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Abstract— Inspired by the efficiency of soaring birds in
crossing very large distances with barely flap their wings,
this work presents a simple model of UAV that, adopting
the capabilites of these animals, could improve the existent
multi-rotor devices, not only in efficiency but also in safety
and accessibility. Thus, simple analytical approximations to
reproduce the behavior of flapping wings UAVs are explored,
expecting their integration in on-board CPUs to be solved
in real-time flight episodes. A comparison between gliding
and wing flapping with these models indicates that the thrust
generated by wingstrokes should be controlled in further studies
in order to mitigate the oscillations along the path of the vehicle.
The geometric parameters of the ornithopter are found to be
decisive in this sense, so special attention should be paid during
the design stage.

I. INTRODUCTION

Animal flight is known to be one of the most efficient ways
of aerial locomotion. Millions of years of evolution have
profiled the flight techniques of birds and insects to improve
their efficiency in the air [1]–[3]. Many of them exhibit
intermittent active (i.e. flapping) and passive (i.e. gliding
or soaring) configurations for energy saving allowing them
to travel very large distances with a minimal energetic cost
[4]: when birds reach a certain velocity they simply extend
their wings and remain in the air while descending steadily.
The rate of gliding depends principally on the specie, and it
is characterized by the glide ratio quantity L/D, which is
typically about 10:1 to 15:1 in most of the birds, reaching
even 24:1 in albatrosses. These high rates are achieved at
very low wing loadings [5].

Nowadays, almost all the autonomous flying vehicles have
multiple pairs of rotors for a wide range of applications
including not only sensing but also physical interactions and
manipulation such as in AEROARMS [6]. Unfortunately,
these vehicles are very limited in terms of flight endurance,
which are only a few minutes in many cases, in addition to
the inherent limitations when interacting with people or op-
erating in ATEX (ATmosphères EXplosives) environments.
A more efficient alternative to rotor propellers is the use of
wings, that can flap or maintain a fixed angle for gliding,
which would mean significant energy saving [7]. There are
several other situations for which flapping has been proved
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to be more energetically efficient than rotary wings flight for
small UAVs [8].

Therefore, in the last few years, the study of animal
flapping flight has aroused an enormous interest motivated
by the application of the aerodynamics mechanisms of some
species to the design of UAVs [9], [10]. For instance, [11]
studied the equations of motion for a birdlike ornithopter
from an energetic perspective by using a quasi-steady thin-
airfoil aerodynamic model. Later, [12] provided simple aero-
dynamic models of a MAV by using flight test data, and
more recently [13] developed a tailless aerial vehicle with
a stroke-plane modulation mechanism by which the vehicle
can maneuver by using only its wings.

In this sense, wing design is one of the most important
aspects in the development of an efficient flapping wings
UAV because it fixes the gliding performance of the vehicle
in balance with its weight. Following [14] and [15], two
well-differentiated types of soaring wings can be found,
which allow exploitation in different situations. For instance,
long soaring wings of birds cruising the seas, e.g. gulls and
albatrosses, present a small induced drag coefficient leading
the bird to fly at very small gliding angles. Short wings,
instead, allow the vultures and birds of prey to take-off from
the ground by flapping energically in the absence of wind [5].
In general, wing shapes and sizes should be designed to fit
the performance requirements the ornithopters are designed
for.

Despite the enormous development of computers in the
recent few years, the numerical calculation of the aerody-
namic forces by solving Navier-Stokes equations on-board is
far away to be a real-time process. Alternatively, analytical
approximated solutions within a validity range are much
more appropriate because it can provide a more general
point of view, gaining a deeper insight in the aerodynamic
performance of the UAV. Therefore, the main interest of
this work lies in obtaining simple theoretical expressions for
gliding flight configuration by only considering longitudinal
dynamics. See e.g. [16]–[18] for similar studies ignoring
flight maneuvers such as rolling or yawing.

