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ABSTRACT: 3D geologic models are applied to predict the location and geometry of fault zones intersecting tunnel alignments in hard rock 

settings. The modelled fault zones inherit subjective (i.e., epistemic) and objective (i.e., aleatory) uncertainty from the various modelling inputs 

used, including observations and interpretations. An input-based, uncertainty propagation approach is developed to assess the geologic model 

uncertainty based on four modelling inputs – surface trace, structural orientation, fault zone thickness and vertical termination depth. The 

rationale behind selecting and parameterizing probability distributions to characterize the uncertainty of each modelling input based on 

available data and geologic prior knowledge is discussed. The approach – implemented using open-source code and commercial geologic 

modelling software – can be applied to a wide range of 3D geologic models in structurally-controlled hard rock settings for a realistic 

assessment and visualization of uncertainty. 
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1. INTRODUCTION 

Three-dimensional (3D) geologic models are becoming the state of 

the art for the prediction and communication of subsurface geology 

in subsurface engineering projects. However, geologic models are 

often treated as deterministic despite the fact that they are affected by 

numerous sources of uncertainty stemming from their input data, 

prior information used and the nature of the modelling method (Caers, 

2011; Wellmann & Caumon, 2018). Unexpected ground conditions 

in tunnelling projects are often a leading cause of cost and schedule 

overruns and cannot be sufficiently anticipated by a single, 

deterministic geologic model. Understanding the uncertainty of a 3D 

geologic model not only provides a measure of model quality to the 

end user (e.g., tunnel engineers), but also aids the geologist during 

model creation by analysing the quality of input data and highlighting 

the impacts of the use of prior knowledge and/or interpretations.  

     A new, best practice for incorporating new observations of 

subsurface geology into a preliminary geologic model is proposed 

that assesses the model against new data probabilistically, using 

uncertainty as a guide for adapting the initially uncertain model. 

Traditionally, this assessment is made by an on-site geologist relying 

on their experience and expertise to interpret new ground conditions 

revealed by excavation. Implementing a quantitative workflow for 

assessing and updating geologic model uncertainty provides a 

powerful tool for both aiding the geologist in predicting subsurface 

conditions and enhancing how the dynamic understanding of 

subsurface geology is communicated throughout a tunnelling project.  

     Geologic uncertainty includes not only objective (i.e., aleatory) 

sources of uncertainty (e.g., imprecise observations and natural 

variability of geologic features), but also subjective (i.e., epistemic) 

uncertainty resulting from incomplete knowledge of the subsurface 

(Bond, 2015). As opposed to geostatistical methods which focus on 

spatial variability, Monte-Carlo uncertainty propagation (MCUP) is 

useful for assessing the impact of geologic uncertainty arising from 

the various types of geologic modelling inputs, including 

observations and interpretations (Wellmann & Caumon, 2018). In 

combination with flexible, implicit geologic modelling algorithms, 

MCUP allows for creating multiple realizations of an initial geologic 

model based on perturbations of uncertain modelling inputs. 

Likelihood and information entropy are calculated from the set of 

model realizations to visualize the geologic model uncertainty.  
 

2. MODELING IMPLEMENTATION 

Applying the MCUP approach to geologic model uncertainty 

assessment begins with the deliberate selection and characterization 

of geologic modeling inputs. Focusing the modelling efforts on a 

clear and important aspect of geology ensures that the uncertainty 

formulation is realistic and that the geologic model is useful to the 

tunneling project.  

     Fault zones – comprised of a network of interconnected fault 

surfaces bounding varying degrees of fractured and altered rock – 

introduce zones of compromised geotechnical strength and/or 

permeability into the surrounding intact rock. In the tectonically 

uplifted, crystalline rock setting of most mountain tunnels, fault zones 

are of primary concern to construction (Robinson et al., 1974), 

requiring a detailed understanding of the location and geometry of 

their intersection with the tunnel alignment. 

