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Abstract. Aerial robotics is evolving towards the design of bioinspired
platforms capable of resembling the behavior of birds and insects dur-
ing flight. The development of perception algorithms for navigation of
ornithopters requires sensor data information to evaluate and solve the
limitations presented during the flight of these platforms. However, the
payload constraints and hardware complexity of ornithopters hamper
the sensor data acquisition. This paper focuses on the development of a
multi-sensor simulator to retrieve the sensor information captured during
the landing maneuvers of ornithopters. The landing trajectory is com-
puted by using a bioinspired trajectory generator relying on tau theory.
Further, a dataset of the sensor information records obtained during the
simulation of several landing trajectories is publicly available online1.
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1 Introduction

The development and implementation of bioinspired aerial platforms are mainly
constrained by the lack of technology and scientific knowledge to resemble the
behavior of birds during flight. Currently, most of the aerial vehicles fly by using
either fixed-wing or rotary-wing configurations. Differently from the previous
approaches, some bioinspired vehicles such as ornithopters employ flapping-wing
mechanisms to generate the thrust and lift forces necessary to fly. Although there
are some advances on the development of ornithopters [1] [2] [3] [4], the design
of a robotic aerial vehicle capable of resembling the flight of birds is still under
development and requires research on areas such as aerodynamics, electronics,
mechanics, modeling, sensing, perception, and control.

Autonomous navigation of aerial robots requires a robust and efficient per-
ception system to ensure precise mapping, GNSS-denied pose estimation, object
detection and tracking, among others. The operation of ornithopters poses strong
perception challenges. The fast movements of ornithopters during flight together
with the mechanical vibrations originated by the flapping motion require efficient

1 https://grvc.us.es/bioinspired-landing-trajectory-sensor-dataset/

https://grvc.us.es/bioinspired-landing-trajectory-sensor-dataset/
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and robust perception methods. In most cases only one sensor is not sufficient to
capture all the relevant information of the scene. Thus, testing different sensor
fusion techniques is a need that contrasts with their complex validation and the
limited sensor integration onboard these aerial platforms. Further, integrating
hardware in ornithopters requires significant effort due to the size constraints and
the weight balance requirements of the platform. The low payload limitations
and the high computational burden required for ornithopter perception recom-
mend the implementation of perception techniques in dedicated hardware (e.g.
FPGAs), which involves specific hardware development. Hence, a multi-sensor
simulator is a useful tool to test and select sensors, methods, and algorithms
previous to their implementation and testing in real ornithopter platforms.

This paper presents a multi-sensor simulation tool that provides simulated
sensor measurements for the development and evaluation of perception and sen-
sor fusion techniques for ornithopters platforms. It includes a bioinspired trajec-
tory generator based on tau theory that simulates the trajectories performed by
birds during landing and perching maneuvers [5]. These are maybe the most de-
manding tasks from a perception perspective. For simplicity, we define the term
tau trajectory as the trajectory computed using tau theory. Existing research has
proven that birds use a combination of simple strategies and the value of tau
obtained from perceptual stimuli to guide most of their intended movements.
The sensory data acquisition is necessary to develop perception algorithms to
integrate tau theory on robotic platforms. The presented sensory simulation tool
receives the input parameters that define the tau trajectory and generates as
output the measurements from the onboard sensors during the tau trajectory
simulation. This work has been developed in the context of the ERC-GRIFFIN
and ARM-EXTEND projects. Our simulation tool provides support by collect-
ing sensory data to be used in the development of novel perception algorithms
for GRIFFIN robots. We believe this sensing simulation scheme can contribute
and boost R&D in perception systems for ornithopter robots.