In order to model the aerodynamic forces appearing on
the vehicle, potential theory is known to provide good
approximations at Reynolds number large enough to neglect
viscous effects. This approach is quite simple and accurate
for steady-state problems at small angles of attack, but
when unsteady effects appear (e.g., in heaving and pitching
motions) the calculation of lift and thrust coefficients has
to be modeled under some other considerations, e.g. [19]–
[21]. In this case, the application of the Kutta condition to
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a flapping foil is not completely valid and [22] proposed
a viscous correction to account for the flow rotation around
the trailing edge. Notwithstanding, a simple approximation is
desired in order to obtain analytic solutions that may help to
understand the flight performance, so the aerodynamic forces
will be modeled here following recent improved results from
unsteady, linear potential theory [23], [24].

Thus, gliding and low-amplitude flapping mechanisms of
a bio-inspired UAV are studied in this work, providing
analytical estimations to be used in the design of flapping
flight aerial vehicles. The paper is organized as follows.
Section II describes the dynamic equations for a simplified
UAV by using simple potential models to characterize the
aerodynamic forces. In Section III the experimental setup
and the estimation of the Lighthill number (i.e., the drag) for
the UAV are specified. In Section IV, comparisons between
numerical and theoretical results for steady-state gliding
flight are given. Additionally, a parametric study is performed
in order to select the tail–wing configuration minimizing the
gliding angle. Moreover, the effects of wings heaving on
the thrust of the aerial vehicle are investigated through the
temporal integration of the equations. Finally, conclusions
and further works are summarized in Section V.

II. MATHEMATICAL MODELING

A. Nondimensional equations

The flight dynamics of a simplified UAV of finite-span
wings is described in this section. The model presented here
approximates the fuselage and the (massless) wings by a rigid
body satisfying the dimensionless Newton-Euler equations.

Let Λ, H, M, χ, and Li, be the parameters governing
the problem (see II-B for their defitinion), the equations
modeling the behavior of the ornithopter in the ξ − ζ plane
are (see Fig. 1)

M
A

du

dt
= [−CDi cosβ − CL sinβ − Li cosβ

− Λ (CDit cosβ + CLt sinβ)]U2
b

+ sin θ − M
A
ω v,

(1)

M
A

dv

dt
= [−CDi sinβ + CL cosβ − Li sinβ

− Λ (CDit sinβ − CLt cosβ)]U2
b

− cos θ +
M
A
ω u,

(2)

dθ

dt
= ω, (3)

dω

dt
= χA [−CDi cosβ − CL sinβ

+ ΛH (CDit cosβ + CLt sinβ)]U2
b ,

(4)

with u and v the velocity components, Ub its magnitude, ω
the angular velocity, θ the pitch angle and β = arctan (v/u)
the complementary of the sideslip angle. It is convenient to
use the β− notation to fix the wings position relative to
the stroke plane. These definitions are adopted from [25]
for a case of insect hovering. The cross terms appearing

in (1) and (2) correspond to the decomposition of the
translational velocity in the rotating frame. Note that the
body is considered as a punctual mass placed on the center
of gravity of the UAV and the wings act as massless patches.
This assumption is of course valid for gliding configuration
in logitudinal flight, but wings inertia should be incorporated
to achieve more accurate results in flapping flight. Despite, it
is expected that this simplification could reproduce the main
physical features of this study.

Fig. 1. Schematic of a bio-inspired UAV in forward flight and gliding
configurations. The axis ξ− ζ define a non-inertial reference frame aligned
with the dorso-ventral and longitudinal axis, respectively, and corotating
with the body according to θ. The wings and tail positions are fixed with
α0 = α+β and α0t = αt +β. The aerodynamic forces L and Lt, and Di

and Dit, are defined in the conventional form: perpendicular and parallel
to the flight velocity, Ub.

In Fig. 1 the forces acting on the UAV are depicted.
The aerodynamic coefficients for the lift CL, CLt, and
induced drag CDi, CDit, of wings and tail are scaled in
the convencional form, i.e. with the dynamic pressure and
the corresponding area. From this point on, the subscript t
will refer to tail magnitudes.

