
A Hardware-based Framework for Secure
Firmware Updates on Embedded Systems

Solon Falas∗, Charalambos Konstantinou† Maria K. Michael∗
∗Dept. of Electrical and Computer Engineering, KIOS Research and Innovation Centre of Excellence, University of Cyprus

†FAMU-FSU College of Engineering, Center for Advanced Power Systems, Florida State University
E-mail: sfalas01@ucy.ac.cy, ckonstantinou@fsu.edu, mmichael@ucy.ac.cy

Abstract—The ability to update firmware in embedded systems
allows end-users to patch device vulnerabilities and improve
functionality. However, this process is often exploited by adver-
saries in order to inject malicious firmware code into embedded
devices. In this paper, we present a framework which enables
highly secure and fast firmware update delivery with minimal
downtime on embedded devices. The proposed framework utilizes
device intrinsic physical characteristics to authenticate firmware
packages along with integrated cryptographic modules to ensure
the firmware confidentiality and integrity. A proof-of-concept
design is implemented on FPGA, which demonstrates high
performance with reasonable overheads, while our analysis shows
strong security guarantees.

Index Terms—Embedded systems, firmware updates, hardware
security.

I. INTRODUCTION

Embedded devices are increasingly integrated in several
domains including Industrial Control Systems (ICS), home
and automation networks, wireless sensing services, etc. The
deployment of embedded systems in mission-critical environ-
ments introduces unique security challenges: such devices are
highly constrained in terms of performance and resources.
Hence, it is often infeasible to employ the same security
measures used in general-purpose computing systems. This
is evident by the growing number of attack incidents related
to microprocessor-based embedded devices (e.g., Stuxnet in
2010, Ukraine power grid cyberattack in 2015, etc.) [1].

Firmware in embedded systems is the dedicated software,
typically residing in read-only memory, that “sits on top” of
the device’s hardware. Traditional update mechanisms allow
the bootloader to follow a similar to the boot sequence process
in order to flash and validate a new firmware image. The
process, however, to securely update firmware in embedded
devices while minimizing system downtime remains a chal-
lenge for many manufactures [2]. Insecure update mechanisms,
i.e., that do not provide authentication and integrity of the
patch, maybe exploited maliciously in order to bypass security
mechanisms within the firmware code and eventually allow
adversaries to gain full control of the device. To tackle
these challenges, our framework proposes the utilization of
hardware-based cryptographic primitives to ensure integrity
and confidentiality while hardware-intrinsic characteristics are
used as “digital fingerprints” to perform authentication pro-
cedures. The firmware image is encrypted by the firmware
vendor and combined with metadata to form the firmware
package. This package can be transferred through an insecure

channel to the embedded device. Upon arrival, the embedded
device utilizes the metadata to authenticate the firmware
package origins by means of digital fingerprinting techniques
such as Physical Unclonable Functions (PUFs) [3], followed
by decryption of the package so that the firmware update
can be performed. In this manner, a hardware-based root-of-
trust towards assuring firmware integrity and preventing rogue
firmware updates is established.

The proposed approach is motivated towards low-end em-
bedded devices, possibly deployed in mission-critical envi-
ronments which allow for limited performance overheads.
User intervention and device downtime are minimized, as a
setup phase or intermediate authenticators for key exchange
and management are not required. We leverage the effects
of manufacturing variability and the concept of PUFs so that
firmware update packages are chip-specific. Thus, if a device
gets compromised, same-model devices will retain security.
Furthermore, we utilize public PUFs (PPUFs) as hardware
primitives to build a public-key based protocol. The security
of the scheme does not rely on the secrecy of the Integrated
Circuit (IC) physical parameters.