     In the subsurface, fault zones have complex, 3D geometry which 

must be approximated from limited information at the surface and 

supplemented with prior knowledge. A modelling approach using 

four inputs – surface trace, structural orientation, fault zone thickness 

and vertical termination depth – is proposed to approximate fault zone 

geometry using a rectangular slab centred around a fault surface 

extending from the surface outcrop to an interpreted depth in the 

subsurface. Figure 1 shows a schematic of a fault zone, highlighting 

the various sources of uncertainty affecting each modelling input 

used.  

 

Figure 1. Schematic showing various sources of geologic 

uncertainty affecting the 3D modelling of fault zones. 

     The method with which a geologic model is created governs the 

final quality and realism of the model. This is particularly true for 

input based MCUP formulations, where a clear workflow translating 

model inputs to the modelled geologic structure is required for 

automated generation of model realizations. A workflow for 

modelling the 3D geometry of fault zones is proposed that retains the 
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essential geological aspects of the fault zone while providing enough 

generalization for implementation in MCUP. The fault surface is first 

modelled from the fault trace (polyline) and a structural orientation 

(dip and dip direction) (Figure 2(a)). The fault surface is terminated 

against a horizontal surface at a pre-defined depth (Figure 2(b), and a 

volume is extruded from the terminated fault surface to define the 3D 

fault zone (Figure 2(c)). 

 

Figure 2. Proposed workflow for modelling the 3D geometry of 

fault zones in the subsurface. 

2.1 Treatment of Uncertainty 

Identifying and quantifying the sources of uncertainty affecting the 

geologic model begins with a careful consideration of the data 

available and geologic prior knowledge required to characterize each 

modelling input. Objective uncertainties are typically associated with 

observations and are therefore straightforward to characterize directly 

from the data, for example calculating the average and variance of the 

random deviations of a geologic compass. On the other hand, 

uncertainties associated with interpretations made during the 

modelling process are subjective and require the geologist to use prior 

knowledge to distil down the interpretation to its core reasoning. 

Parameterization of the geologic prior knowledge is an essential step 

in quantifying the subjective uncertainty (Wood & Curtis, 2004).  

     Upon identifying and quantifying the uncertainty sources affecting 

each geologic modelling input, probability distributions of various 

types are available to use in the MCUP formulation (Tarantola, 2005). 

Selecting the – or the set of – appropriate probability distributions for 

each input is based on the level and type of information available.  

2.1.1 Surface Trace 

In ideal conditions, the surface trace mapped in the field would follow 

the centreline of the fault zone and reach along the entire length of the 

fault. In reality, the definition of the centreline of a fault zone is 

inconsistent (Torabi et al.,  and reliance on digitized geologic maps 

introduces additional uncertainty. Characterizing the uncertainty of 

the fault trace for modelling, therefore, involves perturbing the shape 

and location of the trace according to these sources.  

     The perturbation applied to the fault trace is based on the joint 

uncertainty of the sources mentioned. The uncertainty regarding the 

fault zone centreline is quantified by treating the expected fault zone 

thickness as a 95% confidence interval on the location of the fault 

zone centreline. Eq. (1) converts the confidence interval to a standard 

deviation (𝜎) and characterizes a normal distribution with mean (𝜇) 

for the scalar variable x.  

𝜎 =
𝐶𝐼95%

3.92

𝑃(𝑥|𝜇, 𝜎) =  
1

√2𝜋𝜎2
exp (−

(𝑥−𝜇)2

2𝜎2
)

                                                                (1) 

     The uncertainty of a fault trace drawn from a geologic map has 

two primary components: geographical and mapping errors. 

Geographical errors, arising from digitization and conversion 

between coordinate reference systems, can be estimated using 

established metrological studies (e.g., Zhong-Zhong, 1995). Mapping 

errors are more epistemic in nature and are inherent to the original 

geologic map itself. The method the map was created (e.g., hand 

drawn vs. computer-aided vector graphics) and any interpretations 

made by the mapper (e.g., connecting a fault trace between two 

outcrops) are relevant. Field verification of the map data is one 

possible way to quantify these errors. Lacking a new mapping effort, 

field verification can provide an estimate of the error for some known 

structures, which can then be applied to the dataset as a whole.  

