
1 INTRODUCTION 

Soft ground tunneling projects often encounter rapid changing ground conditions that pose sig-
nificant risks. However, deterministic geological profiles fall short of conveying the uncertainty 
in ground conditions along with the spatial extent of tunneling risks. The ability to model the 
spatial variability and uncertainty in geological/geotechnical conditions would improve the risk 
assessment, taking into consideration the spatial distribution of such risks and incorporating un-
certainty in the geological profile. Geostatistical (or random field) methods can be employed to 
assess the spatial characteristics of the geological/geotechnical conditions and develop 3D mod-
els of variability and uncertainty (Chilès and Delfiner 2012; Pyrcz and Deutsch 2014). 

In geotechnical engineering, spatial modeling of risks (i.e., risk maps) on both the project and 
city scale have increasingly gained attention in the literature. Huber et al. (2015) presented a 
spatial modeling approach for the risk-based characterization of an urban building site using ge-
ostatistical simulation methods. These maps aid in the communication of the allowable ultimate 
loads on the soil over the building site. Wang et al. (2017) used CPT data to map the spatial var-
iability in liquefaction potential of soils on a city-wide scale for Christchurch, New Zealand. 
These risk maps have demonstrated to be effective in the communication of risks and serve as a 
decision tool for mitigation and planning. 

This paper presents an example of employing geostatistical methods to develop 3D risk maps 
(or models). Site investigation data from the Northlink Tunnel project in Seattle, WA is used to 
map the risk for cutter tool wear. These risk maps allow for a more rigorous and comprehensive 
assessment of ground conditions. These maps also serve as a tool for improved communication 
between all parties on the risks faced in a particular project. 

2 METHODOLOGY 

Geostatistical methods are powerful tools used for spatial interpolation of geological fea-
tures/geotechnical parameters. The spatial correlation/variability structure of these parameters 
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can be assessed and modeled using functions that quantify the correlation/variability as a func-
tion of distance and direction (e.g. auto-correlation functions, variograms, and Markov chains) 
(Chilès and Delfiner 2012; Carle and Fogg 1996). Both categorical (e.g., soil type) and continu-
ous (e.g., geotechnical parameters) variables can be simulated using such models. Stochastic in-
terpolation tools allow one to generate many statistically equally probable realization of the sub-
surface ground conditions. Post-processing these realizations derives average, most probable, 
uncertainty and other statistical measures spatially. The reader is referred to (Chilès and Delfin-
er 2012; Pyrcz and Deutsch 2014) for a more theoretical explanation of these methods. 

In this paper, a transitional probability geostatistical method is used to simulate geology in 
terms of engineering soil units (ESU) in 3D. This method incorporates the conditional probabili-
ties of a certain category (e.g., ESU) to occur adjacent to the others along particular directions. 
Proportions of each ESU, average lateral extend and thickness, connectivity and juxtaposition 
tendencies are also honored. In a sequential framework, conditional simulations are performed 
to generate many equally probable realizations of the ESU in the project extent. These simula-
tions are conditioned to the site investigation data such that simulated values at locations where 
ESU samples were reported are equal to the observed ESU. The ESU simulation results (100 to-
tal) are post-processed to determine the most probable ESU profile, probabilities of particular 
ESUs to exist at any location, and uncertainty in the predicted (most probable) ESU based on 
the variability of simulated ESUs at each location. 

Within the ESU model, geotechnical parameters are simulated using the sequential Gaussian 
simulation approach. In this approach, the spatial structure of relevant geotechnical data is in-
ferred from the borehole data. The simulations are conditioned to the site investigation data as 
well as the ESU model. This allows one to take into account the different spatial characteristics 
and distributions of the geotechnical data within each ESU type. These simulation results are 
post-processed to determine the average and uncertainty in the geotechnical parameter of inter-
est at any location. Figure 1 presents a flow chart of the general procedure for the geostatistical 
analysis described here. 

 

 
Figure 1. Flow chart of the procedure for developing risk maps. 