The proposed framework has been implemented and evalu-
ated using both software and hardware. The firmware package
procedure was implemented in software to produce the secure
firmware package when a firmware image is provided. Hard-
ware proof-of-concept on FPGA was used for the unpacking
process to be performed by the embedded device where
a differential Public PUF (dPPUF) [4] was implemented,
along with SHA-256 hashing algorithm and an AES-GCM
decryption core. The dPPUF acts as the digital fingerpint of the
device in order to perform the authentication procedure while
AES-GCM and SHA-256 are used for decryption and integrity
checks. Our security analysis shows strong security guarantees
while our experimental measurements demonstrate the fea-
sibility of the approach for embedded devices with limited
computational resources and minimal downtime requirements.

The rest of the paper is organized as follows. Related
work on firmware update security and firmware modification
attacks are discussed in Section II. The underlying security
primitives used in our implementation are discussed in Section
III. The proposed methodology for secure firmware updates is
presented in Section IV. Our experimental setup and results are
presented in Section V and Section VI concludes the paper.

II. RELATED WORK

Firmware files are often provided online via the vendors
or manufacturers’ websites. Previous work has demonstrated
that web crawlers could gather images of critical equipment
[5]. Firmware can also be acquired through physical access
to the device [6]. Access to the firmware allows adversaries
to modify the code causing severe implications to the system
functionality. For instance, the severity of such attacks has
been shown in the ICS domain for devices such as pro-
grammable logic controllers and protection relays [7], [8].
Attacks have also been demonstrated in a variety of other
embedded devices such as printers, cameras, and network
switches [5], [9].

Efforts to secure the firmware loading and update mecha-
nisms on embedded devices led to crypto-bootloaders. How-
ever, inherent vulnerabilities in the design of such systems
makes them attractive targets to both invasive and non-invasive
attacks [10]. For instance, if JTAG access is left enabled em-
bedded devices can be reprogrammed. Also, adversaries may
exploit implementation-based weaknesses able to leak secret
information through covert channels [11]. Intrinsic properties
at the hardware level have been successfully used for several
security procedures. As an example, PUF’s inherent entropy
(e.g. silicon-based PUFs: ring-oscillator, SRAM, arbiter, etc.)
to produce unique identifiers has been used in schemes to
authenticate and secure code updates in several domains such
as IP protection and Internet-of-Things (IoT) [12], [13].

Rostami et al. have demonstrated a PUF-based authentica-
tion and key exchange protocol [14]. The scheme relies on
substring matching and it is designed to be robust against
inherent noise without the use of correction modules. End-
To-End design of a privacy-preserving authentication protocol
suitable for resource-constrained devices is described in [15].
The protocol is based on a mutual authentication procedure
between devices and a server, and utilizes reverse fuzzy-
extraction for key recreation. Feng et al. have developed a code
update protocol based on PUFs which includes a temporary
session between a server and a device in a secure environment
using a symmetric key [16]. PUF challenge-response pairs
(CRPs), helper data, and reverse fuzzy extractors are used as
authentication modules. In the context of IoT, a PUF-based
communication protocol has been presented in [17]. Before
any secure communication (between two devices) is initiated,
each device has to share its CRPs with an intermediate server.
The server then calculates private and public keys based on
those CRPs and returns them to the appropriate device. Che
et al. have utilized the randomness derived from within-die
path delay variations in order to enable a mutual PUF-based
authentication protocol [18]. In comparison with existing work
on hardware-based firmware update schemes, our work does
not require a setup phase for key exchange neither intermediate
authenticators. Our public-key based firmware update frame-
work minimizes device downtime and achieves strong security
guarantees while providing flexibility in the selection of the
underlying security primitives.

FF1 FF2 FF64 FF1 FF2 FF64

Interstage Network Interstage Network

Interstage Network Interstage Network

Interstage Network Interstage Network

...

...

...

...

...

...
... ...

ARB1 ARB2 ARB64 ...

Interstage Network Interstage Network

... ...

Interstage Network Interstage Network

CLK

r

b

h

Fig. 1. The dPPUF architecture consists of consecutive layers of boosters and
repressers. The two sides are identical in structure but different in inherent
delays (inertial, propagation, switching, etc.). A layer of arbiters is placed at
the end to capture the fastest propagating signals and according to the result,
create the appropriate response bit string.