2.1.2 Structural orientation 

Often characterized using a single dip and dip direction vector, the 

structural orientation of fault zones inherits a wide range of 

uncertainties including natural variability of the fault surface, 

imprecise measurements, measurement bias from difficulty 

interpreting fault slip surfaces and reliance on regional structural 

analysis. While the objective sources of uncertainty are treated 

effectively with large sample sizes, the subjective uncertainty 

resulting from measurement bias and the use of regional geologic 

knowledge require a unique formulation to properly characterize the 

information available for modelling.  

     Quantifying the uncertainty of the structural orientation used for 

modelling begins with determining the data available. If sufficient 

measurements (> 25) of a single fault zone’s orientation are available, 

the uncertainty can be calculated directly by computing the 

symmetrical orientation matrix of the data (Fisher et al., 1987). 

Lacking sufficient data, prior knowledge should be leveraged to 

approximate the expected orientation and/or uncertainty of the 

modelled structure. For example, regional geologic studies can 

provide qualitative information on expected fault orientations (e.g., 

NNW to NE-striking, steeply dipping) that the modeller can convert 

to reasonable uncertainty ranges for their project.  

     Pakyuz-Charrier et al. (2018) demonstrated that spherical 

distributions are necessary for appropriately characterizing 

uncertainty of structural orientation data. The Bingham distribution 

(Bingham, 1964) is a spherical probability distribution which, 

depending on its parametrization, can characterize a wide range of 

levels of uncertainty about the structural orientation of a fault zone. 

Distribution shapes ranging from spherical uniform to girdle and 

unimodal can be achieved by varying the relative magnitude of the 

eigenvalues (𝜆𝑖) in Eq. (2).  

𝑃(𝒙|𝐴) = exp (− ∑ 𝜆𝑖𝑥𝑖
2)

𝑝−1
𝑖=1

1

𝑐(𝐴)
,

𝑐(𝐴) =  ∫ 𝑒𝑥𝑝(− ∑ 𝜆𝑖𝑥𝑖
2𝑝−1

𝑖=1 )𝑑𝑆𝑝−1(𝒙)
 

𝒙∈𝑆𝑝−1

                                     (2) 

     Note that the Bingham distribution is naturally bimodal, and the 

application of a lower-hemisphere stereographic projection reduces 

the distribution to a unimodal shape. The Bingham distribution is 

capable of expressing disparate levels of information regarding the 

uncertainty in the dip angle and dip direction of a modelled structure. 

This is particularly useful when modelling with limited information, 

for example a geologic map with a well-defined fault trace and only 

a single dip measurement (Figure 3).  

 

Figure 3. Isotropic (a) vs. anisotropic (b) Bingham distributions. 

2.1.3 Vertical Termination Depth 

While often modelled as surfaces cutting through the entire volume 

of the 3D geologic model, faults are finite, terminating at some depth 

in the subsurface as the displacement along them reduces to zero. The 

vertical termination depth is particularly important to tunnelling 
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projects as it may control whether a problematic fault zone intersects 

the alignment or not. The full extent of the fault zone in the subsurface 

is rarely observed and must be approximated using prior knowledge 

relating observations of the fault at the surface and regional geology 

to the expected termination depth.  

     The theory of the fault ellipse (Barnett et al., 1987; Schultz & 

Fossen, 2001) has been demonstrated as an effective approximation 

of the 3D geometry of faults in various settings. The theory relates 

the length of a fault along strike to the height of the fault along dip 

using an aspect ratio (Eq. (3)).  

