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ABSTRACT 

During the design and installation of rooftop solar systems, it is often desirable for architectural reasons to 
support the solar panels without anchors attached to the structure, depending on friction for lateral 
resistance. This scenario has previously been studied with shake table tests and analysis in OpenSees and 
SAP 2000, resulting in the publication of a SEAOC standard. This paper contributes closed-form 
equations and fast-running code that will allow the development of simple design equations and 
probabilistic approaches. The proposed governing equations are presented then validated by comparison 
to an equivalent analysis with SAP 2000. Once validated, the equations are used to produce parametric 
plots of slip as a function of friction coefficient, roof slope, and intensity of roof shaking. This study is a 
proof of concept using a single earthquake record scaled to various intensity levels; other limitations and 
planned future work are detailed. 

INTRODUCTION 

During the design and installation of rooftop solar systems, it is often desirable for architectural reasons to 
support the solar panels with additional weight (also called ballast) but without anchors attached to the 
structure. These systems depend on friction for lateral resistance. To accommodate the lateral movement 
that occurs during an earthquake, this movement needs to be determined and sufficient clearance 
maintained between sliding equipment and stationary elements. Work has been performed on this topic 
using analysis with SAP 2000, OpenSEES and full-scale biaxial testing (Maffei et al. 2014, Schellenberg 
et al. 2012) resulting in a design standard published by the Structural Engineers Association of California 
(SEAOC 2012). This paper contributes physics-based, closed-form equations to predict the displacement 
of a sliding block on an inclined vibrating plane. This is motivated by the need to (a) provide an 
independent and transparent method of verifying analyses implemented in programs such as SAP and 
OpenSEES and (b) develop computationally efficient code for running large numbers of cases to develop 
simple design equations and probability-based design approaches. 

There is extensive literature on the topic of blocks on moving foundations (Aslam et al., 1980; Housner, 
1963; Ishiyama, 1982; Lopez Garcia and Soong, 2003; Pompei et al., 1998; Shao and Tung, 1999; 
Shenton, 1996; Shenton and Jones, 1991ab; Taniguchi, 2002; Taniguchi, 2004; Taniguchi and Miwa, 
2007; Yim et al., 1980; Younis and Tadjbakhsh, 1984). According to the extant literature, blocks on 
moving planes behave in one of five modes: sticking to the plane, sliding along the plane without rotating, 
rotating without sliding, rotating with sliding, and free flight. The transitions between modes involve 
impacts and thus assumptions on momentum transfer. Because solar panels are short and wide, their 
behavior can be simplified to involve only the first two modes with no consideration of impacts. 
Analytically, the problem has been addressed from closed-form methods for predicting the dominant 
response mode to numerical integration. Data have been obtained from laboratory experiments as well as 
the post-earthquake performance of block-like structures. Ground motions such as pulses of various 



shapes as well as arbitrary seismic motion have been considered. Most analytical studies include vertical 
accelerations in their analysis since the vertical acceleration affects the normal force and thus the 
frictional force. Our review of the literature found no mention of blocks on inclined planes beyond the 
work on solar panels. 

Building on this background, Maffei et al. (2014) conducted analyses with SAP 2000 to predict the 
motion of unattached solar arrays. Rooftop motions were generated by using spectral matching to the 
design spectrum for non-structural components. Friction was modeled using the isolation bearing element 
in SAP with rotated local axes to model the angle. The coefficient of friction, slope, and horizontal and 
vertical accelerations were varied. Experiments were used to characterize the coefficient of friction. 
Horizontal acceleration considered values of 𝑆𝑆𝐷𝐷𝐷𝐷 from 0.75 𝑔𝑔 to 1.50 𝑔𝑔, where 𝑆𝑆𝐷𝐷𝐷𝐷 is the value of the 
design pseudo-acceleration spectrum at short periods and 𝑔𝑔 is the acceleration of gravity. Vertical 
acceleration was included in one of the analyses and found to increase horizontal deflections. 
Schellenberg et al. (2012) conducted analyses in OpenSees and full scale, biaxial shake table tests. The 
tests and analysis were found to agree reasonably well and to display the expected trends (displacements 
tend to increase with increased seismicity, decreased friction, and increased slope). Deflections were 
observed to have greater scatter at a higher intensity of input motion, array flexibility was seen to 
influence the results, and the friction coefficient was overserved to vary with velocity. These two studies 
directly informed the development of a design standard (SEAOC 2012). To determine the design seismic 
displacement, the standard offers the option of shake table testing, nonlinear response history analysis, 
and a prescriptive method for slopes less than 3° and coefficients of friction greater than 0.4. For seismic 
design categories D, E, and F, the prescriptive method gives the design deflection as (𝑆𝑆𝐷𝐷𝐷𝐷 –  0.4)2 ∙
60 inches. This equation was evaluated for a site in Downtown Los Angeles, for site class D, and risk 
categories I, II, and III using online seismic design maps (USGS 2018). For this case, the value of SDS is 
1.566 g, resulting in a design displacement of 81.6 inches or 2070 mm. 