III. UNDERLYING SECURITY PRIMITIVES

PPUFs are public-key based primitives designed to be
fast-to-execute and slow-to-simulate systems [4]. The model
associated with the PPUF hardware is publicly known. The
difference between the time needed to calculate the response
from the hardware and the time needed to simulate the same
response (Execution Simulation Gap - ESG) is used as a source
of secure authentication. Thus, in addition to the unclonable
nature, the speedup of the PPUF hardware over any simulated
digital model serves as the authentication pillar. Using a PPUF
enables us to avoid the need for intermediate authenticators,
key-distributing servers or a secure enrollment phase (beyond
the hardware characterization phase of the PPUF), in which
pre-shared keys are placed at each end of the communicating
parties to enable secure interactions. This allows the firmware
manufacturer to package and send a firmware update to a
device without having to pre-install sensitive data in a device’s
memory or remove the need for time-consuming handshaking
procedures. The PPUF model used in our work is the dif-
ferential PPUF (dPPUF). dPPUFs eliminate the requirement
of precise timing and ultra-sensitive triggering mechanisms
using a layer of arbiters connected to the dPPUF output. Fig.
1 illustrates the dPPUF architecture used in our methodology,
which is a 256-bit design adopted from [19]. PUF responses
are inherently noisy, therefore error correction mechanisms
are required to improve stability. Multiple approaches have
been proposed, such as Error Correction Codes (ECC) and
special PUF designs [20]. Without any loss of generality, we
use a BCH-based code-offset fuzzy extractor due to its fast,

lightweight, and secure nature to convert PUF responses into
high-quality keys [21].

The symmetric-key algorithm used in our framework is
Advanced Encryption Standard in Galois/Counter Mode (AES-
GCM). It is an authenticated encryption algorithm designed to
provide securely and efficiently both data integrity and con-
fidentiality. Its hardware implementation requires reasonable
resources and can achieve high speeds with low cost and low
latency, although this is one of many approaches. AES-GCM
has four inputs: a secret key, an Initialization Vector (IV), a
plaintext, and optional Additional Authenticated Data (AAD).
AES-GCM generates two outputs: a message authentication
code and a ciphertext.

The proposed framework also utilizes SHA-256 crypto-
graphic hash function to verify data integrity at several steps
of the firmware packing and unpacking process. For example,
the code and version of the firmware are hashed to generate
the IV as a distinct identifier for each AES-GCM operation. In
order to add an extra layer of security in the GHASH function
of AES-GCM, a hash value of the AES-GCM encryption key
is also generated and included in the AAD input in a Hash-
based Message Authentication Code (HMAC) fashion. Details
on how the underline security primitives interact within the
proposed framework are provided in Section IV.

Our approach is modular and flexible; the proposed frame-
work can consider alternative encryption algorithms of sym-
metrical type, hash functions, or public model of hardware-
based primitives given specific security level constraints
and available computational resources. Fig. 2 presents the
overview of how dPPUF, for example, is utilized as a part of
the firmware authentication process between the manufacturer
and the embedded system. The Gate Level Characterization
(GLC)1 of the dPPUF performed by the manufacturer results
in a software model stored in a public register. With the
software model acting as the “public part” of our security
scheme, we can avoid time-consuming key-sharing between
the communicating parties while rendering the recreation of
keys unfeasible for attackers due to the rigorous simulation
required. The responses of the dPPUF derived from the model
are used to form the symmetric secret key (e.g., via bitwise
XOR), acting as the “private part”, that will be utilized for
the encryption of the firmware and hashing of the required
metadata. The dPPUF hardware at the device level follows
a similar procedure. It reconstructs the key and performs
authenticity checks. If the checks are valid and fall within
the desired time constraint T0, then firmware is decrypted and
uploaded to the system.