𝐴𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 =  
𝐹𝑙𝑒𝑛𝑔𝑡ℎ

𝐹ℎ𝑒𝑖𝑔ℎ𝑡
                                                                     (3) 

     Recent work by Torabi et al. (2019) utilizing 3D seismic data 

noted high variability in the aspect ratio for faults (1.5 to 16) due to 

various factors including mechanical stratigraphy and stress fields 

variations. The uncertainty of the aspect ratio can therefore at best be 

characterized using a bounded uniform distribution (Eq. (4)). 

Typically, mechanical stratigraphy results in larger aspect ratios 

compared to isotropic rock conditions.  

𝑃(𝑥|𝑎, 𝑏) = {
1 𝑏 − 𝑎⁄ ,

0,
𝑓𝑜𝑟 𝑎≤𝑥≤𝑏

 𝑓𝑜𝑟 𝑥<𝑎 𝑜𝑟 𝑥>𝑏
                                                 (4) 

     In addition to aspect ratio uncertainty, the vertical termination 

depth inherits uncertainty from the persistence of the fault trace at the 

surface. Lacking specific information on the location of fault tip 

points, an assumption of length must be made using the persistence 

of a fault trace at the surface as a proxy for 𝐹𝑙𝑒𝑛𝑔𝑡ℎ. Given that abrupt 

fault trace terminations due to overburden or inaccessibility may be 

present, the persistence of the fault trace is assigned an uncertainty 

using a normal distribution based on the observed variability of trace 

length for faults from the same family.  

     Horizontal terminations are not considered in the current study as 

their relevance to tunnel construction is less prevalent than that of 

vertical terminations. The interested reader is recommended to works 

applying stochastic simulation to fault-fault interactions (e.g., Aydin 

& Caers, 2017; Cherpeau et al., 2010).  

2.1.4 Fault Zone Thickness 

Peacock et al. (2016) detailed the wide range of terminology used to 

define the various components of faults and fault zones, highlighting 

the potential uncertainty in determining the boundaries of a fault 

zone. Furthermore, even a well-mapped fault zone may have 

variability in thickness along its length. In other cases, the fault zone 

thickness may be unobserved (e.g., modelling from a regional 

geologic map) and must be approximated from available prior 

information.  

     When fault thickness is measured directly, normal or uniform 

distributions are appropriate for characterizing the uncertainty 

stemming from natural variability and inconsistent definition of the 

fault zone boundaries. Lacking direct observations of fault zone 

thickness, prior knowledge of the regional displacement of faults can 

provide an approximation of fault zone thickness by applying 

published relationships between fault displacement and fault zone 

thickness (Childs et al., 2009; Torabi et al., 2019). The relationships 

are relatively independent of fault type, and have been demonstrated 

for faults in sedimentary, carbonate and crystalline rocks. Uncertainty 

exists in both the displacement used, as well as the power law curve-

fit parameters used in the relationship. Conservative modelling of 

displacement uncertainty should use a bounded uniform distribution, 

while the uncertainty of curve-fit parameters can be approximated 

from the standard error of the fit.  

3. UNCERTAINTY ASSESSMENT 

Uncertainty assessment of the 3D geologic model consists of three 

steps following characterization of the input uncertainties: Monte 

Carlo simulation, uncertainty propagation and uncertainty 

quantification.  

3.1 Simulation 

Simulation from the probability distributions described in Section 2 

is carried out using open-source programming distributions from the 

R and Python environments. Particularly, PyMC3 (Salvatier et al.,  

2016) is available for the majority of continuous and discrete 

probability distributions, while Rfast (Papadakis et al., 2018) 

provides additional functionality for simulating from spherical 

distributions. The normal and uniform distributions implemented in 

PyMC3 take advantage of the efficient No-U-Turn Sampler (NUTS) 

(Hoffman & Gelman, 2014). The Bingham distribution implemented 

in Rfast uses an acceptance-rejection sampling method put forward 

by Kent et al. (2013).  