THEORY 

General Description 

This section describes the motion of a block on an inclined plane subjected to friction between the block 
and the plane. The plane is subject to horizontal motion of a general nature, although the intention is to 
model seismically-induced motion described by a horizontal acceleration history. The horizontal 
acceleration of the plane, 𝑢̈𝑢𝑝𝑝 is the known input quantity, and the block’s acceleration 𝑢̈𝑢𝑥𝑥, velocity 𝑢̇𝑢𝑥𝑥, 
and position 𝑢𝑢𝑥𝑥 must be found. To find them, equations of motion are derived for both sliding and 
sticking (not sliding) conditions. Whether the block sticks or slides depends on the friction demand 
compared with the maximum frictional force that can develop between the block and the plane. The 
equations of motion are solved by numerical time-stepping. In this process, a check on the frictional force 
at the beginning of the time step determines whether the block slides or sticks during the time step. The 
resulting acceleration value for the block determines the velocity and position of the block at the end of 
the time step. Rotation and free flight of the block are beyond the scope of this paper.  

Kinematics 

Fig. 1 illustrates the kinematics of the problem. Displacements are measured relative to an inertial frame 
of reference with the 𝑥𝑥 and 𝑦𝑦 axes in the rightward horizontal and upward vertical directions, 
respectively. The position of the plane is denoted 𝑢𝑢𝑝𝑝 and the position of the block is denoted 𝑢𝑢𝑥𝑥 and 𝑢𝑢𝑦𝑦 in 
the horizontal and vertical directions, respectively. From the trigonometric relations illustrated in Fig. 1, 



 𝑢𝑢𝑦𝑦 = −�𝑢𝑢𝑥𝑥 − 𝑢𝑢𝑝𝑝� tan𝜃𝜃, (1) 

where 𝜃𝜃 is the slope of the plane and the positive direction of 𝜃𝜃 represents a plane sloped downward to 
the right. The expression carries a negative sign because the displacement is downward but the positive 
axis is upward. Differentiating eq. 1 once and twice with respect to time yields expressions relating 
velocities and accelerations: 

 𝑢̇𝑢𝑦𝑦 = −�𝑢̇𝑢𝑥𝑥 − 𝑢̇𝑢𝑝𝑝� tan 𝜃𝜃 , and (2) 
 𝑢̈𝑢𝑦𝑦 = −�𝑢̈𝑢𝑥𝑥 − 𝑢̈𝑢𝑝𝑝� tan𝜃𝜃. (3) 

 

 
Figure 1: Kinematics of the block (𝒖𝒖𝒙𝒙 and 𝒖𝒖𝒚𝒚) and plane (𝒖𝒖𝒑𝒑) 

 
Sticking 

If the block sticks then the horizontal accelerations and velocities of the block and plane are equal, i.e.,  

 𝑢̈𝑢𝑥𝑥 =  𝑢̈𝑢𝑝𝑝, (4) 
 𝑢̇𝑢𝑥𝑥 = 𝑢̇𝑢𝑝𝑝, (5) 

and there is no motion in the vertical direction (𝑢̇𝑢𝑦𝑦 =  𝑢̈𝑢𝑦𝑦 = 0). These results are independent of the mass 
of the block. Because of previous slippage, we cannot make such statements about the position of the 
block. Fig. 2 shows the free body diagram of the block when sticking. 

 
Figure 2: Free body diagram of the block when sticking 

 
The weight of the block is represented by a downward vector of magnitude 𝑚𝑚𝑚𝑚, where 𝑚𝑚 is the total mass 
and 𝑔𝑔 is the acceleration of gravity. A normal force 𝑁𝑁 and frictional force 𝑓𝑓 act at the base. The inertial 
component of the equation of motion is represented as a fictitious force opposite to the direction of 
motion. This component is horizontal, but for convenience, it is decomposed into the directions parallel 
and perpendicular to the slope. Summing forces perpendicular to the slope yields 

 𝑁𝑁 = 𝑚𝑚𝑚𝑚 cos𝜃𝜃 +𝑚𝑚 𝑢̈𝑢𝑥𝑥 sin𝜃𝜃, (6) 

where we recall that according to Eq. 4, 𝑢̈𝑢𝑥𝑥 =  𝑢̈𝑢𝑝𝑝. Thus, if 𝑢̈𝑢𝑝𝑝 is sufficiently negative it is possible for 𝑁𝑁 
to become negative. This is not physically possible; instead, the block would commence free flight, which 
is beyond the scope of this paper. In the time-stepping algorithm, a negative normal force results in an 
error message.  