3 PROJECT OVERVIEW 

The Northgate Link tunnels project in Seattle, WA consisted of two (twin) tunnels, each approx-
imately 5.6 km in length, excavated by 6.6 m diameter earth pressure balance tunnel boring ma-
chines (EPB TBM). The site investigation consisted of 158 boreholes with varying sampling 
methods for determining parameters including ESU classification, water content, Atterburg lim-
its, grain size distribution, etc. The majority (58%) of the boreholes are within 50 m of another 
borehole. These boreholes are typically located at tunnel stations, where a higher density of 
boreholes is generally present. Along the tunnel drive (i.e., between stations), borehole spacing 
generally exceeds 50 m, and even 100 m in some cases. Figure 2 presents the spatial layout of 
the site investigation and the sampling frequency for ESU classification. The regional geology 



consists of highly variable glacial and non-glacial sediments and according to the geotechnical 
baseline report, seven major ESUs are identified and summarized in Table 1 (Jacobs 2013). 

 
 

 
Figure 2. Overview of tunnel site and site investigation data. a) Plan view with borehole locations; b) Pro-
file view of reported ESU samples. 

 
 

 
Table 1. Description of Engineering Soil Units encountered in project area. 

Engineering 

Soil Unit 
USCS Description 

Cohesive Clay 

and Silt (CCS) 

CH, CL, MH, 

ML, OH, OL, 

PT, SC, SM 

Hard, interbedded silt and clay. Includes multiple layers and lenses of 

cohesionless silt, sand, and gravel, with varying lateral extent and thick-

ness. 

Cohesionless 

Silt and Fine Sand 

(CSF) 

ML, SM, SP 
Fine-grained granular soil consisting of very dense silt, fine sandy 

silt, and silty fine sand. 

Cohesionless 

Sand and Gravel 

(CSG) 

GM, GP, SM, 

SP, SW 

Dense to very dense silty sand to sandy gravel. May contain lenses of 

clay and clayey silt. 

Engineered and 

Non-Engineered 

Fill (ENF) 

CL, GM, GP, 

ML, OH, OL, 

SC, SM, SP, SW 

Very loose to very dense sand with varying amounts of silt and grav-

el. Also includes wood, concrete, metal, brick, and other debris. 

Recent Clay 

and Silt (RCS) 

CH, CL, ML, 

OL, PT, SC, SM 

Soft to stiff silty clay and clayey silt with variable amounts of sand 

and gravel in localized zones. 

Recent Granu-

lar Deposits 

(RGD) 

GC, GM, GP, 

ML, SM, SP 

Loose to dense or locally very dense silty sand, medium stiff to hard 

sandy silt, and silt. Contains localized lenses of sandy gravel and gravel-

ly sand with varying lateral extent and thickness. 

Till and Till-

Like Deposits 

(TLD) 

CL, GC, GM, 

GP, GW, ML, 

SC, SM, SP, SW 

Has a high spatial variability and will grade over short distances from 

an unsorted mixture of gravel, sand, silt, and clay, to an unsorted mixture 

of silt, sand, and gravel to clean or relatively clean sand and gravel. 



4 CUTTER TOOL WEAR RISK MAP 

To illustrate risk map development, an example for cutter tool wear is presented. We rely upon 
tool wear prediction models from Koppl et.al, (2015) in this analysis. However, the approach 
can be applied using a variety of different tool wear prediction models. According to Koppl, 
et.al, the rate of cutter tool wear in soft ground tunneling is a function of the soil abrasivity in-
dex (SAI): 

 (1) 

where  is the equivalent quartz content (%),  is the Mohr-Coulomb shear stress (kN/m2) 
and  is the grain size where 60% of all grains are finer (mm). From the site investigation da-
ta relating to relevant geotechnical parameters EQC,  and , the distributions of SAI for 
each ESU can be determined. Boxplots representing the distribution of SAI for each ESU is pre-
sented in Figure 3. As expected, CSG and TLD exhibit higher SAI compared to other ESUs due 
to the presence of gravel and cobbles. 
 
 

 
Figure 3. Boxplot of SAI parameter for each ESU. The number in parentheses corresponds to the number 
of samples available from the site investigation. 

 
In the geostatistical simulation, 10,000 individual, statistically possible realizations of the 

ground conditions were generated. The results of the geostatistical simulation is summarized in 
Figure 4. Here, the average predicted SAI and corresponding uncertainty (in terms of standard 
deviation ) along the tunnel axis is presented. Examination of the profiles reveals that SAI 
can vary significantly over the alignment, including drastic changes in SAI over short (< 100 m) 
distances.  In addition, the uncertainty in SAI is quite variable along the alignment. Regions of 
high uncertainty imply that actual SAI is not well understood locally, and is a result of a combi-
nation of limited sampling and local variability in the geotechnical data.