IV. METHODOLOGY

In this section, we provide the details of the proposed
scheme’s two main procedures, each undertaken – in sequence
– by the device manufacturer and the device customer. The key

1Gate-level characterization (GLC) is the process of characterizing each
gate of an IC in terms of its physical properties, such as gate width and
length, or its manifestation properties, such as leakage power and switching
power, usually using micro-probing measurements and simulations [22].

Authentication Procedure
Manufacturer Device

1. Generate challenge c = [x0, x1] 5. Use dPPUF to compute
2. Compute response with response p′ = [y′0, y

′
1]

Public Model p = [y0, y1] 6. Bit-wise XOR (y′0 ⊕ y′1) = k′

3. Bit-wise XOR (y0 ⊕ y1) = k 7. Compare hk and h′k
4. Send challenge and hashed 8. If hk = h′k and
key (hk) (τ5 + τ6 + τ7) 6 T0,

accept update

Fig. 2. Authenticating a public model PUF (e.g., dPPUF) system between
two parties: device manufacturer and embedded device.

concept is to construct a firmware package that will contain
the encrypted firmware image as well as metadata provided by
the manufacturer. This information will allow the embedded
device to authenticate and decrypt the firmware image with-
out revealing any useful information to any malicious entity
observing the insecure channel used for data transfer.

A. Secure Firmware Package Generation by Manufacturer

The left-hand side of Fig. 3 presents the steps required by
the manufacturer to produce a valid and secure firmware pack-
age. In particular, the overall process involves the following:

1) The first input to the SHA-256 is the concatenation
of the firmware image fi and the firmware version
fv: fi||fv . The initialization vector IV for AES-GCM
encryption is the first 96-bit vector output of this hash
operation. The generated IV is also used as part of the
firmware package header r.

2) The output response signal p = [y0, y1] of the dPPUF
model with input challenge c = [x0, x1], where n =
256-bits, is used as the encryption key of AES-GCM
using bitwise XOR, k = y0 ⊕ y1.

3) The signal output k from the simulated dPPUF is hashed
using SHA-256, to provide hk.

4) The firmware package header r includes the IV , the
hash response output of dPPUF hk, and the dPPUF input
challenge c = [x0, x1], i.e., r =< IV, hk, c >.

5) The AES-GCM encryption core takes four inputs: IV
and k as the encryption parameters, the firmware code
and version as the data to be encrypted and authenticated
m =< fi||fv >, and the package header r as the AAD
to be authenticated.

6) The final form of the firmware package fp includes the
package header r, the AES-GCM encrypted message
menc, and the AES-GCM generated authentication tag
GHASH t128: fp =< r,menc, t128 >.

B. Firmware Unpacking by Embedded System

The generated firmware package fp is delivered to the
dPPUF-enabled embedded device. Even if transferred through
an insecure network, it ensures that the authentic firmware im-
age is loaded to the embedded device without being corrupted.
The package is decomposed as shown in the right-hand side
of Fig. 3 in order to decrypt, authenticate, and validate the
integrity of the firmware data. The steps of this procedure are:

1) From the package header r =< IV, hk, c > of the
firmware package fp, the input challenge c = [x0, x1],

Manufacturer (firmware vendor)

Firmware
Image

Firmware
Version

Public PUF
Model

c = [x0,…,xn]

Hash Function
(SHA-256)

k

fi‖fv
96

hk

AAD

Key

Encrypt

AES – GCM
Encryption

Firmware
Package

Ciphertext

Header

GHASH Tag

AAD

Tag
Check

Key

AES – GCM
Decryption

Decryption

c

k

Hash Function
(SHA-256)

Firmware
Image

Firmware
Version

h’k

Insecure
channel

PUF-enabled embedded device

dPPUF

Fig. 3. The firmware package generation flow: the firmware vendor encrypts the composed image utilizing a public PUF model. The firmware unpacking
process at the device level: the firmware package is decrypted, verified, and uploaded to the embedded device by utilizing public PUF’s (dPPUF) intrinsic
manufacturing variability.

n = 256, is fed to the hardware dPPUF in order
to recreate the response p = [y0, y1] and hence, the
symmetric secret key k = y0 ⊕ y1 to be used in AES-
GCM. Note that p is the error-corrected version of the
dPPUF output with the help of the fuzzy extractor.

