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ABSTRACT 

A strong input energy, e.g., earthquake, may cause a partial separation of foundation from the 
underneath geomaterials. The concept of rocking behavior of shallow foundations has become 
popular in performance-based design (PBD) earthquake geotechnical specifications as an energy-
dissipation mechanism. The two main performance indicators of the soil-structure (SS) systems 
during rocking are: (1) the moment capacity of the assembled SS system that gradually mobilized 
under cyclic loading, and, (2) the dissipation of energy governed by the rotational moment 
hysteresis loops. The aim of this study is to evaluate the rocking responses of slender high-rise 
structures using global sensitivity analysis (GSA) methods. For this purpose, a Finite Element (FE) 
analysis database was generated using a wide range of geomaterials with different stiffness 
properties. The two rocking responses, mobilized moment and dissipated energy obtained from 
the FE model, can be attributed to variations of the input parameters such as structure dimensions, 
geomaterials properties, and rotation of building. To avoid the implementation of time-consuming 
FE analyses, Random Forest (RF) metamodels were developed using the synthetic database for 
the rocking responses. This paper discusses two different GSA methods including Elementary 
Effects (EE) and Sobol’s method to assess the impact of input parameters on the models. The 
results show that both methods are efficient in evaluating the impact of input parameters on the 
responses. EE requires a smaller number of generated samples and less computational effort. 
However, Sobol’s method is more efficient in measuring the joint effects despite the higher 
computational cost.  

Keywords: Shallow Foundations, Rocking Responses, Random Forest (RF), Machine Learning 
(ML), Global Sensitivity Analysis (GSA), Elementary Effects (EEs), Sobol’s method, Morris’s 
method. 
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INTRODUCTION 

The partial separation, or uplift, of one side of a foundation due to large inertial and eccentric 
forces induced by strong vibrations, is normally accompanied by a significant change of shear 
stress in the opposite side of the foundation during rocking. Accumulation of permanent 
displacement appears because of an increase in compound shear and normal stresses at both sides 
of the foundation. The rocking behavior of shallow foundations is one of the major concepts that 
has drawn an increasing attention within the past decades as a performance enhancement tool in 
earthquake geotechnical design specifications. A number of these studies that discuss the 
foundation failure for the rocking structures can be found in Housner (1963), Haeri and Fathi 
(2015), and Gajan et al. (2005).  

Several studies have focused on the nonlinear load-displacement behavior of shallow 
foundations under both static and dynamic loading conditions (Anastasopoulos, 2011; Jafarzadeh 
et al. 2012; Ibsen et al. 2015; Abadi et al. 2015; Rashidi and Haeri, 2017; Khosravi et al. 2017; 
Larsen et al. 2017; and Mousavi and Ghayoomi 2018). For instance, Ayoubi and Pak (2017) used 
this framework to study the settlement of shallow foundations on a liquefiable soil and derived a 
practical equation to estimate settlement of a building during an earthquake. Moreover, Gajan and 
Kutter (2008) conducted several centrifuge tests for different types of soils (including clay and 
sand) to assess the rocking behavior of shallow foundations subjected to low frequency cyclic 
movement. They indicated that the contact area of foundations can be correlated with moment 
capacity, energy dissipation, and permanent settlement measured during rocking. In a recent study, 
Fathi et al. (2018) developed a database of finite element (FE) analyses including a wide range of 
stiffness values and structure dimensions to evaluate the soil-structure systems subjected to slow 
cyclic loading. They showed that mobilized moment is closely related to the magnitude of uplift 
so that the mobilized moment can increase with an increase in foundation uplift at a certain rotation 
amplitude.  

To understand the rocking behavior of shallow foundations, the relationships between input 
and output variable(s) are required. Sensitivity analysis (SA) is a commonly used technique to 
identify the most contributing model parameters. Generally, SA includes local and global 
approaches. Local SA (LSA) evaluates the variation of model response by changing one parameter 
while other parameters are fixed at a certain value. Global SA (GSA) investigates the changes of 
model response by varying all parameters at the same time. However, GSA methods are 
computationally cost-intensive compared to the LSA techniques (Saltelli et al. 1999). 

The application of GSA in identifying the principle input variables, that control the 
responses of complex nonlinear relationships, have been extensively studied in the literature 
(Saltelli et al. 1999 and 2008; Zamanian 2016). Only a few studies have addressed the application 
of GSA in the SSI context. Zoutat et al. (2018) employed the Sobol’s variance-based GSA (Sobol 
1993) to estimate the contribution of the input variables to the lateral displacement of buildings 
considering SSI and damping as the controlling factors.  

