
The ROCK book
Szilvia Zörgő & Gjalt-Jorn Peters

13:52:02 on 2019-12-11 UTC (GMT+0000)

2

Contents

Introduction 5

I Qualitative Research 7

1 Qualitative research 9

2 Qualitative Ethnography? 11

3 Qualitative methods in psychology 13

4 Cognitive interviews 15

5 Reporting Qualitative Research 17

5.1 Introduction . 18

5.2 Methods . 18

5.3 Results . 19

5.4 Discussion . 19

II The ROCK 21

6 The ROCK vocabulary 23

7 The ROCK standard 25

7.1 Examples . 28

3

4 CONTENTS

8 The rock R package 31

8.1 Downloading and installing R and RStudio 31

8.2 Downloading and installing the rock package 32

8.3 Functions in the rock package 33

9 The iROCK interface 37

9.1 Background . 37

9.2 Using iROCK . 37

10 A ROCK workflow 39

10.1 A basic ROCK workflow . 39

10.2 An extensive ROCK workflow . 43

11 Using the ROCK for Epistemic Network Analysis 49

11.1 Starting point . 50

11.2 Planning coding . 50

11.3 Planning Segmentation . 52

11.4 Designating Source and Cases . 55

11.5 Designating Attributes . 55

11.6 Coding and Segmentation . 58

11.7 Merging Coded Sources (if necessary) 60

11.8 Creating Networks . 60

12 Using the ROCK for Decentralized Construct Taxonomies 61

12.1 Introduction to Decentralized Construct Taxonomies 61

12.2 Creating a DCT . 62

12.3 Coding with DCTs . 65

12.4 Analysing DCT-coded sources . 66

13 Using the ROCK for Cognitive Interviews 67

14 References 69

Introduction

This is the Reproducible Open Coding Kit book, a living1 Open Access2 book.
The Reproducible Open Coding Kit, the ROCK, is a standard for qualitative
research. It was developed to facilitate reproducible and open coding, enabling
explicit documentation of the various analysis steps without compromising the
flexibility that lends much of the qualitative research its strength.

At its core, the ROCK specifies conventions for including codes and attributes
in plain text files. This standard enables coding and reading qualitative data
without the requirement of any software other than a plain text file editor.
Simultaneously, it allows the development of software to, for example, further
process those files to support specific analyses, or to provide a graphical user
interface to facilitate coding. This book will discuss two such implementations of
the ROCK. The first is the rock R package, an R package originally developed
to facilitate using the ROCK standard to support Epistemic Netwok Analyses,
but since then extended to also use the ROCK for cognitive interviews and to
work with decentralized construct taxonomies (DCTs). The second is iROCK,
a rudimentary graphical user interface to code text files using the ROCK.

The ROCK helps qualitative researchers navigate the imperatives created by
Open Science and the General Data Protection Regulation. On the one hand,
because no proprietary software is required, researchers retain complete control
over the data they process. This means that they do not need to enter into
data processing agreements with third parties if they process identifiable data.
On the other hand, if they work with anonymized data, because the data are
stored in plain text files, they can easily be shared with other researchers, who
can then easily re-run (or adapt and re-run) the analyses.

Note that this book is mostly written to cover reproducible coding of qualita-
tive data using the ROCK, although it does cover some basic underpinnings of

1A living document is a document that can be updated over time. Conventional books
have editions; living books can be updated in smaller steps.

2Open Access means that it is free. Specifically, the license attached to this book for now is
the CC-BY-NC-SA license. This roughly means you’re allowed to download, copy, and share
the book; you’re allowed to change it, as long as you apply the same license to the adapted
version; but you’re not allowed to sell it. The authors can of course always grant specific
rights anyway.

5

https://creativecommons.org/licenses/by-nc-sa/4.0/

6 CONTENTS

qualitative methods in Part I. Chapter 1 will start with a brief introduction of a
number of qualitative approaches which are then discussed more in detail in the
other Chapters in Part I. Part II will the continue, based on this introduction,
with Chapter 6, which will establish a vocabulary. At the hand of this vocab-
ulary, Chapter 7 will introduce the ROCK standard. Chapter 8 will discuss
the rock R package, and Chapter 9 will discuss the iROCK interface. Chap-
ter 10 combines all this in an example of a ROCK-based workflow. Chapter
11 concerns applying the ROCK to Epistemic Network Analysis, Chapter 12
concerns applying the ROCK to work with decentralized construct taxonomies,
and Chapter 13 concerns applying the ROCK to work with cognitive interviews.
Because this is a living book, more chapters may be added.