2) The hash of the key, hk, included in the firmware header
r is compared with the SHA-256 hash output (h′k) of
the dPPUF response vector k. If the hashes do not match
or the time τ = τp + τk to generate p and k exceeds
T0 (τ > T0), an alarm will be triggered and appropriate
actions, specified by the integrator, can be initiated. In
our implementation, the firmware update procedure is
halted and the package is discarded. If the number of
failed attempts exceeds a certain threshold value, the
device enters an emergency lockdown mode to prevent
replay attacks.

3) The AES-GCM core decrypts menc = < fi||fv >enc

using the IV from header r and the decryption key k
generated by the dPPUF. The header r is also used as the
AAD input to the decryption, similarly to the encryption
process.

4) The output message authentication tag t̂128 of AES-
GCM is compared with the authentication tag t128
included in the fp. If the integrity tags do not match, the
update procedure is halted and the package is discarded
due to data corruption.

5) In the scenario that the authentication tags match, the
decrypted data m =< fi||fv > are considered valid.

6) If all the above steps are successful, the updated fvi
replaces the installed version fvj

if i > j. In the scenario
that i ≤ j, similarly to step 3, an alarm is raised to
avoid rollback attacks. Otherwise, the firmware image
fi is loaded to the device.

The security of this scheme relies on the properties of
its individual parts including AES-GCM and SHA-256. An
HMAC-based scheme is also introduced to further extend the
security of the authentication with the hashed key acting as the

inner key and GHASH tag as the outer key. The unclonable
nature and speed of the dPPUF enable a secure hardware-
based update scheme. Our methodology does not require a
secure setup phase for key exchange between the firmware
sender and receiver because the decryption key is generated
dynamically by the hardware. Furthermore, we leverage the
ESG of dPPUF using a watchdog timer; if the dPPUF response
and the key computation in time τ exceeds T0 (5 cycles), the
operation is halted (step 2).

C. Security Analysis

Threat Model: We consider that the firmware packaging
from the manufacturer is an error-free process taking place
in a secure facility: that is the firmware package is prepared
correctly. The firmware is transferred to the device over an
insecure channel. An attacker, able to intercept the package,
aims to reverse-engineer the firmware image in order to place
back-doors and uncover proprietary device operations.

Analysis: For security requirements, we need to ensure that
adversaries able to intercept the communication medium and
acquire the firmware cannot reveal code subroutines while
also guarantying the image integrity. Thus, the proposed
process requires that: the firmware header must provide no
useful information to the attacker, restrict the retrieval of the
encryption key, and in the event of a corrupted package,
the device should be able to detect it. The utilized NIST-
approved security standards AES-GCM and SHA-256, which
are well-documented established security primitives, can fulfill
the above. The header cannot be leveraged by attackers: IV
and hk rely on the one-way property of hash functions,
hence it is practically impossible to reconstruct both the
encryption key k and fi||fv . Also, the attacker’s acquisition
of the input challenge c provides not benefit since even an
accurate simulation will determine the responses slower than
the real-time behavior of the PPUF hardware [23]. Finally, we
incorporate mechanisms, as described in Section IV-B (see
step 4), that are able to detect firmware corruption.

Fig. 4. Strict Avalanche Criterion (SAC) of dPPUF model. The red dashed
line shows the ideal case, where P (Oi = 1) = 0.5 for all i.