The scaling of Eqs. (1)–(4) is according to the following
relations [26]:

u← u

√
ρ c̄2A

2mg
, v ← v

√
ρ c̄2A

2mg
,

ω ← ω

√
ρ c̄4A

2mg
, t← t

√
2mg

ρ c̄4A
,

(5)

with A = b2/Aw the wing aspect ratio, ρ the air density,
m the mass of the UAV, g the gravity acceleration and c̄ =
Aw/b the mean chord length of the wings.

B. Nondimensional parameters

With the scaling (5), the geometric parameters governing
the problem (1)–(4) are the relationship between the tail
At and wing area Aw, and the ratio between the distances
producing moment from the tail ht and from the wing hw
to the center of mass of the UAV:

Λ =
At
Aw

, H =
ht
hw

. (6)



The rest of parameters involved in (1)–(4) are

M =
2m

ρ c̄2
, χ =

1

2
ρ c̄4

hw
Iy
, Li =

Ab
Aw

CD, (7)

with M the non-dimensional mass, χ the dimensionless
inverse of the moment of inertia and Li the Lighthill number.
The latter represents how the body and propulsor geometry
affect the balance of thrust and drag forces on a flier or
swimmer of wetted surface Ab, such that D = 1

2ρU
2
∞AbCD

[27], [28]. The Lighthill number was estimated from the
wind-tunnel experiments of Section III (see below) to be
Li ' 0.01.

In addition, in the flapping flight literature, one can find
different parameters relating the stroke motions to the chord
length. For instance, in terms of the chord length

k =
πfc

U∞
= πStc, Stc =

fc

Ub
, (8)

or alternatively, based on the wingstroke amplitude

kh0 =
πfh0
U∞

=
π

2
Sta, Sta =

fh0
Ub

, (9)

being f the dimensional flapping frequency.

C. Description of the aerodynamic models

As the typical chord-based Reynolds number of medium-
sized fliers, say 0.5–1 kg, is in the range 50 000 < Re <
100 000 (see [29]), the linearized potential theory is expected
to be suitable in approximating the aerodynamic performance
of a UAV in forward flight. It is demonstrated that natural
selection tuned animals for high propulsive efficiency in the
range 0.2 < Sta < 0.4 (0.31 . kh0 . 0.63) and more
paticularly Sta ' 0.1 (k ' 1) [see (8)-(9) for the conversion]
for gulls [30]. In this narrow band, the work of [23] is
appropriate to characterize the unsteady aerodynamic forces
of a flapping wing. This recent theory has been compared
against other experimental and numerical studies (see e.g.
[24], [31]), displaying a good agreement for small wingstroke
amplitudes. Note that in the limit of gliding flight, kh0 → 0,
the classical potential solution for a flat plate CL = 2πα is
recovered.

Consequently, the aerodynamic forces generated by the
wings and tail of the simplified flier in Fig. 1 are the lift (L
and Lt) and the induced drag (Di and Dit). For the fuselage,
only the parasitic drag D is considered, which is introduced
into the equations (1)–(5) through the Lighthill number Li.

In the gliding limit, the lift force developped by the
wings of the ornithopter is modeled by usign the well-known
potential solution for a finite-span flat plate

CL = 2πα
A

A+ 2
, (10)

where the factorA/(A+2) is due to Prandtl’s Lifting-Line
Theory for an elliptic aerodynamic loading. On the other
hand, following [32], the tail can be considered as a flat
delta-wing producing a lift force given by

CLt =
π

2
αtAt. (11)

Despite the stall of high aspect ratio wings at angles of
attack around 15◦, flat triangular plates, like the tail, show an
increase in the lift slope after the flow separation and these
wings will not suffer stall below angles of attack of 35◦. The
small slope of lift produced by delta wings compared to that
of flat plates (π/2 vs. 2π), makes the tail less sensitive to
changes in the angle of attack, providing a more stable lift
force under unsteady conditions. This effect is necessary e.g.
in flapping flight because the induced velocity generated by
wings produces strong fluctuations in the angle of attack of
the tail as explained in [33].