     Following simulation, additional processing steps may be required 

to translate the sampled uncertainties back into the space of the 

geologic modelling inputs. The structural orientations drawn from the 

Bingham distribution are rotated to the appropriate orientation using 

a series of spherical rotations based on the Euler-Rodrigues formula 

(Dai, 2015). Additionally, the sampled vertical termination depths are 

matched to pre-defined termination surfaces as required by the 

proposed geologic modelling workflow. The interval at which to 

define termination surfaces should be determined based on the scale 

of the project.  

3.2 Uncertainty Propagation and Quantification 

The set of perturbed inputs are used to generate realizations of the 

initial geologic model from which the original inputs were drawn. 

This process, implemented in Leapfrog Works with custom back-end 

support, takes advantage of automation provided by implicit geologic 

modelling algorithms to propagate the input perturbations into the 

geologic model. The resultant set of model realizations (i = 1:n)  is 

discretised into a grid of cells at a user-defined resolution to evaluate 

the probability of occurrence (Pc) of the fault zone lithology at each 

cell, c (Eq. (5)).  

𝑃𝑐 =  
∑ 𝐹𝑎𝑢𝑙𝑡 𝑧𝑜𝑛𝑒=1𝑛

𝑖=1

𝑛
                                                                        (5) 

     This step is the most computationally expensive, taking orders of 

magnitude more time to process than the initial input perturbation. 

Determining the appropriate number of model realizations and block 

model resolution required for accurately capturing the uncertainty of 

the geologic model at the scale of the project is an essential decision. 

In this study, approximately four times increase in total processing 

time was incurred from both a reduction in block model resolution by 

eight (doubled in x, y and z) or a three-fold increase in model 

realizations. Processing times are expected to vary based on computer 

specifications. The method implemented in this study is considered a 

proof of concept, with future work focusing on optimizing processing 

speed and efficiency to develop an uncertainty assessment tool that 

can be added fluidly into existing, iterative modelling workflows.  

     Following the evaluation of the probability of occurrence, 

information entropy is calculated to relate the likelihood of fault zone 

occurrence to a meaningful measure of model uncertainty (Eq. (6)) 

(Wellmann & Regenauer-Lieb, 2012).  

𝐻𝑐 =  −𝑃𝑐 log(𝑃𝑐)                                                                               (6) 

      For a 1-bit system (i.e., fault zone vs. intact rock) the logarithm 

used is of base two and information entropy ranges from 0 to 1, 

varying non-linearly with respect to the likelihood. Information 

entropy is maximal when the probability of occurrence is 0.5 (i.e., 

model accuracy is equivalent to a random guess), providing a measure 

of model uncertainty rather than model likelihood. The importance of 

using uncertainty rather than likelihood has been emphasized in 

recent works regarding risk-based analysis in tunnelling projects (Xia 

et al., 2017). In order to better represent the uncertainty conveyed by 

information entropy, use of a non-linear colormap is proposed (Figure 

4). The rationale behind the new colormap is to represent likelihood 

of 0.5 and entropy of 1 with similar colours while minimizing 

confusion regarding moderate entropy values which correspond with 

extremely low (or high) likelihood values (e.g., Hc = 0.3 ~ Pc = 0.05 

or 0.95).  
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Figure 4. Recommended improvement to the entropy colormap (a) 

compared with a linear colormap (b) and likelihood (c).  

4. CASE STUDY 

Uncertainty assessment of a geologic model containing a single fault 

zone intersecting a tunnel alignment (Figure 5) was carried out to 

demonstrate the efficacy of the proposed approach. The data in the 

model is taken from a real tunnelling project, the Eisenhower-Johnson 

memorial tunnels (EJMT) in Colorado, USA. The project is a pair of 

2.6 km mountain tunnels through uplifted crystalline rocks of the 

Rocky Mountains. The rocks have experienced a series of 

deformations, most recently the Laramide orogeny (70–40 Ma), 

resulting in pervasive brittle fault zones (Robinson et al., 1974).  

     The specific considerations for uncertainty of the input data are 

addressed and propagated into the geologic model, observing the 

relative contribution of each input to the resultant geologic model 

uncertainty. Three hundred model realizations were computed and 

analysed for visualization of model uncertainty at a 5 x 5 x 5 m 

resolution.  

