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1. Moving Weighted Least Squares (MWLS)

The Moving Weighted Least Squares (MWLS) method is used to construct interpolation functions on
a set of points to approximate a given spatially varying discrete field (in this case the scalar density
field), v(Xi), and is widely used for various meshless methods [2]. In computer graphics, it is useful to
reconstruct a surface from a set of points [7] through downsampling or upsampling. Numerous studies
have also attempted to utilise the method within the context of Element-Free Galerkin approach as trial
and test functions [3, 10, 9].

In the context of configurational fracture mechanics [6], the nodal forces G̃h are dependent on the gradient
of elastic energy over change of density,BX

Tρ. Therefore, the approximation of a spatially smooth density
field is important in order to evaluate the configurational forces at the crack front. To approximate a given
discrete field, v(Xi), with MWLS method at a node of the mesh in the material configuration, each node
is considered separately and denoted here as a Target Point of Approximation (TPA). The coordinates of
each TPA are denoted with vector Xt and the approximated field at that location is evaluated as:

vh(Xt) =

q∑
α=1

pα(Xt)aα(Xt) = pT(Xt)a(Xt) (1.1)

where vh(Xt) is the approximated value, p(Xt) is the vector of complete basis functions and a(Xt) is the
vector of unknowns. It should be noted that inMWLSmethod, a(Xt) is spatially varying rather than being
constant as used in conventional Least Squares method. Moreover, q is the number of approximation
functions that are built fromPascal’s tetrahedron viamultiplicative combinations of unitywithmonomials
equal to the spatial coordinates Xt, Yt and Zt of the TPA. For maximum target order of approximation
functions, k, the total number of non-orthogonal approximation functions is determined by the binomial
coefficient as:

q =
(
k + 3

3

)
=
(k + 3)!

6k!
(1.2)

In the current implementation, three types of basis functions are used:

pT(Xt) = pT(Xt,Yt, Zt) = [1], q = 1 and k = 0,
pT(Xt) = pT(Xt,Yt, Zt) = [1,Xt,Yt, Zt], q = 4 and k = 1,

pT(Xt) = pT(Xt,Yt, Zt) = [1,Xt,Yt, Zt,XtYt,YtZt, ZtXt,X2
t ,Y

2
t , Z

2
t ], q = 10 and k = 2

(1.3)

For each TPA, the process to evaluate the vector of unknowns a(Xt) =
[
a1(Xt),a2(Xt), . . . aq(Xt)

]
in

Eq. (1.1) involves consideration of neighbouring points of the discrete field v(Xi) and a weight function
w(r) is constructed, where r is the normalised radial distance from the TPA defined as r = | |Xt −X| |/dmi
so that 0 < r ≤ 1, where dmi is a scaling parameter.



An example of an arbitrary weight function for a 2D domain is presented in Figure 1. Values of the given
discrete field v(Xi) are presented with dots and the positions where v(Xi) is mapped (i.e. TPAs) are
presented with circles. Furthermore, the TPA under consideration is located at the origin of a cylindrical
local coordinate system with r and w axes. For the 2D case, the weight function is visually represented
as a 3D surface (shaded area) resulting from full rotation around w axis of the 1D weight function, w(r),
represented as a solid line. The boundary of the domain of influence of w(r) is represented by a dashed
circle (r = 1). w(r) is equal to zero outside the domain of influence.
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Figure 1: 2D schematic example of arbitrary weight function of a TPA located with position vector Xt. Points of
the discrete field v(Xi) are presented with dots and points that v(Xi) is mapped (TPAs) are presented with circles.
The function is smooth, non-negative, reaches maximum at the TPA and decreases with distance | |Xt − Xi | |. The
boundary of the domain of influence of the weight function is presented with dashed ellipsoid (circle on 2D plane)
and the function takes a constant value of zero outside of it.

Many types of weight functions can be used for MWLS method. A one-dimensional quartic spline,
commonly used in meshless methods [2], was chosen for the current work:

w(| |Xt − Xi | |/dmi) = w(ri) =

{
1 − 6r2

i + 8r3
i − 3r4

i for ri ≤ 1
0 for ri > 0

(1.4)

Its derivative (required later) with respect to the material coordinates is:

dw
dXt
=

dw
dri

dri
dXt
=

1
dmi

{
(−12ri + 24r2

i − 12r3
i ) for ri ≤ 1,

0 for ri > 0
(1.5)

Here ri = | |Xt − Xi | |/dmi is the normalised radial distance of point i from the TPA divided by scaling
parameter dmi. This coefficient is governing the size of influence domain.

With the above tools at hand, the vector of unknowns a(Xt) associated to the TPA can be evaluated
through minimisation of the weighted discrete L2 norm:

J(Xt) =
1
2

nw∑
i

w(ri)
(
vh(Xt) − v(Xi)

)2
=

1
2

nw∑
i

w(ri)
(
pT(Xi)a(Xt) − v(Xi)

)2
(1.6)

where v(Xi) is the value of the given discrete field at point i amongst the nw points located within domain
of influence of the TPA and pT(Xi) is the vector of shape functions of point i.