Finally, from any of the lift definitions in (10) or (11), the
expressions for the induced drag are similarly defined

CDi =
C2
L

πA
, CDit =

C2
Lt

πAt
. (12)

III. EXPERIMENTAL ARRANGEMENT

Experimental tests were performed in the closed-loop,
low-speed wind tunnel at the University of Málaga, which
has a 4 m long test section, with one square meter cross-
section. See [34] and [35] for technical details about the
tunnel.

Figure 2 shows the UAV prototype designed for perform-
ing the measurements on the wind tunnel. It is an ornithopter
platform with flapping wing capability and orientable tail.
Table I summarizes the most significant characteristics re-
garding the geometry.

Fig. 2. Schematic of the home-made ornithopter designed for wind tunnel
testing.

TABLE I
WING AND TAIL DIMENSIONS

Wing Tail
Surface (cm2) 590 230

Max span (mm) 500 223
Max chord (mm) 150 200

2D Section Airfoil Planar

The curvature and the thickness of the wing cross section
can be seen in Fig. 3. This shape is given by 3D-printed ribs
and carbon fiber rods to avoid an excessive weight. All the
ribs are covered with a nylon ripston fabric, tense enough
so that it maintains its shape under an incident current. The
plant view is elliptical in the trailing edge, and the leading
edge presents some curvature derivated from aligning all the
airfoils by 1/4 of their chord. A carbon fiber rod on each
semi-wing aligns all the airfoils, granting spanwise rigidity.
The tail is a flat surface with no movable parts. Carbon fiber



rods are also used to fix the shape. The surface is the same
nylon fabric as the wings.

Fig. 3. Airfoil (top) and rib (bottom).

During the tests, the prototype was centered in the test
section to avoid wall effects. The force sensor is on the floor
of the tunnel, so that a vertical stand is needed to allocate the
prototype at a proper height. The stand is 0.5 m height, and is
shown in Fig. 4. It is shaped as a NACA0012 airfoil, so that
when aligned with the current there is no flow separation or
undesired forces that may alter measurements. The stand is
made with 3D printed plastic, with two inner steel rods along
the piece to provide more rigidity. Screws in the base fix the
stand to the force sensor while at the top the ornithopter is
mounted by a gripper.

Fig. 4. Experimental setup: Home-made ornithopter mounted inside the
wind tunnel.

Several measurements were made for various angles of
attack in order to take a drag averaged value for the Lighthill
number estimation. The experiments ranged from 0◦ to 25◦

in steps of 5◦.

The Reynolds number of the experiments, based on the
mean-chord lenght of the UAV, was estimated to be Re '
50 000, corresponding to a freestream velocity U∞ ' 8 m/s,
in the order of a medium-sized natural glider.

IV. RESULTS AND DISCUSSION

The present study proposes approximated steady solutions
for the case of a simplified UAV in gliding flight. The tail-
wing conditions for stable gliding as well as those that
minimize the gliding angle are explored. The analytic results
are endorsed numerically by using the fsolve function
in MATLAB (The MathWorks, Inc., Natick, MA, USA).
Finally, the Newton-Euler equations in (1)–(4) are integrated
numerically with the ode45 routine to analyze the unsteady
effects introduced by the heaving motion of the wings.

A. Steady-state solutions

The equations (1)–(4) are rewritten in steady form as

0 = [−CDi cosβ − CL sinβ − Li cosβ

− Λ (CDit cosβ + CLt sinβ)]U2
b

+ sin θ,

(13)

0 = [−CDi sinβ + CL cosβ − Li sinβ

− Λ (CDit sinβ − CLt cosβ)]U2
b

− cos θ,

(14)

0 = −CDi cosβ − CL sinβ

+ ΛH (CDit cosβ + CLt sinβ),
(15)

having used ω = 0 from (3).
Due to the nonlinearity of (13)–(15), perturbation methods

are applied to linearize the system for β and θ according to

β =
π

2
+ β′, (16)

θ =
π

2
+ θ′, (17)

with β′ and θ′ small, and thus obtaining a simplified analyt-
ical solution.