  



Summing forces parallel to the slope yields 

 𝑓𝑓 =  −𝑚𝑚𝑚𝑚 sin𝜃𝜃 + 𝑚𝑚 𝑢̈𝑢𝑥𝑥 cos𝜃𝜃, (7) 

where again we recall that according to Eq. 4, 𝑢̈𝑢𝑥𝑥 =  𝑢̈𝑢𝑝𝑝. The sign of 𝑓𝑓 is such that it acts opposite to the 
direction of impending motion. For negative and smaller positive plane accelerations, impending motion 
is down the slope and friction is negative or up the slope. For larger positive plane accelerations, 
impending motion is up the slope and friction is positive or down the slope.  

For the block to stick, the required friction, derived from Eq. 7,  

 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 =  |−𝑚𝑚𝑚𝑚 sin𝜃𝜃 + 𝑚𝑚 𝑢̈𝑢𝑥𝑥 cos𝜃𝜃|, (8) 

must not exceed the available friction. Assuming Coulomb friction, the available friction is equal to the 
normal force times a coefficient of friction 𝜇𝜇 that applies for both static and dynamic friction, i.e.,  

 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜇𝜇 𝑁𝑁. (9) 

For the block to stick, the friction condition 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 < 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 must be satisfied. In addition, the block must be 
travelling slowly enough relative to the plane. Application of these concepts is discussed when describing 
the time-stepping algorithm. 

Sliding 

Fig. 3 shows the free body diagram of the block when sliding. This diagram differs from Fig. 2 in the 
inertial components since both horizontal and vertical accelerations can develop when sliding (these are 
related per Eq. 3).  

 
Figure 3: Free body diagram of the block when sliding 

 
The direction of the frictional force is opposite to the relative velocity between the block and the plane, 
which is defined as 

 ∆𝑣𝑣 = 𝑢̇𝑢𝑥𝑥 − 𝑢̇𝑢𝑝𝑝. (10) 
Thus, the frictional force is 

 𝑓𝑓 =  −𝜇𝜇 𝑁𝑁 sign(∆𝑣𝑣). (11) 

Summing forces for Fig. 3 in the horizontal direction and substituting Eq. 11 yields 

 𝑁𝑁𝑁𝑁 = 𝑚𝑚 𝑢̈𝑢𝑥𝑥 , (12) 
where  

 𝐴𝐴 = sin𝜃𝜃 − 𝜇𝜇 sign(∆𝑣𝑣) cos𝜃𝜃 . (13) 

Summing forces in the vertical direction and substituting Eqs. 3 and 11 yields 

 𝑁𝑁𝑁𝑁 −𝑚𝑚𝑚𝑚 = −𝑚𝑚𝑢̈𝑢𝑥𝑥 tan𝜃𝜃, (14) 
where  



 𝐵𝐵 = cos𝜃𝜃 + 𝜇𝜇 sign(∆𝑣𝑣) sin𝜃𝜃 , and (15) 
 𝐶𝐶 = 𝑔𝑔 + 𝑢̈𝑢𝑝𝑝 tan𝜃𝜃. (16) 

Combining Eqs. 12 and 14 yields 

 𝑁𝑁 =  
𝑚𝑚𝑚𝑚

𝐴𝐴 tan 𝜃𝜃 + 𝐵𝐵
. (17) 

The same precautions as before must be taken with the possibility of a negative normal force. Two forms 
for the horizontal block acceleration are obtained from Eqs. 12 and 17: 

 𝑢̈𝑢𝑥𝑥 =
𝑁𝑁𝑁𝑁
𝑚𝑚

=
𝐴𝐴𝐴𝐴

𝐴𝐴 tan𝜃𝜃 + 𝐵𝐵
. (18) 

Note from the second form that 𝑢̈𝑢𝑥𝑥 is independent of mass. Because these equations are not intuitive, it is 
good to check them against some theoretical limits. For a block sliding to the right on a flat plane (𝜃𝜃 = 0 
and ∆𝑣𝑣 > 0) Eqs. 17 and 18 reduce to 𝑁𝑁 = 𝑚𝑚𝑚𝑚 and 𝑢̈𝑢𝑥𝑥 = −𝜇𝜇𝜇𝜇 as expected. For a block sliding down a 
still, inclined plane (𝑢̈𝑢𝑝𝑝 = 0, 𝜃𝜃 > 0, and ∆𝑣𝑣 > 0), Eqs. 17 and 18 reduce to 𝑁𝑁 = 𝑚𝑚𝑚𝑚 cos𝜃𝜃 and the 
acceleration down the slope is 𝑔𝑔 sin𝜃𝜃 − 𝜇𝜇 𝑔𝑔 cos𝜃𝜃, as expected. 