Impatient readers may want to skip ahead to Chapters 10, 11, 12, and 13, if those
match one of their use cases. At present, this book is still under development:
the first complete edition has not yet been released. Since the rock R package
used in this book is also under active development, at this point you may want
to install the development version of the rock R package (see Chapter 8).

Tot cite this book, you can use:

Zörgő, S. & Peters, G.-J. Y. (2019) The ROCK book (1st Ed.). doi:10.5281/
zenodo.3571020

doi:10.5281/zenodo.3571020
doi:10.5281/zenodo.3571020

Part I

Qualitative Research

7

Chapter 1

Qualitative research

Disciplines that directly or indirectly study the human psychology, such as an-
thropology, sociology, criminology, and psychologyy, face the problem that the
studied objects are not directly observable (and often are not natural kinds1).
The methods with which the indirect observations that are used instead are
collected can be divided into two types: quantitative and qualitative methods.

Quantitative methods are comparable to most measurement instruments, and
aim to map unobservable variables unto a quantitative scale. The means through
which this occurs is called operationalization of those variables, and without a
valid operationalization, quantitative methods cannot be applied. Qualitative
methods do not require such quantification. This is simultaneously a strength
and a weakness.

[…]

1Explain plus link to Eiko’s commentary.

9

10 CHAPTER 1. QUALITATIVE RESEARCH

Chapter 2

Qualitative Ethnography?

Or quantitative?

It’s a bit weird that quantitative ethnography is in fact qualitative :-)

[…]

11

12 CHAPTER 2. QUALITATIVE ETHNOGRAPHY?

Chapter 3

Qualitative methods in
psychology

Within psychology, there are broadly two ways in which qualitative methods are
used, one fundamentally inductive, the other using a combination of inductive
and deductive approaches. First, if (almost) no theory exists about a subject,
qualitative data can be collected to contribute to the creation of a large evidence
base in which patterns can be identified that can then give rise to theory. Second,
if theory does exist, the constructs posited by those theories often have content
that differs for different populations, contexts, and behaviors. Once a theoretical
construct has been clearly defined, it is possible to derive guidelines for eliciting
the construct’s content in a given population, context, or otherwise relevant
circumstance.

13

14 CHAPTER 3. QUALITATIVE METHODS IN PSYCHOLOGY

Chapter 4

Cognitive interviews

Cognitive interviews are a method to study the cognitive validity of operational-
izations of psychological constructs. […]

15

16 CHAPTER 4. COGNITIVE INTERVIEWS

Chapter 5

Reporting Qualitative
Research

Best practices for reporting differ between different types of research. For ex-
ample, in most quantitative research, the employed statistical models usually
require that sampling procedures are designed to sample randomly from the pop-
ulation, and accurate estimation with those statistical models usually requires
considerable sample sizes. Because the sampling and measurement error can
then be modelled, uncertainty can be estimated, which then enables reporting
quantitative results in a transparent and integreous manner. In most qualitative
research, on the other hand, sampling procedures are designed to optimize sam-
ple heterogeneity, data collection can be partly driven by the observations and
is therefore less systematic, and the error in sampling and observation cannot
be modeled.

Fundamental differences such as these have a number of implications for how
research is reported. In this Chapter, we will list a number of best practices
for reporting qualitative research, paying special attention to similarities and
differences between qualitative and qualitative methods. Consistent with the
Justify Everything principle, we will also provide justifications for these best
practices. We will follow the conventional manuscript structure of introduction,
methods, results, and discussion.

17

18 CHAPTER 5. REPORTING QUALITATIVE RESEARCH

5.1 Introduction

5.2 Methods

5.2.1 Full Disclosure

This section includes the link to the repository containing the Full Disclosure
package for this study. A Full Disclosure Package consists of a Replication
Package and an Analysis Package.
The Replication Package commonly contains everything required for, or facil-
itating, replication of the study, such as the request for ethical approval and
the confirmation letter granting ethical approval; the communication templates
for communicating with participants; the recruitment protocols; the interview
scheme or topic list; the protocols for support for participants and for interview-
ers, for studies where the interviews might touch upon sensitive topics; and the
transcription procedures; the data management plans. The Replication Pack-
age should allow other researchers to replicate your data collection with minimal
effort.
The Analysis Package commonly contains the (anonymized) raw data; the
(anonymized) processed data; the documentation of the analysis steps and de-
cisions taken; justifications of those decisions; and your results. The Analysis
Package should allow other researchers to replicate your data analysis with min-
imal effort.

5.2.2 Materials

This section describes the used materials, such as the interview scheme or topic
list; the communication templates for communicating with participants; the
recruitment protocols; and the protocols for support for participants and for
interviewers, for studies where the interviews might touch upon sensitive topics.
In this section, also describe how data will be recorded.