From (15),

CL = ΛCLt (18)

is obtained immediately. This expression provides a geo-
metric relationship that fixes the angle between the velocity
components through

β =
ΛHKt α0t −K α0

ΛHKt −K
, (19)

where, for simplicity, Kt and K are the constants derived
from CL and CLt, respectively,

K = 2π
A

A+ 2
, (20)

Kt =
π

2
At. (21)

By introducing (18) in (13)–(14), one obtains

v = [ΛKt (α0t − β) (H+ 1)− Liβ′]−
1
2 , (22)

θ =
π

2
+ [ΛKt (α0t− β) (H+ 1)β′

+ Li] v2 + θ′i,
(23)

with θ′i the term correcting the solution without considering
the induced drag CDi and CDit,

θ′i =
K2
t

π
(α0t − β)2

[
(ΛH)2

A
+

Λ

At

]
v2. (24)

The rest of the flight magnitudes can be directly derived
from Fig. 1 and the previous expressions,

α = α0 − β, (25)
αt = α0t − β, (26)

u = v tan−1 β, (27)
γ = θ − β, (28)

where γ is the so-called gliding angle.



In (22), it is observed that

ΛKt (α0t − β) (H+ 1)− Liβ′ > 0 (29)

must be satisfied to obtain real velocity values. It provides
a geometric restriction between α0 and α0t that makes the
solution stable:

α0t <
π
2Li+ α0 (G − 1) [ΛKt (H+ 1) + Li]

ΛKt (H+ 1) (G − 1) + GLi
, (30)

being G a geometric parameter defined as

G ≡ ΛHKt

ΛHKt −K
. (31)

Note that this condition can be approximately simplified by

α0t . α0, (32)

because the Lighthill number is in general small compared
to the other terms.

Moreover, static stability derivatives from the present
model provide some relations that may be of utility in the
design of flapping-wings UAVs,

∂CM
∂β

= K − ΛHKt < 0, (33)

∂CL
∂β

= −K < 0, (34)

∂CLt
∂β

= −Kt < 0 (35)

with
CM =A[−CDi cosβ − CL sinβ+

ΛH (CDit cosβ + CLt sinβ)],
(36)

the pitching moment coefficient.
Condition (33) yields,

ΛH >
K

Kt
≡ 4

A

At(A+ 2)
. (37)

Note that the force expressions (34) and (35) are satisfied
inconditionally for being K and Kt the positive slopes of
the lift coefficients for the wings and tail, respectively.

In order to determine the range of validity of the pre-
vious expressions, the steady-state equations (13)–(15) are
solved numerically and compared with the above analytical
solutions for small values of β′ and θ′, considering the
parameters of Table II, for the ornithopter prototype in
Section II. The values of α0 and α0t ranged from 75◦ to
105◦, and their influence on v, γ, θ, α and αt, has been
analyzed. Of course, this study was performed satisfying (32)
and (36).

TABLE II
SUMMARY OF THE VALUE OF THE ORNITHOPTER PARAMETERS.

M Λ H Li χ A At

6 0.3 8 0.01 0.075 4.6 2.3

Figure 5 shows that the theoretical solutions are in general
in good agreement with the numerical references, especially

when α0t approximates to α0. Note that for the lowest values
of α0 and α0t the error is significant but for tail positions
above 85◦ the differences are negligible.

Fig. 5. Comparison of the linear theoretical solutions (solid lines) with
nonlinear numerical ones (dashed lines) in terms of v. The constant values
appearing on the plot are due to the saturation of the lift curves for α > 15◦

and αt > 35◦ in the numerical solution.