Time-stepping algorithm 

The input values for the algorithm are the angle 𝜃𝜃, the coefficient of friction 𝜇𝜇, the constant duration of 
the time step ∆𝑡𝑡, and a vector 𝑢̈𝑢𝑝𝑝 of 𝑁𝑁 points representing discretized plane accelerations starting at time 
𝑡𝑡 = 0 and separated by a constant interval ∆𝑡𝑡. For typical earthquake records, the sampling rate is one 
sample for every 0.01 s or 0.02 s. Because of the nonlinearity introduced by Coulomb friction, this should 
be discretized further. At the start of the analysis, the block and the plane are assumed to be at rest and 
their positions are taken as the reference points. In other words, 

 𝑢̇𝑢𝑝𝑝1 = 𝑢̇𝑢𝑥𝑥1 = 𝑢𝑢𝑝𝑝1 = 𝑢𝑢𝑥𝑥1 = 0. (19) 

The subscript “1” indicates that these are the values at the start of the first time step. In general, the 
subscript 𝑘𝑘 is used as the time step counter. The structure of each time step is as follows: (a) start with the 
velocities and positions obtained in the previous time step, (b) check whether the block sticks or slips and 
adjust block velocity and acceleration accordingly, and (c) calculate the updated velocity and position at 
the end of the time step. 

For the block to stick at the beginning of the time step, (a) it must be traveling slowly enough relative to 
the plane and (b) the required friction for sticking must not exceed the available friction for sticking. The 
first condition is checked with relative velocity, which according to Eq. 10 is ∆𝑣̇𝑣𝑘𝑘 =  𝑣̇𝑣𝑥𝑥𝑥𝑥 − 𝑣̇𝑣𝑝𝑝𝑝𝑝. The 
condition is satisfied if either ∆𝑣̇𝑣𝑘𝑘 = 0 (the block and the plane travel together) or ∆𝑣̇𝑣𝑘𝑘 ⋅ ∆𝑣̇𝑣𝑘𝑘−1 < 0 (the 
block has reversed direction relative to the plane, thus traveling at zero relative velocity at some instant 
during the interval). In the first time step, ∆𝑣̇𝑣1 = 0 by the assumption in Eq. 19. The second condition is 
checked using Eqs. 6, 8 and 9 as follows: 

 �𝑢̈𝑢𝑝𝑝𝑝𝑝 cos𝜃𝜃 − 𝑔𝑔 sin𝜃𝜃� < 𝜇𝜇�𝑔𝑔 cos𝜃𝜃 + 𝑢̈𝑢𝑝𝑝𝑝𝑝 sin𝜃𝜃�.  

Note that mass cancels out from this result. If the block sticks, following Eqs. 4 and 5, the velocity of the 
block is set equal to the velocity of the plane (𝑢̇𝑢𝑥𝑥𝑥𝑥 = 𝑢̇𝑢𝑝𝑝𝑝𝑝) and the acceleration of the block is set equal to 
the acceleration of the plane (𝑢̈𝑢𝑥𝑥𝑥𝑥 = 𝑢̈𝑢𝑝𝑝𝑝𝑝). If the block reversed direction before the end of the interval, 
this will introduce a discretization error that can be reduced by reducing the size of the time step. At each 
time step, the normal force is checked and following Eq. 6, an error message is output if 𝑁𝑁𝑘𝑘 𝑚𝑚⁄ =



𝑔𝑔 cos𝜃𝜃 + 𝑢̈𝑢𝑝𝑝𝑝𝑝 sin𝜃𝜃 is less than zero. Tipping is not checked in the algorithm, so caution should be 
exercised to apply it only for low-profile bodies that will not tip. 