Minimisation of J with respect to a leads to a system of linear equations as:

A(Xt)a(Xt) = B(Xt)v (1.7)



where matrices A(Xt) and B(Xt) are of size (q × q) and (q × nw) and defined as follows:

A(Xt) =

nw∑
i

w(ri)p(Xi)pT(Xi)

B(Xt) =
[
w(r1)p(X1),w(r2)p(X2), . . . ,w(rnw)p(Xnw)

] (1.8)

and v is (nw × 1) vector of the given field values at the points within the influence domain given as:

v =
[
v(X1), v(X2), . . . , v(Xnw)

]T (1.9)

It should be noted that parameter dmi is chosen to include sufficient nw points such that the resulting
matrix A is not singular. Next, Eq. (1.1) combined with Eq. (1.7) can be rewritten as:

vh(Xt) =

nw∑
i=1

ωi(Xi)vi = ω
T(Xt)v (1.10)

where ω(Xt) is a resulting vector of shape functions associated with the TPA, defined as

ωT(Xt) = pT(Xt)A−1(Xt)B(Xt) (1.11)

It is also necessary to approximate the density’s gradient in the material domain. Therefore, the first
derivative of the shape function with respect to the material coordinates is derived in direction Xj :

ωT
, j = pT

, jA
−1B + pT(A−1

, j B + A−1B, j) (1.12)

The commas in the subscripts denote the partial derivative and the inverse of the material derivative of
matrix A is evaluated as

A−1
, j = −A−1A, jA−1 (1.13)

It is worth noting that for any TPA located at Xβ , MWLS shape functions do not satisfy Kronecker delta
property, i.e. ωi(Xβ) , δiβ .

A common problem arising from CT scanning is generation of Partial Volume Artifacts [1]. As a result,
the voxel data can be averaged between two materials, for example bone and soft tissue. To eliminate
mapping spurious bone densities, some researchers have proposed to either redefine data at any node on
themesh surface to data assigned on the nearest internal node [5, 4] or resurface themesh geometry [8]. In
this study, a more elegant solution is proposed; every CT scan data point positioned outside the geometry
of the bone is simply removed from the domain of influence, thereby only points that fall inside the
volume are approximated. This procedure only has to be performed once for each domain of influence
and can be easily parallelized.

2. MWLS mapping examples

Here, validation of the implementation of the MWLS method (described in 1) is presented via two
examples. The first example involves the mapping of an analytical scalar field onto the nodes of a mesh
of a prism. For this case, the relative error between the analytical input scalar field and MWLS results
are compared for three target orders of approximation of MWLS. In the second example, mapping of CT
scan data of a bone onto a mesh is presented. For this challenging mesh geometry, results of the MWLS
method are compared with the direct CT scan data as well as results of least squares method.
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Figure 2: a) Finite element tetrahedral mesh. b) Mesh inside analytical discrete field f (x) = x + y2 + z3. c) Mesh
with corresponding nodes and spherical domain of influence. d) Results of the approximation for q = 10 projected
onto mesh nodes.
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Figure 3: Contour plot of relative error of approximated gradient field for constant a), linear b) and quadratic c)
basis functions. The logarithmic scale represents the magnitude of relative error.

2.1. Mapping of an analytical field

The analytical field ( f (x) = x + y2 + z3) is mapped onto the mesh nodes of the prism (Figure 2a) using
the proposed MWLS procedure described in 1. The analytical field f (x) is evaluated at a discrete set of
points, v(xi), presented in Figure 2b. The FE mesh is placed within the discrete field (Figure 2b) and
the spherical domains of influence of each mesh node are presented (reduced in size for clearer visual
presentation) in Figure 2c. The size of the influence domain is determined by increasing its radius until
matrix A in Eq. (1.7) is invertible for all mesh nodes. The approximated field data, with its gradient,
is saved on corresponding nodes as demonstrated in Figure 2c for q = 10. Subsequently, the relative
approximation error between the norm of analytical gradient of the given field f (x) at the coordinates
of each mesh node and the norm of gradient calculated with MWLS at the same node is evaluated and
presented in Figure 3. The error is evaluated for three cases: constant (q = 1), linear (q = 4) and quadratic
(q = 10) basis functions. It is clear from presented results in Figure 3 that constant functions are not
sufficient for evaluating the gradient. The maximum error for a linear and quadratic basis has values of
10−2 and 10−4, respectively. These results are satisfactory for the application of mapping data fields onto
the mesh and suggest correctness of the implementation.

2.1.1. Metacarpal bone

In this section, the results of density approximation from CT data are presented. Geometry and finite
element mesh of an equine 3rd metacarpal bone was obtained in ScanIP (Synopsys Simpleware, Exeter)
from medical 3D images. The CT data was subsequently used to approximate the density values onto the
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Figure 4: Comparison of a CT data with the corresponding approximation. a) A cut-view along the x − y plane for
CT scan data and b) density mapped onto FE mesh.

finite element mesh nodes by using the proposed MWLS method. The mesh consisted of approximately
7000 tetrahedral elements. Results of the mapping procedures are presented in Figure 4. Comparison
between the proposed MWLS method and the standard Least Squares (LS) is shown in Figure 5 for
both the density field and the density gradient field. The density pattern from both methods is very
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Figure 5: Mapping results of bone density (left) and density gradient (right). a) Least squares approximation.
b) Moving Weighted Least Squares approximation.

similar. The MWLS method ensures that the density field is continuous despite the fact that the mesh
is relatively coarse. This is particularly beneficial when using hierarchical basis functions, where larger
elements with high order approximation can be more desirable. Classical finite elements provides only
C0-continuity resulting in piecewise continuous gradients with LS . Density gradients resulting the
MWLS approximation are smooth, as required for the fracture propagation analysis. It can also be seen
that mesh boundary does not suffer from Partial Volume Artifacts [1].



3. Summary

This contribution investigated the application of a meshless MWLSmethod in approximating the density
data on FE models. Validation of analytical field mapped on a simple mesh and comparison with LS
method on mapping data from CT scanning was conducted and proved that MWLS can be a suitable
technique for the approximation of density field, even with strong gradients. Nevertheless, the accuracy
of the presented approach still has to be validated experimentally, for example, in the prediction of
strains in the loaded bone specimen.
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