It is also of interest to investigate the effect of the wing–
tail combinations on the pitch angle, θ. In Fig. 6 one can
appreciate again that the theoretical solution is quite accurate
when compared with the numerical one. According to that
figure, a given value of θ can be reached from different
α0 − α0t relations. For instance, to achieve a typical angle
around 90◦ (completely horizontal flight), one could select
the values (α0t, α0) between (85◦, 85.5◦) and (90◦, 92.8◦).
No solutions exist out of this range because either the
numerical solution becomes singular due to the violation of
(33) or the set value is not achieved.

Fig. 6. As in Fig. 5 but for θ.

Figures 7 and 8 show the evolution of the angles of
attack in wings and tail, respectively. For this study the lift
slopes have been limitated to α < 15◦ and αt < 35◦, for
the reasons stated in Section II-C. This saturation effect is
more restrictive here in wings than in tail because of (32).
Above these values, the lift curves CL and CLt does not
reproduce the expressions (10) or (11) and the results are



not reliable. Notwithstanding, the theoretical and numerical
solutions agree quite well in both figures.

Fig. 7. As in Fig. 5 but for α.

Fig. 8. As in Fig. 5 but for αt.

The most meaningful results for gliding flight are plotted
in Fig. 9 for γ, where the theoretical approach practically
matches the reference no matter the selected wing–tail con-
figuration. It can be seen that for each α0t there is always
a corresponding value of α0 that minimizes the gliding
angle. Such minimum value γ0 will be of course different
depending on the geometric parameters of the UAV Λ, H
and Li, according to (28).

Figure 10 shows the evolution of the minimum gliding
angles in the range studied in Fig. 9 with the tail position.
Notice that, although the theoretical predictions show the
existence of a minimun value of γ0 at about α0t = 90◦, the
numerical results reveal that γ0 is practically constant along
α0t, agreeing quite well both approaches near α0t = 90◦.

More intriguing are the results that relate γ0 with the
flight quantities appearing in Figs. 5–9. For example, Fig. 11
displays the line α0 vs. α0t that minimizes γ. This figure is
of great practical interest for the control of gliding UAVs
because, given a wing position, one can find the appropriate
tail configuration for the vehicle to descend in as much time
as possible, at zero energy cost. This is of critical importance

Fig. 9. As in Fig. 5 but for γ.

to optimize both the weight and size of the vehicle in order
to travel large distances more efficiently.

Fig. 10. Evolution of α0t for the minumum values of the gliding angle γ.

Another magnitude of interest is the optimum velocity v,
displayed in Fig. 12. The figure depicts that there exists
only a value v ' 1.5 that minimizes γ0, regardless of α0

and α0t, and depending on the geometric parameters of the
UAV. If some other values of v would be desirable, then the
parameters of the ornithopter should be adjusted during the
design phase. However, it is noticeable that v barely varies
with the tail position, remaining practically constant given a
set of geometric parameters. Likewise, the optimum angles
of attack of wings and tail remain also constant with α0 and
α0t (see Figs. 13 and 14), being always sufficiently small
to satisfy the potential theory restrictions. On the contrary,
the action of the tail has the greatest effect on the optimum
value of θ as shown in Fig. 15.

To conclude, it is worth to mention that obtaining analytic
expressions to approximate the optimum gliding variables as
a function of α0 or α0t is out of the scope of this work and
it is being investigated currently.

B. Unsteady solutions in heaving-wing flight

In addition to glide, it is also needed that a flapping-wings
UAV could stroke efficiently its wings to generate thrust



Fig. 11. Relationship for α0 and α0t that minimizes γ.

Fig. 12. As in Fig. 8 but for v

when needed, e.g. to control the height and alternate both
flight configurations to maximize its efficiency.