If the block does not stick, then following equations 13, 15, and 16 

 𝐴𝐴𝑘𝑘 = sin𝜃𝜃 − 𝜇𝜇 sign(∆𝑣𝑣𝑘𝑘) cos𝜃𝜃  
 𝐵𝐵𝑘𝑘 = cos𝜃𝜃 + 𝜇𝜇 sign(∆𝑣𝑣𝑘𝑘) sin𝜃𝜃  
 𝐶𝐶𝑘𝑘 = 𝑔𝑔 +  𝑢̈𝑢𝑝𝑝𝑝𝑝 tan𝜃𝜃  

and following equations 17 and 18, 

 𝑁𝑁𝑘𝑘 =  
𝑚𝑚𝐶𝐶𝑘𝑘

𝐴𝐴𝑘𝑘 tan𝜃𝜃 + 𝐵𝐵𝑘𝑘
 

 

 𝑢̈𝑢𝑥𝑥𝑥𝑥 =
𝑁𝑁𝑘𝑘𝐴𝐴𝑘𝑘
𝑚𝑚

 
 

The acceleration 𝑢̈𝑢𝑥𝑥𝑥𝑥 is used to compute the subsequent position and velocity of the block and the normal 
force 𝑁𝑁𝑘𝑘 is checked and an error message output if the normal force becomes negative. Acceleration 
during each interval is assumed to be constant and equal to the acceleration at the beginning of the time 
step. Correspondingly, the velocity and position of the plane and the block are found as follows: 

  𝑢̇𝑢𝑝𝑝(𝑘𝑘+1) = 𝑢̇𝑢𝑝𝑝𝑝𝑝 + 𝑢̈𝑢𝑝𝑝𝑝𝑝 ⋅ ∆𝑡𝑡   
  𝑢𝑢𝑝𝑝(𝑘𝑘+1) = 𝑢𝑢𝑝𝑝𝑝𝑝 + 𝑢̇𝑢𝑝𝑝𝑝𝑝 ⋅ ∆𝑡𝑡 + 0.5 ⋅ 𝑢̈𝑢𝑝𝑝𝑝𝑝 ⋅ ∆𝑡𝑡2   
  𝑢̇𝑢𝑥𝑥(𝑘𝑘+1) = 𝑢̇𝑢𝑥𝑥𝑥𝑥 + 𝑢̈𝑢𝑥𝑥𝑥𝑥 ⋅ ∆𝑡𝑡   
  𝑢𝑢𝑥𝑥(𝑘𝑘+1) = 𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢̇𝑢𝑥𝑥𝑥𝑥 ⋅ ∆𝑡𝑡 + 0.5 ⋅ 𝑢̈𝑢𝑥𝑥𝑥𝑥 ⋅ ∆𝑡𝑡2   

The algorithm was implemented in Matlab R2017b on a laptop computer with a Core i5-8250U, 1.60 
GHz processor and 8.00 GB RAM; the code is available for download (Rodriguez-Nikl, 2018). 

Input Motion 

For a rooftop solar panel, the input acceleration is the roof acceleration of a building, which will have 
different frequency content than the motion at the base of the building and must be calculated from an 
appropriate building model subjected to ground motion. In developing design guidance, it is of interest to 
use a large number of earthquake records. However, because the goal of this study is to develop the 
theory and numerical method, only a single, unmodified ground motion was used to test the performance 
of the method. The motion was chosen based on previous work by the first author on structural response 
to subduction zone earthquakes (Rodriguez-Nikl et al., 2012). The ground motion record from the 
Tokachi-Oki earthquake, scaled to a peak plane acceleration (PPA) of 1.0 𝑔𝑔, is shown in Fig. 4. A factor 
of 27.79 was used to scale the raw file to this peak acceleration. The sampling rate of the record was one 
sample every 0.01 seconds. 

 
Figure 4: Acceleration history used in this study, scaled to 1.0 𝒈𝒈 peak acceleration 

 



VERIFICATION 

Convergence 

Five hundred forty (540) runs were completed to test the convergence of the algorithm across a range of 
values relevant to the problem. There were 60 scenarios, each tested at nine different values of ∆𝑡𝑡. For the 
sixty scenarios, 𝜃𝜃 took on values of −7°,−4°, 0°, 4°, and 7°, 𝜇𝜇 took on values of 0, 0.1 and 0.5, and the 
acceleration of the plane was scaled by factors of 0, 5, 27.79 and 40, which are equivalent to PPAs of 0 𝑔𝑔, 
0.18 𝑔𝑔, 1.00 𝑔𝑔, and 1.44 𝑔𝑔, respectively. The recorded sampling rate was increased by a value 𝑃𝑃 that 
varied from 1 to 256 by factors of 2 (i.e., 1, 2, 4, 8, 16, 32, 64, 128, and 256). Linear interpolation was 
used to fill in missing points. In each case, the residual deflection of the block relative to the plane (𝑢𝑢𝑥𝑥 −
𝑢𝑢𝑝𝑝 at the end of the run) and run time were recorded. For each scenario, the residual deflection for 𝑃𝑃 = 
256 was taken as the best estimate of the correct solution and percent errors were computed relative to 
this value. For each value of 𝑃𝑃, the largest error and longest run time were recorded. These results are 
plotted in Fig. 5. Many of the cases had negligible error even for 𝑃𝑃 = 1, but the worst cases only gained 
sufficient accuracy for 𝑃𝑃  ≥ 64. Based on these results, a value of 𝑃𝑃 = 64 was chosen for subsequent 
calculations. The largest error for this value of 𝑃𝑃 was 0.48% and the longest run time was less than 0.09 
sec. 

