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The CMS Trigger System
The Compact Muon Solenoid (CMS) is a particle physics detector 
on the Large Hadron Collider (LHC) at CERN. The LHC accelerates 
particles close to the speed of light and collides them together. 
When the particles collide, they break up, and CMS detects the 
resulting particles.

There are up to 1 billion collisions per second in CMS, which 
produces hundreds of terabytes of data per second. It is impossible 
to store and keep this much data, so we must decide what to keep 
and discard.

The CMS Trigger System makes extremely fast decisions on which 
data to keep, based on the possibility of new physics. It uses 
FPGAs (Field Programmable Gate Arrays), a programmable chip 
that performs at high speed.

hls4ml
hls4ml (High-Level Synthesis for Machine Learning) is a Python 
package for machine learning inference in FPGAs. It turns machine 
learning models into firmware implementations that can be used in 
FPGAs. 

hls4ml can be used with any machine learning model, but its goal 
is to improve the CMS Trigger System using machine learning 
models to recognize particle jets (“jet tagging”).
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Figure 1: a 
cross-sectional 
slice of CMS. 
Particles collide 
at the far left, and 
the particles that 
result from the 
collision travel 
through layers of 
detectors.

Jet-Tagging ML Models
We train machine learning models to recognize the jets of 
different particles.

Figure 2: Different particles leave different trails in CMS.

We try binary (2 bits) and ternary (3 bits) precision models 
and measure their accuracy against the floating-point 
models:

Table 1: Latency and resource usage for floating-point, binary, 
and ternary model.16 inputs

448 nodes
224 nodes
224 nodes
5 outputs

16 inputs
128 nodes
64 nodes
64 nodes
64 nodes
5 outputs

Binary and ternary models perform sufficiently well – 
they are nearly as accurate as the floating-point 
precision model. 

We want to produce the most accurate model possible with 
the lowest precision: lower precision = lower resource 
usage when implemented into FPGAs. Our benchmark 
model uses floating-point precision (32 bits).

Figure 3: Floating-point  precision model and architecture.

16 inputs
64 nodes
32 nodes
32 nodes
5 outputs

Figure 5: Ternary precision model and architecture.

Latency and Resource Usage
When we use hls4ml to synthesize a model, we can 
analyze its latency (the time required to complete a 
calculation) and resource usage. 

The binary and ternary models use fewer DSPs (Digital 
Signal Processing blocks) than the floating-point model. 
DSPs are generally the limiting FPGA resource. In the 
future, we hope to lower the minimum latency in the binary 
and ternary models to be smaller than the floating-point 
model. Latency is controlled by the reuse factor 
(parallelization of calculations in synthesis) and should be as 
small as possible.

Figure 4: Binary precision model and architecture.
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