Although the flapping-wing theory presented in [23], [24],
covers both heaving and pitching motions, only the first
configuration will be addressed in the current work for
the sake of simplicity. The characterization of the flapping
motion will be given by appropriate values of k and kh0. In
order to mimic a realistic case, the flapping parameters were
first selected as kh0 ' 0.6 and h0 ' 3.8, following [33] and
[36] for typical values in gulls. However, these parameters
make the flight unstable for the home-made ornithopter of
Fig. 4. To overcome this, the stroke amplitude was decreased
to h0 ' 1.5. It also indicates that special attention should
be paid to the selection of the geometric parameters of the
ornithopter in order to mantain the stability in heaving-wings
mode. Therefore, the case plotted in Figs. 16 and 17 has been
simulated at an averaged kh0 ' 0.15, with h0 fixed to 1.5.

Figure 16 shows the phase diagram of velocities in
heaving-wings flight from the steady-state solution obtained
in a gliding configuration. Note that the forward velocity
v has been shift towards a higher speed zone in the range
2 . v . 2.5, but the vertical velocity u ranges from negative
to positive values, indicating the oscillatory feature of the
UAV. It can also be appreciated in Fig. 17 the effect of
wings heaving on other magnitudes of interest, e.g. the mean

Fig. 13. As in Fig. 2 but for α.

Fig. 14. As in Fig. 2 but for αt.

pitch angle, wich is around 69◦ in contrast to the practically
horizontal attitude (θ = 88◦) reached in the steady gliding
configuration, or the gliding angle, that presents negative
values indicating that the vehicle is climbing. The effect of
flapping on the thrust and on the flight path will be addressed
in subsequent investigations.

V. CONCLUSIONS

Control systems based on complex aerodynamic models
requiring numerical solutions are not possible to implement
in real time processes with modest computational resources
such as on-board CPUs of very light ornithopters, in which
the payload is very restricted. Therefore, this work proposes
some analytical relations that can be used to control gliding
and low-amplitude flapping flight of a bio-inspired UAV.

Thus, under certain simplifications (a punctual mass UAV
of massless wings in longitudinal flight), potential aerody-
namic models are used to predict the behavior of the birdlike
vehicle. For this reason, such elementary approach is only
valid for gliding and low-amplitude flapping flight, since sep-
aration phenomena appearing in some flight maneuvers are
discard. Experimental studies of a home-made ornithopter in
a wind tunnel were performed to characterize the parasitic
drag of the vehicle in order to obtain realistic results from
these models. It is found that theoretical (linear) estimations



Fig. 15. As in Fig. 2 but for θ

Fig. 16. Phase diagram of the velocity components for kh0 ' 0.18 and
h0 ' 1.5. The red circle indicates the steady-state value reached in gliding.

agree quite well with the nonlinear, numerical, steady and
unsteady solutions for gliding configuration. It allows to
select the tail and wing positions that minimize the gliding
angle and so obtain the optimum flight varibles. Moreover,
this work explores the effect of flapping (heaving wings) in
the reduced model, displaying a monotonic increase in the
time-averaged horizontal velocity with kh0 (or St).

In the latter case, strong oscillations appear on the flight
variables when the wingstrokes are introduced, so that a an
appropriate control system would be required to mitigate
these fluctuations and, in general, to make the flight be
stable. For instance, it would be interesting to find the
optimum flapping frequency for the ornithopter to maintain
a certain height after a gliding episode at the minimum
energy cost. This scenario could be the topic of a future
research contributing to the development of flapping-wings
aerial vehicles.

ACKNOWLEDGMENT

The authors acknowledge support from the European
Project GRIFFIN ERC Advanced Grant 2017, Action
788247. They also wish to thank J. Aguilar-Cabello for
his valuable collaboration in performing the wind-tunnel
experiments.

Fig. 17. Temporal evolution of the indicated flight variables for kh0 '
0.18 and h0 ' 1.5.

REFERENCES

[1] R. Dudley, The biomechanics of insect flight: form, function, evolution.
Princeton University Press, 2002.

[2] U. M. Norberg, Vertebrate flight: mechanics, physiology, morphology,
ecology and evolution, vol. 27. Springer Science & Business Media,
2012.