The utilized dPPUF circuit inherits by design certain secu-
rity guarantees. The effort to simulate dPPUF using its public
model scales exponentially with the dPPUF’s depth and width.
A small increase in depth or width may prove prohibitive in
terms of time, for pre-computing all sets of CRPs. Even with
enough computing capabilities for generating CRP lookup
tables, the storage requirement would be impractically high.
In addition, the public model of dPPUF ensures that profile
characterization (e.g., power profile) of the circuit would not
reveal any new side-channel information. Man-in-the-middle
attacks are hard to occur because the watchdog timer does not
provide enough time for an attacker to interact (transmit and
receive data in time) with the dPPUF-enabled device.

V. EXPERIMENTAL SETUP AND RESULTS

To validate and evaluate this approach, we implement both
the firmware packaging and unpacking procedures. Specifi-
cally, the packaging is implemented in software on a 64-bit
machine with 3.2GHz Intel Core i5-4460 quad-core processor,
with 8GB RAM, while the unpacking process scheme is
implemented on a Xilinx Kintex7 FPGA with a system clock
frequency of 100MHz.

The simulation model of dPPUF is developed in C++. We
conduct comprehensive simulations using multiple layers of
boosters (2-input XOR gate) followed by repressers (small
NAND-based circuit [19]), i.e., b = 1 and r = 1 with the
height and width of the dPPUF being h = 10 and w = 256,
respectively. The model is validated with 10k input vectors.
Fig. 4 presents the Strict Avalanche Criterion (SAC); the cor-
relation probability of the corresponding outputs of two input
vectors that differ at exactly one position, P (Oi,1 6= Oi,0).
The average probability of each output switching is 0.3425,
similar to the results in the related literature [19].

A random challenge c = [x0, x1] is fed to the dPPUF simu-
lation model to generate the output response pair p = [y0, y1] ,
needed to create secret k. This secret is transferred to the rest
of the framework. It is used as input to the hash and encryption
algorithms implemented in Python using pycryptodome. The
output of the software scheme at the manufacturer’s side is the
final binary file of the firmware image fp =< r,menc, t128 >
where r =< IV, hk, c > and m =< fi||fv >. The total

TABLE I
FPGA RESOURCE UTILIZATION FOR THE FIRMWARE UNPACKING PROCESS

Resources AES-
GCM SHA-256 dPPUF

Overall
Design

Slice LUTs 2671 (45.26%) 1330 (22.53%) 766 (12.98%) 5901
Slice Registers 1568 (33.63%) 753 (16.15%) 256 (5.49%) 4663
IOBs (Internal) 403 298 514 0
IOBs (External) 0 0 0 130

Block RAM/FIFO 5(100%) 0 0 5
BUFG 1 1 1 1

TABLE II
FIRMWARE UNPACKING TIMINGS

Device Firmware
(kB)

Decryption
(ms)

Total
execution

(ms)

dPPUF
overhead

(%)

Sercos III 233 0.49186 0.49291 0.21325
Zelio Logic 323 0.68526 0.68630 0.15165

Modicon 1183 2.50159 2.50263 0.04156

data overhead from the header r and tag t128 is 124 bytes.
We choose three commercial firmware files acquired from the
vendors’ websites to be tested. The images are designed for
embedded systems deployed in environments such as ICS: a
Sercos III field bus interface module, a Zelio Logic SR2/SR3
smart relay, and a Modicon M258 logic controller.

Each gate of the dPPUF model shown in Fig. 1 is described
with unique switching delays to emulate manufacturing varia-
tion. Table I shows the hardware resources utilized by Xilinx
Vivado Design Suite 2018.3 for performing the synthesis and
implementation of the design. The hardware overhead for
each security primitive is shown, as well as their respective
percentage of hardware usage in regards to the overall design.
As expected, the AES-GCM decryption module dominates
other modules in terms of hardware overhead due to being
the most heavy-weight component used in our design. The
SHA-256 module uses a reasonable amount of hardware while
the overhead of the implemented dPPUF is 12.98% of the
total design, on Slice LUTs, and 5.49% on Slice Registers,
which is minimal compared with hardware designs including
the described crypto-modules.