Summarizing, the contribution of this work is two-fold. First, it presents a
simulation tool to generate simulated multi-sensor measurements obtained from
the sensors onboard an ornithopter during landing and perching maneuvers. The
simulated sensors include those with the highest interest in ornithopters per-
ception such as frame-based cameras, event-based sensors, solid-state LiDARS,
range sensors, altimeters, among others. Second, a dataset with the sensor mea-
surements provided by our simulator is published online. The recorded sensor
information corresponds to the simulation of several landing and perching tra-
jectories in different scenarios. This paper is structured as follows. Section 2 de-
scribes the related work of bioinspired trajectory generation and mobile robotic
simulation. The design methodology of simulation is presented in Section 3. Sec-
tion 4 defines the simulation architecture explaining each block of the simulator.
The dataset generation description is explained in detail in Section 5. Finally,
Section 6 includes the conclusions and future work.
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2 Related work

Ornithopter simulators mainly focus on the study of dynamics and flight con-
trol. For instance, the stability and controllability of the aircraft are analyzed
in [6] to control the non-linear flight of a flapping-wing robot. The flexible multi-
body dynamics of an ornithopter is simulated in [7] considering fluid-structure
interaction and flight dynamic behavior to design a robotic model capable of fly-
ing in trim. The flappy hummingbird [8] is an open source dynamic simulator of
flapping-wing micro aerial vehicles created to facilitate the design and validation
of flight control architectures for flapping-wing robots. Although these tools are
useful to simulate ornithopters dynamics, kinematics and aerodynamic effects,
to the best the author’s knowledge there is not a simulation tool designed to
retrieve sensor information during their flight.

Robotic simulation tools are useful for testing and evaluating robotics algo-
rithms before applying them on the real platforms. The use of simulators enlarge
security and optimize time by evaluating the behavior of robots in challenging
scenarios without endangering the platform and users. Among the most popular
robotic simulators, there are Gazebo [9] and V-REP [10]. Game engines are also
used for the development of robotic simulators. Engines are preferred in applica-
tions that require high framerate and photorealistic rendering. Airsim [11] and
CARLA [12] are some of the examples of game engine simulators used for robotics
and artificial intelligence applications. Our multi-sensor simulation architecture
retrieves the sensor measurements during the flight of ornithopter robots by inte-
grating two simulation tools in parallel; Gazebo and Unreal Engine 4 (UE4). The
former simulates different sensors such as frame-based cameras, lasers, force and
range sensors. The last is part of the event camera simulator [13], the benefit of
using this sensor in our application is explained in Section 3.2. Both simulators
are integrated in the Robot Operating System (ROS).

3 Design

The aim of this work focuses on retrieving simulated multi-sensor measurements
for robotics perception during the landing of an ornithopter. For this purpose, we
propose the design of a tool to simulate different perception sensors that includes
a bioinspired trajectory generator to retrieve the type of movements exerted by
birds for landing and perching. Thus, simulation development has to satisfy the
following design requirements. First, the platform has to be capable of simulating
bioinspired trajectories to resemble the movements performed by birds during
flight. Tau theory describes the principle used by animals and humans to guide
their motion to make contact with an object or surface using the time-to-contact
as reference. The theory has been used in aerial robotics to guide and control
the motion of multirotor platforms for docking and landing [14].

Second, the simulator has to include the type of sensors most widely used for
robotics perception. The hardware sensor selection takes into consideration the
type of information necessary for localization, mapping, obstacle avoidance, and



This paper has been accepted for publication at the
Fourth Iberian Robotics Conference (ROBOT 2019), Porto, 2019.

The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-36150-1 5
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object identification. We analyze the problem from a robotic perception perspec-
tive and select the sensors required for these tasks. However, resembling the flight
of birds involves continuous fast movements and strong scene changes in dynamic
environments. These facts constrain the hardware selection: the sensors should
process information and correct their measurements with the lowest possible
noise at the highest frame rate. Our sensor selection considers a variety of sen-
sors typically used in aerial robotics such as LiDAR, IMU, altimeters and vision
sensors. It also integrates event-based cameras to deal with the fast-motion lim-
itations and low-latency measurements with high dynamic range. Fusing events
from event cameras together with classical perception information (e.g images,
point clouds, and IMU measurements) increases the sensor robustness for the
development of future SLAM and object detection algorithms for flapping-wing
platforms. The most relevant aspects about the planning of the tau trajectory
and a brief introduction to event cameras functioningand applications are de-
tailed below.