 

Figure 5. Initial geologic model depicting a single fault zone 

intersecting a tunnel alignment (grey outline).  

4.1 Surface Trace 

The surface trace used for modelling was derived from a scanned, 

historic geologic map, mapped at a 1:12,000 scale (Robinson et al., 

1974). Uncertainty sources affecting the surface trace was 

characterized as described in Section 2.4.1 and used to perturb the 

input surface trace. Rather than perturbing each node of the surface 

trace independently, which produces a jagged shape, the polyline was 

perturbed independently at each end point and linearly interpolated, 

resulting in a smoothly altered shape and/or location of the trace. 

Figure 6 describes the parameters used for surface trace uncertainty 

along with visualizations of the generated realizations (a) and joint 

posterior probabilities (b).  

 

Figure 6. Surface trace perturbation realizations (a) and joint 

posterior probabilities (b) for the modelled fault zone.   

4.2 Structural Orientation 

The geologic map available from the EJMT project lacked specific 

information on the orientation of fault zones above the tunnel. While 

the strike was defined by the surface trace with a variability of 

approximately 15ᵒ–20ᵒ, dip had to be estimated from regional 

structural analysis which revealed that the majority of faults in the 

locality were steeply dipping from 60ᵒ–90ᵒ, primarily towards the east 

side. This information was used to characterize an anisotropic 

Bingham distribution (Figure 7).  

 

Figure 7. Perturbed orientations for the modelled fault zone sampled 

from an anisotropic Bingham distribution.  

4.3 Vertical Termination Depth 

Given the crystalline rock setting of the EJMT locality, the aspect 

ratios expected are on the lower range of typical values. A range of 

1.5 to 5 was chosen as an initial estimate of an appropriate aspect ratio 

for the site geology. In the future, additional data added to the model 

(e.g., from the tunnel alignment) will be used to invalidate this 

assumption if necessary. Figure 8 displays the sampled and 

discretised termination depths along with the posterior probabilities.  
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Figure 8. Sampled termination depths (a) and posterior probabilities 

(b) for the modelled fault zone.  

4.4 Fault Zone Thickness 

The thickness of fault zones provided in the EJMT dataset were noted 

merely as being from 5 – 50 feet (1.5 to 15 meters). Rather than model 

directly with a uniform distribution, a conservative estimate towards 

the high range of the provided information was used to model fault 

thickness uncertainty using a normal distribution. The modified 

uncertainty accounts for the original estimate in addition to 

uncertainties associated with the original map’s interpretation of fault 

zone boundary locations and natural thickness variability. The 

realizations and posterior probabilities are shown in Figure 9.   

 

Figure 9. Thickness perturbation samples (a) and posterior 

probabilities (b) for the modelled fault zone. 

4.5 Model Uncertainty 

The uncertainty of each individual input was propagated into the 

geologic model independently and then the joint uncertainty of the 

geologic model based on simultaneous perturbation of each input was 

assessed (Figure 10).  

     Sensitivity of the combined geologic model uncertainty is 

dominated by orientation and termination effects in the subsurface 

and polyline perturbations at the surface. The combined model 

uncertainty is heavily dependent on the relative magnitude of 

individual input uncertainties. The observed sensitivity to orientation 

is an example of this as the EJMT dataset was most lacking in terms 

of the structural orientation of mapped fault zones. While the 

demonstrated termination uncertainty does not affect the proposed 

tunnel alignment, it is clearly a significant contributor to the 

combined model uncertainty at depth; slight changes in the believed 

aspect ratio range could result in terminations of the fault zone above 

or below the tunnel alignment. Controlling the vertical termination 

depth allows for a more realistic approach to modelling subsurface 

fault zones than the potentially overly conservative interpretation 

with all fault zones cutting the entire model. Finally, the sensitivity to 

polyline perturbations is expected to increase in modelling scenarios 

where the proposed tunnel alignment is not centred along the fault 

trace, leading to increased impact on the extrapolated fault surface.   