The unpacking process is developed using hardware de-
scription language (HDL) to demonstrate the effectiveness of
our approach directly on hardware. The produced firmware
package is transferred at the receiving party which loads it
into the memory and initiates the unpacking process. In our
implementation, we first pre-load the firmware image in block
RAM with read/write width of 128 bits. Since read and write
cannot occur simultaneously in the same cycle in systems
with low throughput such as resource-constrained embedded
devices, the motivation of this approach is to bottleneck the
system performance and determine if constrained embedded
devices would be prohibitive in terms of execution time.

During the unpacking process of the firmware, the dPPUF
input challenge c from the firmware header r is used to
recreate the key of AES-GCM k. The encrypted firmware file,
the IV , and the authentication tag header r are fed to AES-

TABLE III
COMPARISON WITH PREVIOUS WORK

Method Area Overhead Performance
(Bits/Secs)LUTs Registers Block Ram

Proposed 5901 4663 5 37.82×106

[15] 3543 1275 8 2,585.2
[18] 6038 1724 N/A N/A

GCM to decrypt and authenticate the firmware package. The
performance overhead, when compared with existing schemes
that store the key within memory modules, is negligible. Table
II shows the decryption and total execution time for unpacking
each of the three firmware images. The major overhead is
because of the decryption algorithm. Our proposed scheme
using the dPPUF-based generated key k has, on average, a
0.136% timing overhead for the tested firmware images when
compared to a decryption-only approach.

Finally, we provide in Table III a comparison with the
most relevant state-of-the-art methods in terms of area and
performance overhead. Performance is measured in bits/secs
which is the rate of data sent from the prover (firmware
package) to the verifier (embedded system) over the total time
required for this operation. For our measurements, the Sercos
III firmware package was selected, as seen in Table II.

In [15] and [18], PUF-based privacy-preserving authentica-
tion protocols are being considered. When solely comparing
area overhead, [15] is lighter; however, it does require an
initial setup and an enrollment phase (on top of PUF hard-
ware characterization), steps our approach does not require,
while relying on a third-party trusted server to complete
the authentication handshake. Thus, the required hardware is
offloaded to components other than the PUF-enabled devices.
Moreover, the encryption mechanism is a weaker/lightweight
128-bit SIMON cipher. Our methodology shows a significant
advantage in performance while preserving higher levels of
security. In terms of area, [18] is comparable. The difference
is attributed to the lack of a hash function module. A direct
comparison with other related work, such as [16] is not
possible due to limited quantitative data. The work in [16]
does not require any third-party or secure enrollment phase;
however, all cryptographic algorithms are implemented in
software.

VI. CONCLUSIONS

In this paper, we developed a secure firmware update
scheme that leverages the IC physical characteristics of embed-
ded systems. Each update is unique to the embedded device en-
suring the integrity and confidentiality of the firmware image.
Our approach’s flexibility provides the option of selecting al-
ternative underlying security primitives, based on security and
cost/performance requirements. A proof-of-concept implemen-
tation with commercial embedded devices firmware images
has been presented. Experimental results verify its practicality
and effectiveness, which demonstrates that our framework
can be deployed in resource-constraint and/or mission-critical
environments with minimal performance overhead.

ACKNOWLEDGMENT

This work has been supported by the European Unions
Horizon 2020 research and innovation programme under grant
agreement No 739551 (KIOS CoE) and from the Government
of the Republic of Cyprus through the Directorate General for
European Programmes, Coordination and Development.

REFERENCES

[1] National Crime Agency UK, “The cyber threat to uk business,” National
Cyber Security Centre, 2017-18.

[2] C. Eaton, “Hacked: Energy industry’s controls provide an alluring target
for cyberattacks,” [Online]: http://www.houstonchronicle.com/, 2017.

[3] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Design Automation Con-
ference, 2007. DAC’07. 44th ACM/IEEE. IEEE, 2007, pp. 9–14.