[3] R. Dudley and S. P. Yanoviak, “Animal aloft: the origins of aerial
behavior and flight,” Integrative and comparative biology, vol. 51,
no. 6, pp. 926–936, 2011.

[4] B. W. Tobalske, “Biomechanics of bird flight,” Journal of Experimen-
tal Biology, vol. 210, no. 18, pp. 3135–3146, 2007.

[5] U. M. L. Norberg, “Flight and scaling of flyers in nature,” Flow
Phenomena in Nature, vol. 1, pp. 120–154, 2007.

[6] A. Ollero, G. Heredia, A. Franchi, G. Antonelli, K. Kondak, A. San-
feliu, A. Viguria, J. R. Martinez-De Dios, F. Pierri, J. Cortes,
A. Santamaria-Navarro, M. A. Trujillo, R. Balachandran, J. Andrade-
Cetto, and A. Rodriguez, “The AEROARMS Project: Aerial Robots
with Advanced Manipulation Capabilities for Inspection and Main-
tenance,” IEEE Robotics and Automation Magazine, vol. 25, no. 4,
pp. 12–23, 2018.

[7] GRIFFIN, “GRIFFIN ERC Advanced Grant 2017, Action 788247.”
https://griffin-erc-advanced-grant.eu/, 2019. [On-
line; accessed 2019/05/10].

[8] M. I. Woods, J. F. Henderson, and G. D. Lock, “Energy requirements
for the flight of micro air vehicles,” The Aeronautical Journal, vol. 105,
no. 1045, pp. 135–149, 2001.

[9] C. P. Ellington, “The novel aerodynamics of insect flight: applications
to micro-air vehicles,” Journal of Experimental Biology, vol. 202,
no. 23, pp. 3439–3448, 1999.

[10] M. F. Platzer, K. D. Jones, J. Young, and J. C. S. Lai, “Flapping wing
aerodynamics: progress and challenges,” AIAA journal, vol. 46, no. 9,
pp. 2136–2149, 2008.

[11] J. A. Grauer and J. E. Hubbard, “Multibody model of an ornithopter,”
Journal of guidance, control, and dynamics, vol. 32, no. 5, pp. 1675–
1679, 2009.

[12] J. V. Caetano, C. De Visser, G. De Croon, B. Remes, C. De Wagter,
J. Verboom, and M. Mulder, “Linear aerodynamic model identification
of a flapping wing mav based on flight test data,” International Journal
of Micro Air Vehicles, vol. 5, no. 4, pp. 273–286, 2013.

[13] Q.-V. Nguyen and W. L. Chan, “Development and flight performance
of a biologically-inspired tailless flapping-wing micro air vehicle with
wing stroke plane modulation,” Bioinspiration & biomimetics, vol. 14,
no. 1, p. 016015, 2018.

[14] C. Pennycuick, “Soaring behaviour and performance of some east
african birds, observed from a motor-glider,” Ibis, vol. 114, no. 2,
pp. 178–218, 1972.

[15] C. Pennycuick, “Thermal soaring compared in three dissimilar tropical
bird species, fregata magnificens, pelecanus occidentals and coragyps
atratus,” Journal of Experimental Biology, vol. 102, no. 1, pp. 307–
325, 1983.

[16] G. Taylor and A. Thomas, “Animal flight dynamics ii. longitudinal
stability in flapping flight,” Journal of theoretical biology, vol. 214,
no. 3, pp. 351–370, 2002.

https://griffin-erc-advanced-grant.eu/


[17] F. Gavilan, J. Acosta, and R. Vazquez, “Control of the longitudinal
flight dynamics of an uav using adaptive backstepping,” IFAC Pro-
ceedings Volumes, vol. 44, no. 1, pp. 1892–1897, 2011.

[18] J. M. Dietl and E. Garcia, “Stability in ornithopter longitudinal flight
dynamics,” Journal of Guidance, Control, and Dynamics, vol. 31,
no. 4, pp. 1157–1163, 2008.
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