3.1 Tau theory planning

The simulation architecture presented in this paper relies on tau theory [15] to
approximate the landing and perching maneuvers of ornithopters. Tau theory
postulates that humans and animals (i.e. notably birds) use a combination of
simple strategies and the value of tau to guide and control most of their intended
movements. Tau (τ) is a variable related to the time an observer would take to
contact an object or surface if the speed remains constant. The value of τ provides
a first order approximation of the time-to-contact (TTC) for a given gap χ:

τ(t) =
χ(t)

χ̇(t)
, (1)

where χ(t) and χ̇(t) are the gap and its rate of closure at time step t. The gap χ
is, by convention, always negative and the initial closure rate χ̇(0) is positive. The
work in [15] found that birds tend to keep the gap closure rate constant to control
their deceleration. This behavior was defined as a constant tau-dot strategy.
Subsequent research showed that zero velocity at contact is reached when τ̇ is
kept constant, positive and less than 0.5. Another variant of tau-dot strategy
was proposed in [14] to guide a breaking maneuver using τ̂(t) = kt+ τ(0), which
entails a more practical approximation to tau-dot strategy, i.e. the computation
of τ̇ is avoided. It is worth noting that the tau theory postulates that animals
do not require cognitive processing for TTC since it is available at neural circuit
level [15]. Thus, the value of a gap and its closure rate can be computed as:

χ(t) = χ(0)
(

1 + kt
χ̇(0)

χ(0)

) 1
k
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χ̇(t) = χ(0)
(

1 + kt
χ̇(0)

χ(0)

)( 1−k
k )

,

χ̈(t) =
χ̇(0)2

χ(0)
(1− k)

(
1 + kt

χ̇(0)

χ(0)

)( 1−2k
k )

(2)

where χ(0) is the initial gap value, and 0 < k ≤ 0.5 guarantees the gap and its

closure rate reach zero at the same finite time T = −τ(0)
k . A further analysis

shows that for 0.5 < k < 1 the gap closes to zero with χ̇(0) 6= 0 leading to a
collision. Figure 1 shows the gap closure for different values of k. It is worth
mentioning that the figures of this paper show the main gap (e.g z) positive
contrary to the convention being consistent with a landing trajectory.
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Fig. 1: Trajectories χ for 0 < k ≤ 1 closing the gap at t = 0. For k = 1 the gap
closes with χ̇ constant producing a collision.

The simulation of landing or perching trajectories of a bird requires the
closure of gaps for position and orientation. Therefore, an extension of tau-
constant strategy for more than one gap is required. Closing multiple gaps can
be achieved through tau-coupling strategy, which consists of coupling additional
gaps ϑ to the main gap χ. The tau-coupling is computed as τχ = κτϑ, where
κ is a closure constant ratio between both gaps. Therefore, a coupled gap ϑ, its
closure rate ϑ̇, and acceleration ϑ̈ at time t are obtained as:

ϑ(t) = cχ(t)
1
κ−1

,

ϑ̇(t) = c
1

κ
χ̇(t)χ(t)

1
κ−1

,

ϑ̈(t) = c
1

κ

((1

k
− 1

)
χ̇(t)2 + χ(t) + χ̈(t)

)
χ(t)

1
κ−2

,

(3)

where c = ϑ(0)

χ(0)(1/κ)
.
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In the context of the proposed tau trajectory generation, the trajectory is
obtained by closing a main gap in the z-axis and three coupled gaps in the x
and y axis, and the roll θ, pitch φ and yaw ψ angles. For simplicity, each gap
will be denoted with their corresponding superscript, and a subscript will denote
the moment of time. For instance, the main gap in the z-axis and a couple gap
on the yaw ψ at time t will be denoted χzt and ϑψt respectively. The trajectory
St at time t includes the gap values, their closure velocities, and accelerations
represented in a reference frame F aligned with the goal position and orienta-
tion. The transformation of F , the reference frame to a global reference frame,
can be computed in a straightforward manner. Hence, the proposed method is
applicable to any set of initial and target configurations. The proposed method
for tau-theory based trajectory generation provides a compact way of estimat-
ing trajectories that are similar to those that birds perform during landing and
perching maneuvers.