[4] M. Potkonjak and V. Goudar, “Public physical unclonable functions,”
Proceedings of the IEEE, vol. 102, no. 8, pp. 1142–1156, 2014.

[5] A. Costin et al., “A large-scale analysis of the security of embedded
firmwares.” in USENIX Security Symposium, 2014, pp. 95–110.

[6] C. Konstantinou, A. Keliris, and M. Maniatakos, “Taxonomy of firmware
trojans in smart grid devices,” in Power and Energy Society General
Meeting (PESGM), 2016. IEEE, 2016, pp. 1–5.

[7] Z. Basnight et al., “Firmware modification attacks on programmable
logic controllers,” International Journal of Critical Infrastructure Pro-
tection, vol. 6, no. 2, pp. 76–84, 2013.

[8] C. Konstantinou and M. Maniatakos, “Impact of firmware modification
attacks on power systems field devices,” in Smart Grid Communications,
2015 IEEE International Conference on. IEEE, 2015, pp. 283–288.

[9] A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifications
attack: A case study of embedded exploitation.” in NDSS, 2013.

[10] C. Konstantinou and M. Maniatakos, “Hardware-layer intelligence col-
lection for smart grid embedded systems,” Journal of Hardware and
Systems Security, pp. 1–15, 2019.

[11] C. O’Flynn and Z. D. Chen, “Side channel power analysis of an aes-256
bootloader,” in Electrical and Computer Engineering (CCECE), 2015
IEEE 28th Canadian Conference on. IEEE, 2015, pp. 750–755.

[12] W. Li, Y. Wang, H. Li et al., “P 3 m: a pim-based neural network model
protection scheme for deep learning accelerator,” in Proceedings of the
24th ASP-DAC. ACM, 2019, pp. 633–638.

[13] O.-M. Brisbanne and L. Bossuet, “Restoration protocol: Lightweight and
secure devices authentication based on puf,” in IFIP/IEEE International
Conference on Very Large Scale Integration, VLSI-SoC 2017, 2017.

[14] M. Rostami et al., “Robust and reverse-engineering resilient puf authen-
tication and key-exchange by substring matching,” IEEE Transactions
on Emerging Topics in Computing, vol. 2, no. 1, pp. 37–49, 2014.

[15] A. Aysu et al., “End-to-end design of a puf-based privacy preserving
authentication protocol,” in International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2015, pp. 556–576.

[16] F. Wei et al., “Secure code updates for smart embedded devices based
on pufs,” Cryptology ePrint Archive, Report 2017/991, 2017.

[17] U. Chatterjee, R. S. Chakraborty, and D. Mukhopadhyay, “A puf-
based secure communication protocol for iot,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 16, no. 3, p. 67, 2017.

[18] W. Che et al., “A privacy-preserving, mutual puf-based authentication
protocol,” Cryptography, vol. 1, no. 1, p. 3, 2016.

[19] M. Potkonjak et al., “Differential public physically unclonable functions:
architecture and applications,” in Proceedings of the Design Automation
Conference. ACM, 2011, pp. 242–247.

[20] B. Colombier, L. Bossuet, V. Fischer et al., “Key reconciliation protocols
for error correction of silicon puf responses,” IEEE Transactions on
Information Forensics and Security, vol. 12, no. 8, pp. 1988–2002, 2017.

[21] Y. Dodis et al., “Fuzzy extractors: How to generate strong keys from
biometrics and other noisy data,” SIAM journal on computing, vol. 38,
no. 1, pp. 97–139, 2008.

[22] F. Koushanfar, P. Boufounos, and D. Shamsi, “Post-silicon timing
characterization by compressed sensing,” in Proceedings of the 2008
IEEE/ACM International Conference on Computer-Aided Design. IEEE
Press, 2008, pp. 185–189.

[23] N. Beckmann and M. Potkonjak, “Hardware-based public-key cryp-
tography with public physically unclonable functions,” in International
Workshop on Information Hiding. Springer, 2009, pp. 206–220.

