symmetric quadrature
- Diamond difference scheme for spatial discretization
- Multi-energy formalism

General scheme of the solver

Acceleration of the scheme

- Static module
 - A large literature is available about acceleration methods for static neutron transport
- Dynamic module
 - Acceleration of neutron transport in the frequency domain

Some tests for the acceleration

• 2-energy group solver with DSA

Multi-energy group solver with DSA

Multi-energy group solver with CMFD

Multi-energy group solver with DSA

Multi-energy group solver with CMFD

Tests using the C5G7 configuration

Localized noise source

- $\delta\Sigma_c$
- Amplitude 5% of $\Sigma_{c,0}$
- f = 1 Hz

Multi-energy group solver with DSA

Multi-energy group solver with CMFD

Summary & Outlook

 We are developing a transport neutron noise solver based on a discrete ordinates method in the frequency domain

 For the acceleration of the scheme some tests were performed with DSA and CMFD

- Future work
 - 3-D solver accelerated with CMFD
 - Anisotropic scattering

Thank you