ASCE - GeoCongress 2019



– 3 –

The main goal of this study is focused on a global evaluation/sensitivity analysis of rocking 
responses of shallow foundations (i.e., mobilized moment and damping ratio). Two GSA methods, 
Sobol and Elementary Effects, were employed to investigate the impact of input parameters on the 
rocking responses of shallow foundations. A finite element model (Fathi et al. 2018) was 
developed for estimation of rocking behavior of shallow foundations. The synthetic database 
included a wide range of geomaterial properties and different building dimensions. A metamodel, 
using the synthetic database, was constructed to perform the GSA. The following sections include 
the details of the FE model followed by the GSA methods used in this study. The construction of 
metamodels is followed by inspecting the impact of input parameters on the rocking responses. 

FINITE ELEMENT MODELING OF SHALLOW FOUNDATIONS ROCKING 

A wide range of sandy materials with different stiffness values (i.e., very loose to very dense) was 
employed to simulate the soil system combined with a range of structural dimensions, using a 
dynamic FE model in ABAQUS®. A nonlinear elastic-perfect plastic behavior was selected to 
simulate the geomaterial behavior under static and cyclic loading. An iterative process was 
employed to adjust the geomaterial stiffness parameters, using different stress and strain levels, 
during the FE analysis so that the geomaterials can behave nonlinearly prior to the Mohr-Coulomb 
failure criteria. The assembled foundation-superstructure system was subjected to a slow lateral 
cyclic loading (displacement-controlled) at its center of gravity (Figure 1a). The applied cyclic 
loading provided the shallow foundation with three ranges of rotation through the time history of 
loading (Figure 1b). The simulated soil-structure system was developed using plain strain 
elements. To avoid the reflection of loading waves, nonreflective boundaries were selected. The 
applied rotations are 0.0015, 0.005, and 0.015 radians. The rocking responses (mobilized moment, 
energy dissipation, and permanent displacement) were recorded at certain rotations. A metamodel 
was then constructed from the results of the FE model. 

Figure 1. (a) FE model of the soil-structure system; and (b) the applied lateral slow cyclic 
loading (Fathi et al. 2018). 

A nonlinear model proposed by Seed et al. (1986) was employed to simulate the dynamic 
shear moduli of granular soils as follows: 
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௠௔௫ܩ ൌ  ᇱሻ଴.ହ              (1)ߪଶሺ୫ୟ୶ሻሺܭ	218.82

where Gmax is maximum shear modulus, K2(max) is a laboratory shear modulus coefficient measured 
at low strain level which varies between 30 and 75 for sandy material, and σ' is mean effective 
principal stress which is defined as: 

ᇱߪ ൌ ఙభ
ᇲାఙమ

ᇲାఙయ
ᇲ

ଷ
        (2) 

In this study, 400 FE scenarios were simulated. Input parameters were randomly generated 
for each soil property within the defined ranges for the soil and structure systems as listed in Table 
1. These values were then randomly chosen for the assembly of the soil-structure systems.

Table 1. Range of soil-structure system properties. 

Structure Features Symbol Range of Values 
Weight W 19.6 – 58.8 MN 
Height of structure hs 30 – 60 m 
Length L 20 m 

Soil Properties 

shear modulus coefficient K2(max) 30 – 75 
Cohesion C 15 kPa 
Angle of internal friction φ 38 
Dilatation angle ψ 3 
Poisson’s ratio ν 0.3 

GLOBAL SENSITIVITY ANALYSIS 

Most GSA techniques are based on Monte-Carlo (MC) simulation. MC is a mathematical approach 
which is employed to generate random variables for risk and uncertainty assessment of a specific 
system (Saltelli et al. 2008). Two GSA methods are more common: (1) variance-based techniques 
such as the Sobol’ method (Sobol 1993) and Fourier Amplitude Sensitivity Test (FAST) (Cukier 
et al. 1973); (2) global screening methods such as Elementary Effects, also known as Morris 
method, and Latin Hypercube One-factor-At-a-Time (LH-OAT) (Yang. 2011). In this study, both 
Sobol and Morris methods are adopted. 

Sobol’s Method. The Sobol’s method is a variance-decomposition GSA that can be performed for 
monotonic and nonmonotonic models (Sobol 1993). Sobol’s method can be utilized to compute 
main, Si, and total sensitivity, STi, indices by evaluating a multidimensional integral via the Monte 
Carlo method (Saltelli et al. 2008). Total sensitivity index includes the main effect of input 
parameter, Xi, and its interaction with other variable(s). Assuming Y = f (X1, X2, ..., XN) as a 
deterministic model, where Y is a scalar output and Xi variables are N statistically independent 
input variables, the variance of Y can be decomposed into the following form: 