 

Figure 10. Likelihood (top) and information entropy (bottom) of the 

modelled fault zone for independent and combined input 

uncertainties. Tunnel alignment shown in grey outline.  

     It was also observed that the anisotropic Bingham distribution 

outperformed the accuracy of a comparable, isotropic distribution for 

modelling structural uncertainty. Modelling fault surfaces from a 

polyline trace (explicit constraint) and a structural orientation 

(implicit constraint) results in inaccurate geometry when the two 

inputs are in disagreement (e.g., structural orientation azimuth differs 

greatly from azimuth of polyline trace). Figure 11 demonstrates the 

overestimation of the dip of a modelled fault surface by 5ᵒ caused by 

a 30ᵒ deviation between the polyline azimuth and structural 

orientation azimuth. In this study, the anisotropic Bingham 

distribution preserved the appropriate uncertainty in dip angle (+/- 

30ᵒ) while restricting the azimuth uncertainty to the observed 

variability in the surface trace (+/-15ᵒ), minimizing skewing of the 

modelled fault surface as compared to the isotropic Bingham 

distribution with equal uncertainty in the dip angle and dip azimuth.  

 

Figure 11. Overestimation of the dip of a modelled fault surface 

(red) when structural orientation is not in agreement with polyline 

azimuth.  

5. CONCLUSIONS 

This paper proposes a novel formulation for uncertainty assessment 

of fault zones intersecting tunnel alignments based on the MCUP 

method. The proposed formulation focuses on sources of geologic 

uncertainty stemming from observations, interpretations and the use 

of prior knowledge. These sources of geologic uncertainty are often 

overlooked, and potentially have a greater impact on the resultant 3D 

geologic model than spatial variability (Bond, 2015; Caers, 2011). 

The method is demonstrated on data from the EJMT project – 

roadway tunnels constructed in the Rocky Mountains of Colorado, 

USA – demonstrating how the general framework is applied to the 

unique considerations of a specific dataset including geologic setting 

and data availability.  

     Several improvements to previous MCUP formulations are 

demonstrated. A revised, non-linear colormap for communicating 

uncertainty using information entropy of a binary system (i.e., fault 

zone vs. intact rock) is proposed which highlights the high uncertainty 

around the boundary of modelled structures (Figure 4). The general 

Bingham distribution has also been implemented to overcome 

limitations from the reliance on isotropic, spherical distributions for 

characterizing structural orientation data, including difficulty 

characterizing disparate knowledge about the dip azimuth and dip 

angle of a fault without compromising the accuracy of the modelled 
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structure (Figure 11). The method and rationale for parameterizing 

pieces of geologic prior knowledge to assess the impact of subjective 

interpretations on geologic model uncertainty is demonstrated, using 

established empirical relationships such as the theory of the fault 

ellipse (Section 2.2.3).  

     Several recommendations are made to future modellers, including 

the importance of selecting an appropriate number of realizations and 

model resolution to balance processing time with quality of the 

uncertainty assessment. The number of realizations used is a balance 

between the ability for the Monte Carlo sampling to effectively 

explore the entire uncertainty space of each modelling input and the 

processing time of model creation. In the case study presented in 

Section 4, 300 realizations were used for efficiency (~3 hours), 

though the ideal number of model realizations is estimated to be 

approximately 1000 (~10 hours). The model resolution used for 

evaluation should be approximately less than or equal to half of the 

expected feature size to minimize pixelization in the calculated 

entropy. Future work will involve improving processing efficiency.  

     A natural extension of the forward-modelling based uncertainty 

assessment produced by the MCUP formulation is incorporating new 

information using Bayesian inference. In this manner, the parameters 

and prior knowledge used in initial modelling are validated (or rather, 

invalidated (Tarantola, 2006)) against the new observations, and the 

prior uncertainty envelopes used are updated using Bayes Theorem.  
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