3.2 Event Cameras

Event cameras are silicon retina vision sensors that mimic the neural behav-
ior and architecture of the retina. These devices are modifying the paradigm
of retrieving scene information using vision sensors. Unlike frame-based tradi-
tional cameras, event-driven sensors provide information based on pixel intensity
variation. Events are triggered asynchronously whenever the intensity of a pixel
exceeds a specific threshold and transmitted using the Address Event Represen-
tation (AER) Protocol. The sensor provides high temporal resolution generating
events with a resolution of µ seconds. Besides, event cameras offer a high dynamic
range (140 dB) and low power consumption. These capabilities have increased
the interest of the computer vision and robotic communities to use these sensors
in applications with challenging conditions for frame-based cameras.

Events are defined as a tuple of the form e = (t, x, y, p), where t is the time in
which the events are triggered, (x, y) is the pixel position, and p is the polarity
(i.e. either 1 or 0). The event data format limits the use of events in computer
vision and robotics applications as most of the state of the art algorithms cannot
be directly applied to the stream of events. During the last years, different novel
methodologies have been developed to adapt classical algorithms to use events in
applications such as feature detection and tracking [16], optical flow estimation
[17], visual odometry [18] and SLAM [19]. These advances contribute to the
research in a novel area and lead the sensor integration between event-driven
sensors and other sensors such an IMU and frame-based cameras [20].

Few event camera simulators have been reported. In [21] the difference be-
tween consecutive images is used to generate edges that resemble the events pro-
duced by the edges of moving objects. The method proposed in [22] attempts
to simulate the behavior of an event camera by using the high frame rate capa-
bilities of Blender to sample images like in a continuous timeline. This feature
adds the low-latency properties of event cameras. The simulator was improved
in [13] by simulating the asynchronous behavior of the retinas by triggering
events based on the prediction of the image dynamics.
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4 The Architecture of the Presented Simulator

The presented multi-sensor simulation tool adopts an architecture based on ROS
integrating Gazebo and Unreal Engine 4 (UE4). It combines the advantages of
ROS to integrate drivers, packages, and state of the art robotics algorithms with
the advantages of UE4 to provide fast realistic rendering, easy portability, and
an intuitive block programming interface. ROS handles the bioinspired trajec-
tory generator based on tau theory to simulate the trajectories performed by
birds during landing and perching. It also integrates different sensor simulators
such as feature-based cameras, event cameras, and proximity sensors; and pub-
lishes the sensor measurements on ROS topics. On the other hand, UE4 handles
the simulation of a photo-realistic version of the scenario to capture images of
the scene at a very high frame rate. Gazebo simulates a simple version of the
environment for sensors such as the Velodyne, lasers, sonar, and other sensors.

Fig. 2: Block diagram of the simulation architecture.

Figure 2 shows the block diagram of the architecture. The system receives
three types of inputs. First, the parameters to compute the tau trajectory St
as described in Eqs. (2) and (3). Second, the scene configuration file with the
pose and orientation of each object in the scene. Third, the sensors configuration
and calibration. For instance, the simulation model of the frame-based camera
requires the camera calibration file in yaml format including the camera ma-
trix and the optical distortion coefficients. Each simulated sensor requires the
definition of the coordinate frame of the sensor w.r.t. the reference frame of
the simulated robot. The proposed simulation tool includes the following sen-
sors: event camera, Velodyne HDL-32, frame-based camera, laser, altimeter, and
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IMU. Due to its flexible and modular architecture, it can be easily extended
by including additional devices such as stereo cameras and depth sensors. The
output of the simulation tool is a rosbag file with the measurements taken by the
simulated sensors while following trajectory St also included in the recording file.

The simulation tool is divided into three main modules: the Tau Trajectory
Generator, the Perception Sensors Simulator and the Event Camera Simula-
tor. The Tau Trajectory Generator module computes trajectory St using the
approach described in Section 3.1. The proposed implementation generates up
to the 18 components to define the pose (ϑxt , ϑ

y
t , χ

z
t , ϑ

θ
t , ϑ

φ
t , ϑ

ψ
t ), the velocities

(ϑ̇xt , ϑ̇
y
t , χ̇

z
t , ϑ̇

θ
t , ϑ̇

φ
t , ϑ̇

ψ
t ), and accelerations (ϑ̈xt , ϑ̈

y
t , χ̈

z
t , ϑ̈

θ
t , ϑ̈

φ
t , ϑ̈

ψ
t ) for each time t.