 

 
Figure 5: Largest error and longest run time for each value of 𝑷𝑷 

 
Physical Checks 

The model was checked against four limiting cases to lend confidence to the physical validity of the 
model. (1) For a large enough coefficient of friction, the block should stay in place on a still, sloped 
plane. A large enough acceleration should subsequently knock it loose. This scenario was tested with a 
slope of 𝜃𝜃 = 30° and a coefficient of friction 𝜇𝜇 = 1.0. As expected, the block was found to stick in the 
absence of ground motion and begin to slide at a large enough plane acceleration. (2) The algorithm 
should reproduce the theoretical result for sliding on a still plane which predicts the position along the 
plane at time 𝑡𝑡 to be 0.5 (𝑔𝑔 sin𝜃𝜃 − 𝜇𝜇𝜇𝜇 cos𝜃𝜃) 𝑡𝑡2. This scenario was tested with a slope of 𝜃𝜃 = 7° and a 
coefficient of friction 𝜇𝜇 = 0.1. The computed and theoretical positions were found to be the same. (3) 
Because friction is a nonlinear phenomenon and because the ground motion is not symmetric, the 
calculated position of the block should differ for slopes of the same magnitude but opposite direction. 
This scenario was tested with a slope of 𝜃𝜃 = ±4° and a coefficient of friction 𝜇𝜇 = 0.4. Indeed, changing 
the sign of the slope resulted in slight differences in the deflection history. (4) The coefficient of friction 
𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = tan𝜃𝜃, delimits whether there is sufficient friction to prevent free sliding with zero input 
acceleration. Analyses were carried out with no plane acceleration and an angle of 0.5° to verify that the 
model predicts a change in behavior near 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. The block was found to slide at 0.999 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 but not at 
1.000 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 



SAP 2000 

Maffei et al. (2014) used the SAP 2000 structural analysis program to compute the response. For this 
reason, the present approach is also compared to SAP 2000 analyses (version 18.2.0). The planar structure 
consisted of one vertical, two-node, friction pendulum link (CSI, 2016). The bottom node was fixed and 
the top node was free. Although the results are independent of mass, a mass has to be declared in SAP. 
Thus, the model used a mass equivalent to a weight of 1 N, which was applied both as a weight for dead 
load analysis and as a translational mass for dynamic analysis. The rotational degree of freedom (DOF) 
for the link was modeled as rigid. The axial DOF could not be modeled as rigid because this prevents 
SAP from calculating the axial force in the link, which is necessary for calculating friction. Thus, an 
arbitrary stiffness value of 100 N/mm was used to approximate rigid behavior. Zero damping was used in 
the friction element. In the transverse direction, the radius of the pendulum was set to zero, which SAP 
interprets as a flat surface. The same values were used for “fast” and “slow” coefficients of friction and a 
stiffness of 100 N/mm was also used to approximate rigid behavior in the transverse direction. The 
analysis was run as a planar analysis in two stages. The first stage was the vertical analysis, which was 
run as a nonlinear, static analysis, without geometric nonlinearities, and with the default nonlinear 
parameters. The second stage was the lateral analysis, which was run as a nonlinear direct integration 
without damping. A Newmark routine was used with 𝛾𝛾 = 0.5 and 𝛽𝛽 = 0, resulting in an explicit analysis. 
The nonlinear parameters were taken as the default except (a) a maximum substep size of 0.001 s and (b) 
only one iteration for each time step. 