ܸሺܻሻ ൌ 	∑ V୧୧ ൅ ∑ ∑ V୧୨୨வ୧୧ ൅ ∑ ∑ ∑ V୧୨୩୩வ୨ ൅ ⋯൅ Vଵଶଷ…୒୨வ୧୧ (3)
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where Vi = V(E(Y|Xj)) is the first order partial variance that represents the direct influence of Xi on 
the output; and Vij is the second order partial variance. The Vi parameter accounts for the average 
reduction of output variance resulting from keeping Xi as a constant value within its defined range. 
In other words, the individual contribution of each Xi to the total variance V(Y) is estimated by Vi. 
The second order partial variance Vij represents the second order interaction between Xi and Xj on 
V(Y). The higher order partial variances for quantifying higher order interactions can be mentioned 
likewise. Sobol’s sensitivity indices (i.e., first, second, third and higher orders) can be determined 
by normalizing the partial variances Vi, Vij, Vijk with respect to the total variance V(Y) as follows 
(Saltelli et al. 2008): 

S୧ ൌ
୚౟
୚ሺଢ଼ሻ

, S୧୨ ൌ
୚౟ౠ
୚ሺଢ଼ሻ

, S୧୨୩ ൌ
୚౟ౠౡ
୚ሺଢ଼ሻ

(4) 

If there is a considerable difference between the first-order and total indices, the interaction 
between the parameters is considered significant.  
Elementary Effects (EE) Morris Method. The elementary effects (EE) is an easy-to-implement 
and robust method for screening the effects of input parameters on the model response(s) (Morris, 
1991). The nonlinear relationships between the input and output variable(s) can be measured using 
EE. In this method, the input parameter that generates a large variation in the model response(s) is 
the one that affects the output the most. The Morris’ method can be defined as follows: 

௜ܧܧ ൌ
௒ሺ௑భ,…,௑೔షభ,௑೔ା∆,…,௑ಿሻି௒ሺ௑భ,௑మ,…,௑ಿሻ

∆
        (5) 

where Δ is a number in the set {1/(ρ ˗ 1), … , 1-1/(ρ ˗ 1)}; X1, X2, ..., XN are the input parameters 
vary in an N-dimensional space, and ρ is the number of levels that input space is discretized by 
which. Saltelli et al. (2008) suggest an even number for ρ to avoid an unbiased probability for each 
value. For this study, ρ = 20 was defined as the number of levels for each sensitivity test, doing so, 
Δ can take any discretized value from the set {0.0526, 0.1053, …, 0.95} in the interval [0; 1]. The 
impact of variation in an input parameter can be assessed by EE using the value of Δ. Morris’ 
sensitivity indices are comprised of mean, μi, and standard deviation, σi, of elementary effects 
(EEi). μi accounts for the main impact of input parameter on the response(s). σi shows the 
interaction effect of different parameters. In other words, the higher the aforementioned indices, 
the greater are the impact of the parameter on the model response (Saltelli et al. 2008). 

CONSTRUCTION OF METAMODELS 

Metamodels are extensively employed for the parametrization between the input and output 
variables. These models are used to assemble a sufficient number of surrogate models to avoid 
performing the computationally cost-intensive experimental or numerical simulations. In other 
words, the metamodels are developed to forecast the responses using a new generation of input 
variables upon establishing relationships between the inputs and the corresponding output(s). 
Several studies have attempted to address function fitting and model prediction using machine 
learning (ML) techniques such as artificial neural network (ANN), support vector machine (SVM), 
and random forest (e.g., Mazari and Rodriguez 2016; and Ashtiani et al. 2018).  
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To develop the surrogate models of rocking moment capacity and damping ratio, random 
forest (RF) was employed as the proposed ML technique in this study. The RF technique was first 
introduced by Breiman et al. (2001). RFs are often used to solve complex nonlinear problems. This 
method has the capability for estimating nonlinear interaction between the input and output 
variables. For the purpose of model prediction, RF is constructed using a bagging process which 
mainly contains bootstrapped of several regression trees (Breiman et al. 2001).  

The mobilized moment (Mmobilized, MN.m) and damping ratio (ξ, %) were defined as a 
function of rotation (θ, radian), stiffness parameter (k2(max)), height of structure (h, m), weight of 
structure (W, MN), and ratio of contact area (η), i.e., the contact area of the foundation during 
rocking to the actual area of the foundation; the general forms of the predictive functions are as 
follows: 