 

 
Figure 4. Results of the geostatistical simulation for SAI. a) Average SAI; b) Uncertainty in SAI. 

 
The range and average predicted SAI within the tunneling horizon (excavated ground) from 

the risk map is presented in Figure 5. The deterministic estimate of SAI is also plotted for com-
parison. It can be observed that the change in SAI can vary significantly over ~250 m of excava-
tion. In general, the geostatistical model predicts lower SAI compared to the deterministic esti-
mate, with the exception of chainage 38.2-38.7 km, 39.5 km and, to some degree, 39.9-40.2 km. 
At chainage 40.5-42 km, the deterministic approach predicts significantly higher SAI than the 
geostatistical model. This is a section of the tunnel alignment where predominately CSG soils 
are encountered. The deterministic approach utilized the deterministic geological profile in the 
GBR and takes the average SAI of all samples for the respective ESU, rather than considering 
the regional distribution at any section of the tunnel alignment. The geostatistical model reveals 
that the average SAI in the 40.5-42 km region within the tunnel horizon is actually significantly 
lower than the average of all SAI samples for CSG. 

 
Figure 5. Range and average predicted SAI within the tunnel horizon (crown/invert). The estimated SAI 
using a deterministic approach based on the geotechnical baseline report (GBR) geological model is pre-
sented for comparison. 

 
To estimate the number of cutter tool replacements during TBM excavation, we adopt the 

equations proposed in Koppl et.al, (2015). To estimate the expected cutting distance  for each 
of the tools based on the geostatistical model, the predicted SAI for each realization of the simu-
lation is used. For each ring, the average  within the tunnel horizon for each realization closest 
to the respective ring is taken and divided by the actual cutting distance  for each of the cut-



ting tools (using the average penetration rate  for the respective ring) to get the partial utiliza-
tion factor . Figure 6 presents the average and 95% probability interval (PI) of the cumula-
tive number of tool replacements N vs. ring number according to the geostatistical model. The 
deterministic estimation according to the GBR geological model is also plotted for comparison. 
For both cutting tool types, the geostatistical model on average predicts fewer tool replacements 
than the deterministic model. Furthermore, comparison with recorded tool replacements from 
the project validates the geostatistical model estimates and demonstrates the approach presented 
in this paper performs better than the deterministic estimate.   

 

 
Figure 6. Estimated cumulative tool replacement for (a) scrapers and (b) discs compared with the deter-
ministic estimate and the recorded tool changes during the project. 

 

5 CONCLUSIONS 

Geostatistical methods have been widely adopted in industries such as mining, petroleum/gas, 
hydrology and environmental engineering. However, few efforts have been made to extend 
these tools to heavy civil applications such as tunneling (particularly in soft ground). The exam-
ple presented in this paper demonstrates the added value of performing geostatistical analysis on 
site investigation data for a more rigorous/comprehensive risk assessment. The key advantages 
of applying geostatistical methods are 1) to determine spatial characteristics/trends in the data 
and 2) quantify uncertainty in ground conditions. 

Through validation with field records, the results of the risk mapping presented here demon-
strate to provide more accurate estimates of the ground conditions. As a result, estimates of cut-
ter tool replacements are significantly improved. Furthermore, quantifying spatial uncertainty in 
the ground conditions provides a direct means for quantifying the uncertainty in the required 
mitigation to account for risks. This information can serve as an aid for improved intervention 
planning.   

The outcomes of the geostatistical analysis and the development of the risk maps can serve as 
communication tools to key stakeholders of a project. This approach can be applied to a range 
of other tunneling risks including clogging, ground deformation, and mixed face conditions, 
among others. 3D models such as those presented in Figures 7 and 8 can aid in procurement, es-
tablishing baselines, design and risk mitigation planning. Site investigation data is often under-
utilized. Applying geostatistical methods enables us to extract the most information out of the 



data, and better convey areas where further site investigations and/or mitigation measures may 
be warranted. 

 
Figure 7. 3D risk map of the probability for clogging ESUs. 

 

 
Figure 8. 3D risk map of soil abrasivity index. 
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