A convergence analysis was conducted to select the substep size and link stiffness. The stiffness has to be 
large enough to model rigid behavior but small enough to avoid numerical errors. For the weight of 1 N 
used in the model, a stiffness of 100 m/mm results in a vertical static deflection of only 0.01 mm, which is 
reasonably rigid in comparison to the expected lateral deflections in the hundreds of mm. Values of 
stiffness between 10 N/mm and 1000 N/mm gave similar results, justifying the use of 100 N/mm. With 
this stiffness, the results using a substep size of 0.001 resulted in a 0.036% difference from the results 
using a substep size of 0.00025. However, the run times differed substantially: the computational time for 
the former was 28 seconds and for the latter was 650 seconds. The substep size of 0.001 was used in 
subsequent analyses. 

SAP was run for a flat slope for 𝜇𝜇 = 0.02, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7. The relative 
deflection, defined as 𝑢𝑢𝑥𝑥 − 𝑢𝑢𝑝𝑝, was recorded for each time step. Results were compared on the basis of 
the maximum absolute value of relative deflection, termed the peak relative deflection (PRD) and the 
absolute value of residual relative deflection (RRD). PRD is more interesting for design but RRD is better 
for comparison because it accounts for errors accumulated over the whole deflection history. The SAP 
and proposed models agreed extremely well, with the worst disagreement in RRD in any of the cases 
being 6.78% and the average being 1.69%, both measured with SAP 2000 as a baseline. A sample relative 
deflection history is shown in Fig. 6. The agreement in the figure is very good and all other cases showed 
much better agreement. To illustrate the agreement over the range of values, Fig. 7 shows PRD and RRD 
for both models. It is evident from this figure that the agreement is excellent. 

SAP was then run for a 4° slope for 𝜇𝜇 =0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 and the relative deflection was 
recorded for each time step. The angle was modeled by moving the top node horizontally and vertically to 
maintain the length of the element while inclining it to the desired angle. Modeling this link at a non-zero 
angle elicited some errors in SAP. SAP fails to reproduce equilibrium correctly when the link is rotated 
(the model is statically determinate, so equilibrium alone suffices to calculate internal forces and reactions 
under gravity loading, facilitating simple hand checks). Under only dead load SAP incorrectly calculated 
a non-zero horizontal reaction for strictly vertical loading. The moment reaction at the base also differed 



from equilibrium calculations. The moment diagram was linear from zero to the (incorrect) base moment, 
but its orientation depended on the connectivity of the link; swapping the nodes to which the “i” and “j” 
ends of the element were connected flipped the moment diagram. SAP computed the link deformations 
correctly, but the link forces and external reactions did not correspond to these deformations. It is not 
clear whether these errors are inherent to SAP or the result of misuse of the link element. However, the 
deviations from equilibrium were significant only at low coefficients of friction. For coefficients of 
friction large enough to control slip to a practically useful value, the aforementioned equilibrium errors 
were small and the SAP model matches extremely well with the proposed model. To illustrate the 
excellent agreement, Fig. 8 shows a sample relative deflection history and Fig. 9 displays comparisons of 
PRD for a range of coefficients of friction. 

  
Figure 6: Example comparison between the 

proposed model and SAP 2000 (𝜽𝜽 = 𝟎𝟎°). The 
other cases showed better agreement. 

Figure 7: Comparisons of PRD and 
RRD for various 𝝁𝝁 (𝜽𝜽 = 𝟎𝟎°). 

 

  
Figure 8: Example comparison 

between the proposed model and 
SAP 2000 (𝜽𝜽 = 𝟒𝟒°). 

 

Figure 9: Comparison of PRD for 
various 𝝁𝝁 (𝜽𝜽 = 𝟒𝟒°). 

 

DISCUSSION 

Preliminary Results 

The proposed model was run for twenty nine values of 𝜃𝜃 (0° to ±7° in increments of 0.5°), fifteen values 
of 𝜇𝜇 (0.1 to 0.8 in increments of 0.05), and sixteen values of PPA (0 𝑔𝑔 to 1.5 𝑔𝑔 in increments of 0.1 𝑔𝑔) for 
a total of 6960 runs. For each angle, the positive and negative angles were compared and the greatest PRD 
was recorded (3600 results were recorded). The results are presented graphically in a number of ways. 
First, Figs. 10 and 11 present graphs similar to Figs. 5 and 7 by Maffei et al. (2014). These figures are 
consistent with those results showing PRD to increase with increased seismic intensity (here PPA, there 
𝑆𝑆𝐷𝐷𝐷𝐷), decreased 𝜇𝜇, and increased 𝜃𝜃. Fig. 10, showing PRD vs PPA, exhibits a range of PPA for which 
there is no deflection and commencement of deflection at a value of PPA that depends on 𝜇𝜇. Although a 
plot is not presented here, the relation of PRD to PPA varying 𝜃𝜃 instead of 𝜇𝜇 looks very similar. Fig. 11 



shows a nearly linear relation between PRD and 𝜃𝜃. Because the work of Maffei et al. (2014) used 
different plane motions than those in this paper a more detailed comparison of the similarities and 
differences in the results is not warranted. Nonetheless, it is promising that similar trends and values were 
observed in both studies. 