௠௢௕௜௟௜௭௘ௗܯ ൌ ݂൫ߠ, ݇ଶሺ௠௔௫ሻ, ݄,ܹ,   ൯        (6)ߟ

ߦ ൌ ݂൫ߠ, ݇ଶሺ௠௔௫ሻ, ݄,ܹ,   ൯        (7)ߟ

Root Mean Squared Error (RMSE), was used as the fitness function for the development of 
metamodels. RMSE is calculated as follows: 







n

i

ii

n

yx
RMSE

1

2)(        (8) 

where xi is the measured value, yi is the predicted value, and n is the number of samples. To predict 
the rocking responses, the synthetic database, including 400 cases at different rotations (0.0015, 
0.005, and 0.015 rad.)—1200 samples in total—was utilized. The database was randomly divided 
into the training and testing subsets. For this purpose, 80% of the database (960 cases) was assigned 
to the training set and the rest (240 FE scenarios) were assigned to the testing set. Figures 2 and 3 
demonstrate the comparison of random forest-predicted models with the simulated FE models for 
mobilized moment and damping ratio, respectively. An accurate estimate of the rocking responses 
can be generated by RF models as judged by high coefficient of determination, R2, and low values 
of (RMSE) for both training and testing datasets (Figures 2 and 3). 

RESULTS AND DISCUSSIONS 

The results of elementary effects (EEs) for rocking behavior of shallow foundations are presented 
using convergence plots and scatter graphs on the (μi, σi) plane as introduced by Morris (1991). In 
this study, 3000 samples were randomly selected, and thereafter, rocking responses were predicted 
using the constructed metamodels. Figure 4 shows the convergence plots of average EEs, μi, 
obtained from 3000 evaluations. μi, represents the main impact of each parameter on the output 
values. The input variables θ, rotation, and k2(max), stiffness parameter, affect the rocking responses, 
i.e., mobilized moment and damping ratio, the most as shown in Figure 4. Figure 5 illustrates the
main and total effects of each parameter on the above-mentioned responses.
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Figure 2. Comparison of random forest-predicted model and anticipated FE model for the 
mobilized moment: (a) training dataset and (b) testing data. 

Figure 3. Comparison of random forest-predicted model and anticipated FE model for the 
damping ratio: (a) training dataset and (b) testing data. 

Figure 4. Mean, μi, of elementary effects evaluated by the number of evaluation for (a) 
mobilized moment; and (b) damping ratio. 

Generally, the graph (μi, σi) can be interpreted as one of the following: (1) The input 
parameter has minor impact on the output if both μi and σi are small values; (2) there is a linear 
relationship between the input parameter and output if μi is a large number and σi is a small one; 
(3) there is a nonlinear relationship between the input and output parameters in conjunction with
a strong interaction between the input parameters with a small number of μi and a large number of
σi; and (4) and finally, the main and interaction effects are significantly high if both μi and σi are
large (Saltelli et al. 2008).
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There is a general consensus that an adequate number of samples can help to implement 
reliable and unbiased Sobol sensitivity analysis. To compute the first order (main effect) and total 
sensitivity indices, 10,000 model evaluations were performed using the constructed metamodels. 
The sensitivity indices using the Sobol’s method are shown in Figure 6. Similar to elementary 
effects, θ and k2(max) are the factors affect the mobilized moment the most, respectively (Figure 6a). 
While the stiffness parameter has the most impact on the damping ratio, and the second most 
influential factor is parameter rotation as shown in Figure 6b. The contact area ratio, η, has no 
significant impact on the responses as found in all the analyses. 

Figure 5. Mean (μi) of elementary effects vs. standard deviation (σi) of elementary effects 
for (a) mobilized moment; and (b) damping ratio. 

Figure 6. Sobol’s sensitivity indices for (a) mobilized moment; and (b) damping ratio. 

SUMMARY AND CONCLUSIONS 

The analysis of rocking behavior of shallow foundations has demonstrated that the rocking 
behavior can be taken into account as an energy dissipation mechanism for the buildings. 
Moreover, the two responses, i.e., mobilized moment and damping ratio, can be considered as 
performance indicators of soil-structure systems during rocking. Since the rocking of shallow 
foundations is a complex problem, implementation of global sensitivity analysis (GSA) might be 
required to get a deep insight into such responses. 

To generate a database including rocking responses of shallow foundations, a dynamic 
finite element (FE) model was deployed. The database was developed based on a wide range of 
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geomaterials with different stiffness values associated with high-rise structures with different 
dimensions. Since GSA evaluation requires a huge number of evaluations (samples), random forest 
(RF) metamodels were developed using the generated database to avoid implementation of time-
consuming FE analysis. The prediction power of the metamodels for rocking responses was 
reasonably well as assessed by the low RMSE and high coefficient of determination, R2. For this 
study, two different GSA methods including Sobol and elementary effects (method of Morris) 
were deployed. The GSA methods show that the rotation and geomaterials stiffness affect the 
mobilized moment and damping ratio the most. Sobol’s method was found to be more efficient to 
calculate the joint effects; however, the EE requires less computational effort. 
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