
Machine Learning Improvements to the CMS Trigger System
Sheila Sagear1, Jennifer Ngadiuba2, Indara Suarez1,2

1Department of Physics, Boston University 2European Organization for Nuclear Research (CERN)

The CMS Trigger System
The Compact Muon Solenoid (CMS) is a particle physics detector
on the Large Hadron Collider (LHC) at CERN. The LHC accelerates
particles close to the speed of light and collides them together.
When the particles collide, they break up, and CMS detects the
resulting particles.

There are up to 1 billion collisions per second in CMS, which
produces hundreds of terabytes of data per second. It is impossible
to store and keep this much data, so we must decide what to keep
and discard.

The CMS Trigger System makes extremely fast decisions on which
data to keep, based on the possibility of new physics. It uses
FPGAs (Field Programmable Gate Arrays), a programmable chip
that performs at high speed.

hls4ml
hls4ml (High-Level Synthesis for Machine Learning) is a Python
package for machine learning inference in FPGAs. It turns machine
learning models into firmware implementations that can be used in
FPGAs.

hls4ml can be used with any machine learning model, but its goal
is to improve the CMS Trigger System using machine learning
models to recognize particle jets (“jet tagging”).

Source: CERN

Figure 1: a
cross-sectional
slice of CMS.
Particles collide
at the far left, and
the particles that
result from the
collision travel
through layers of
detectors.

Jet-Tagging ML Models
We train machine learning models to recognize the jets of
different particles.

Figure 2: Different particles leave different trails in CMS.

We try binary (2 bits) and ternary (3 bits) precision models
and measure their accuracy against the floating-point
models:

Table 1: Latency and resource usage for floating-point, binary,
and ternary model.16 inputs

448 nodes
224 nodes
224 nodes
5 outputs

16 inputs
128 nodes
64 nodes
64 nodes
64 nodes
5 outputs

Binary and ternary models perform sufficiently well –
they are nearly as accurate as the floating-point
precision model.

We want to produce the most accurate model possible with
the lowest precision: lower precision = lower resource
usage when implemented into FPGAs. Our benchmark
model uses floating-point precision (32 bits).

Figure 3: Floating-point precision model and architecture.

16 inputs
64 nodes
32 nodes
32 nodes
5 outputs

Figure 5: Ternary precision model and architecture.

Latency and Resource Usage
When we use hls4ml to synthesize a model, we can
analyze its latency (the time required to complete a
calculation) and resource usage.

The binary and ternary models use fewer DSPs (Digital
Signal Processing blocks) than the floating-point model.
DSPs are generally the limiting FPGA resource. In the
future, we hope to lower the minimum latency in the binary
and ternary models to be smaller than the floating-point
model. Latency is controlled by the reuse factor
(parallelization of calculations in synthesis) and should be as
small as possible.

Figure 4: Binary precision model and architecture.
Funded by Boston University’s Undergraduate Research Opportunity Program.