Fig. 12 shows PRD contours as functions of 𝜇𝜇 and 𝜃𝜃 using a PPA of 1.5 𝑔𝑔. This plot can be used in 
several ways. First, for given values of 𝜇𝜇 and 𝜃𝜃, the PRD can be determined. For example, at 𝜇𝜇 =
0.5 and 𝜃𝜃 = 4° the PRD is 1000 mm. Alternatively, for a desired value of PRD and a known roof angle, 
the minimum coefficient of friction can be determined. For instance, for a 2° roof angle and a desired 
deflection of 500 mm, the coefficient of friction must be greater than 0.55. Comparing to the prescriptive 
method of the SEAOC standard, which as detailed previously for 𝑆𝑆𝐷𝐷𝐷𝐷 of 1.566 𝑔𝑔 (and 𝜇𝜇 > 0.4 and 𝜃𝜃 < 3) 
returns a design deflection of 2070 mm, Fig. 12 (for PPA of 1.5 𝑔𝑔) suggests that deflections in this range 
can be much smaller. One cannot make too much of this comparison because the present study uses only 
one arbitrary, unfiltered ground motion, does not consider vertical accelerations, and has no conservatism 
built in. Nonetheless, these results provide encouragement for repeating the exercise with a large number 
of appropriately filtered ground motions and generating design curves for simplified analysis that can 
estimate relative deflection without the need for a structural analysis. The fast-running algorithm 
developed here provides the tool for doing so. 

  
Figure 10: PRD versus PPA for various 𝝁𝝁 

(𝜽𝜽 = 𝟏𝟏°) 
Figure 11: PRD versus 𝜽𝜽 for various PPAs 

(𝝁𝝁 = 0.5) 
 

 
Figure 12: Contours of PRD in mm as functions of 𝝁𝝁 and θ for PPA of 1.5 𝒈𝒈. 

 
Benefits of the Proposed Method 

The proposed method presents several benefits as compared to analysis with SAP 2000. Its setup and 
execution time is much quicker than SAP. A wide variety of parameters can easily be included within a 
loop as opposed to SAP, which would require command line control called through a batch file. This, 
together with the shorter execution times (approximately 0.1 sec instead of 30 sec) render the proposed 



method much more useful for computationally intensive procedures. In addition, SAP requires the 
definition of stiffness factors for the link. Although these can be set arbitrarily large, the values are non-
physical and can lead to numerical problems if too large. The ability to run a large number of cases carries 
with it the potential to develop simplified estimates of the design deflection that are less conservative than 
those in the present standards. It bears mention that the present method was not compared to OpenSees, 
which most likely runs faster than SAP and can easily be called from a loop to generate a large number of 
results. 

Limitations of the Proposed Method 

Some limitations need to be addressed before the present method can be extended. The most difficult is 
the inclusion of vertical accelerations, which requires enhancement of the equations of motion. In 
contrast, vertical accelerations can easily be included in SAP or OpenSees by simply defining a second 
component of motion. Even in these cases, the proposed method can be used to validate SAP or OpenSees 
models with horizontal acceleration before adding more features to the model. The other limitations are 
easy to address. Tipping has not been checked in the present algorithm. If it were desired to extend the 
method to objects that might tip, then a check would have to be implemented to verify the tipping case. 
This requires consideration of rotational equilibrium, but no reformulation of the equations of 
equilibrium. It may also be desirable to improve the efficiency of the numerical scheme, which currently 
uses very small time steps to achieve accuracy. A future enhancement may use larger time steps with a 
reduction of time steps only during those steps in which slipping is detected. The present method assumes 
constant acceleration of the plane during a time step; a linear acceleration method may produce better 
results. 

Future Work 

To be of use in design applications, the present work needs to be extended. A large number of ground 
motions need to be considered and these need to be filtered through a variety of building models to obtain 
representative rooftop motions. Having considered a large number of motions and building models, the 
next task is to develop (a) design curves for the envelope of relative displacement as functions of 𝜃𝜃 and 𝜇𝜇, 
and (b) fragility functions using incremental dynamic analysis. In addition, the model should be enhanced 
to consider vertical accelerations and to improve the execution time in the interest of running a greater 
number of cases. 
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