The inputs of the trajectory generation block are the initial pose in the target
reference frame F , and the parameters kz,κx, κy, κθ, κφ, and κψ , where the
upper script defines the tau theory gap.

The Perception Sensors Simulator module contains the simulation model of
sensors such as Velodyne, altimeter, and IMU. The simulator moves the reference
frame of the sensors in the virtual scenario by following the tau trajectory. The
input of the simulation tool includes the external calibration (transformation
matrix of the sensor local reference frame w.r.t. the ornithopter frame) and
internal calibration files for each simulated sensor.

The Event Camera Simulator is based on esim [13]. The simulator was mod-
ified to receive the input from our tau trajectory generator keeping the correct
orientation during the simulation. Further, the reference frame of the sensor is
modified by a transformation matrix that references it to the reference frame
of the scene. The simulator runs in ROS and uses Unreal Engine 4 to render
images from a 3D scenario at a very high frame rate (from 100 Hz to 1 kHz).
The asynchronous behavior of event cameras is achieved in simulation using two
key facts: (i) rendering images at very high frame rate on the engine, and (ii)
sampling frames adaptively to generate events asynchronously using the predic-
tion of the optical flow. The simulator moves the event camera following the
sensor external calibration and St, the trajectory computed using tau theory.

5 Datasets

The dataset provides the simulated sensor measurements obtained during the
landing of the ornithopter using different landing trajectories. For each simula-
tion, the onboard sensors move by following the trajectory obtained with the tau
trajectory generator. Each trajectory was computed by using a final approach
angle of π/6 and an initial velocity in a range between 3 to 5 m/s as in a real
ornithopter. The trajectories were sampled at ∆t = 0.1s until t = T , where T is
computed as described in Section 3.1. Figure 3 shows different normalized trajec-
tories obtained from the tau trajectory generator when performing the simulated
landing maneuver. The trajectories were computed by varying the values of κx

and κy as it is described in the figure, and setting kz = 0.5 to obtain a smooth
descending without colliding with the ground. The robot poses along the trajec-
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tories are shown as vectors. The position of the vector represents the ornithopter
position in (x, y, z) while its magnitude and direction are defined by the linear
velocity components at each point of the trajectory.

Fig. 3: Different normalized trajectories describing the simulated landing ma-
neuver of the ornithopter. The figure shows the magnitude and direction of the
approach velocity vectors.

Several simulation scenarios were developed. The scenarios were inspired by
industrial environments such as warehouses and factories (Fig. 4) where or-
nithopter robots could provide robotic support on tasks such as surveillance,
payload delivery, and remote sensing. The objects in the developed scenarios
were designed in Blender. Additional scenarios can be integrated by simply im-
porting the models of the scenes in both Gazebo and UE4. The model integration
preserves the scene configuration (i.e position, orientation, and scale) to avoid
mismatches between the sensor measurements from each simulator.

In general, the time to simulate the sensor measurements ts along the tra-
jectory is longer than the trajectory duration as the simulator performs several
computations to produce all the multi-sensory information. However, it is worth
to mention that the reference time of the measurements does not correspond to
ts as it is referred to the trajectory timestamp tt. The publish rate of the dataset
can be adjusted while running the bagfile by setting the factor r of ROS to ts/tt.

Our dataset is divided into six simulations each for a different landing trajec-
tory. For each trajectory, the measurements from the monocular camera, event
camera, sonar, IMU and Velodyne LiDAR are recorded in a rosbag file. The
dataset also includes the ground truth pose information of the sensors during
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the landing maneuver, see Fig. 5. Our architecture allows the integration of ad-
ditional sensors available on the gazebo ros package such as Kinect, lasers and
depth cameras. Each simulation of the dataset contains the following files:

– The rosbag file with the sensor measurements.
– A file with the instructions to run the bag.
– The input bioinspired trajectory computed using tau theory.
– The events generated during the simulation in a text file using the format

(timestamp, x, y,polarity).
– The model of each object of the scene including a file with the object poses.

(a) (b)

Fig. 4: Simulation scenarios to perform the sensors measurements simulation. A
warehouse (a), and an oil refinery (b).

6 Conclusions

In this work, we introduce a simulation tool to retrieve the sensing information
captured during the landing and perching maneuvers of ornithopter robots. The
operation of ornithopters poses very strong perception challenges, which con-
trasts with the effort-demanding implementation and testing with these aerial
platforms. This work is motivated by the need to retrieve the missing realis-
tic multi-sensory measurements to develop, debug and tune perception and au-
tonomous navigation methods for ornithopter robots. Our simulator moves the
sensors describing bioinspired trajectories computed using tau theory.

A dataset with several trajectories and sensor measurements is publicly avail-
able online. Each dataset provides the bioinspired trajectory followed during the
simulation along with the sensing information from different sensors. We hope
that our dataset boosts the development of novel perception algorithms for robot
localization, mapping, and object detection for ornithopters before the develop-
ment of a platform capable of carrying the necessary sensors for robotic percep-
tion. Finally, our future work points towards the development of such perception
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(a) (b)

(c) (d)

Fig. 5: Example of the sensor measurements obtained during the simulation of
a landing trajectory on the warehouse and refinery scenarios. Rendered images
including the generated events during a time window of 10 ms (a,c), Point cloud
from the simulated Velodyne LiDAR (b,d). The lighting of image (a) was mod-
ified for better visualization.

algorithms particularly aiming to fuse the information provided by event cam-
eras and classical perception sensors to solve the perception challenges presented
by the flight of flapping-wing vehicles.
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1. G. Croon, M. Perçin, B. Remes, R Ruijsink, and C. Wagter. The DelFly. 2016.
2. G. Folkertsma, W. Straatman, N. Nijenhuis, C. Venner, and S. Stramigioli. Robird:

a robotic bird of prey. IEEE Robotics & Automation Magazine, 24(3):22–29, 2017.



This paper has been accepted for publication at the
Fourth Iberian Robotics Conference (ROBOT 2019), Porto, 2019.

The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-36150-1 5
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19. H. Rebecq, T. Horstschäfer, G. Gallego, and D. Scaramuzza. Evo: A geometric
approach to event-based 6-dof parallel tracking and mapping in real time. IEEE
Robotics and Automation Letters, 2(2):593–600, 2017.

20. A. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza. Ultimate slam? com-
bining events, images, and IMU for robust visual SLAM in HDR and high-speed
scenarios. IEEE Robotics and Automation Letters, 3(2):994–1001, 2018.

21. J. Kaiser, J. Tieck, C. Hubschneider, P. Wolf, M. Weber, M. Hoff, A. Friedrich,
K. Wojtasik, A. Roennau, R. Kohlhaas, et al. Towards a framework for end-to-end
control of a simulated vehicle with spiking neural networks. In 2016 IEEE Int.
Conf. SIMPAR, pages 127–134, 2016.

22. E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza. The event-
camera dataset and simulator: Event-based data for pose estimation, visual odom-
etry, and SLAM. The Int. Journal of Robotics Research, 36(2):142–149, 2017.

https://www.festo.com/net/SupportPortal/Files/46270/Brosch_SmartBird_en_8s_RZ_110311_lo.pdf
https://www.festo.com/net/SupportPortal/Files/46270/Brosch_SmartBird_en_8s_RZ_110311_lo.pdf
https://www.festo.com/net/SupportPortal/Files/492827/Festo_BionicFlyingFox_en.pdf
https://www.festo.com/net/SupportPortal/Files/492827/Festo_BionicFlyingFox_en.pdf

	ROSS-LAN: RObotic Sensing Simulation scheme for bioinspired robotic bird LANding
	Introduction
	Related work
	Design
	Tau theory planning
	Event Cameras

	The Architecture of the Presented Simulator
	Datasets
	Conclusions