5.2.3 Sampling strategy

In this section, describe the sample composition you aim to achieve, and how
you operationalized these goals.

5.2.4 Analysis plan

Here, describe the analysis plan. This includes the type of coding (e.g. inductive,
deductive, or a combination), how many coders will be involved and how the
sources will be divided, etc etc etc

5.3. RESULTS 19

5.3 Results

5.3.1 Participants

In this section, describe the participants of the study. This ideally happens in a
similar manner for quantitative and qualitative research. Where the Sampling
Strategy section in the Methods section described the aims and strategies, this
section describes the results of those efforts. Note that unless the study is a
case study of one or more cases, the individuals are not the primary interest.
Thereofore, this section should normally describe your sample, and not be a
list of descriptions of each participant. To the degree that specific participant
characteristics are important for contextualizing specific source fragments as
described later on, list those characteristics at that point in the narrative -
do not burden readers with mixing and matching throughout the manuscript.
Note that more extensive descriptions can always be include in the repository
accompaying the manuscript.

5.3.2 Background

In some cases it may be beneficial to start with a description of the context
of the participants and data collection efforts. Such contextualisation may be
important to properly interpret the results, even though the information itself
may not pertain to the relevant research questions. Therefore, it can be useful
to separate this description from the primary results.

5.3.3 Results

Then, describe the results.

5.4 Discussion

20 CHAPTER 5. REPORTING QUALITATIVE RESEARCH

Part II

The ROCK

21

Chapter 6

The ROCK vocabulary

In the plethora of qualitative approaches, many different terms exist and often
partially overlap. The ROCK standard uses the terms listed below.

attribute A property or characteristic of a case, for example demographic vari-
ables such as interviewee age, gender, education level. Attributes can also
be characteristics of case types that are not persons, such as interview
venue (an attribute can be e.g. whether it was crowded or not) or inter-
viewer (an attribute can be e.g. the interviewer’s age).

case A data provider or context. In interview studies, a case is usually a specific
person. Assigning utterances to cases is a means to efficiently associate
attributes to many utterances in one go. Cases can also be used to associate
other information to many utterances, such as the interviewer, the place
where an interview took place, or the time of day. Examples of cases are
“participant 4” to identify a person, “14:00” to identify the time of an
interview, “meeting room B” to identify the location of an interview.

code A brief identifier applied to a fragment. Such a code usually represents a
concept. Codes can vary from simple descriptions, for example to denote
that the coded fragment concerns a topic such as “leisure activities”, to
complex constructs, for example to denote that the coded fragment likely
espresses psychological aspects that fall within the definition of a construct
called “perceived autonomy”.

coding tree The hierarchy of codes used to code one or more sources (also
called coding structure).

fragment A part of a source (one or more consecutive characters, such as one
or more words, sentences, or paragraphs).

identifier A unique character sequence that uniquely identifies something. For
example, a Uniform Resource Locator (URL) is an identifier (commonly
for a website); a Digital Object Identifier (DOI) is an identifier (com-
monly for a scientific article); and an International Standard Book Num-
ber (ISBN) is an identifier (commonly for a book). The ROCK implements

23

24 CHAPTER 6. THE ROCK VOCABULARY

a way to generate and specify identifiers for utterances and a way to add
other identifiers to a source, such as for cases.

section A delimited fragment of a source.
section break A sequence of characters that represents a section delimiter. In

other words, section breaks split up sources into sections. The ROCK
standard allows parallel use of multiple types of section breaks: for ex-
ample, one type of section break can indicate paragraph breaks, whereas
another type of section break can indicate where an interviewer asks a
new question, and yet another type can indicate where there is a turn of
talk between participants in a discussion.

source A plain text file that describes or captures a bit of reality. The most
common sources in research with humans (e.g. anthropology and psychol-
ogy) are interview transcripts, but sources can also be internet content,
archive materials, meeting minutes, descriptions of photographs, or times-
tamped descriptions of video material.

utterance The shortest codable fragment of a source. In the ROCK, these are
by default delimited by line breaks (“\n”), and utterances will usually
correspond to sentences.

YAML YAML is a standard for encoding data in plain text files in a way that is
easily readable by humans. The ROCK standard uses the YAML standard
for specifications of attributes as well as deductive code structures. YAML
is a recursive acronym that stands for “YAML Ain’t Markup Language”,
and is technically a JSON (Javascript Serial Object Notation) superset,
which means that all JSON is valid YAML.

Chapter 7

The ROCK standard

The ROCK standard has been developed as an open standard for qualitative
data analysis. It follows the principles that also guided the development of the
Markdown and YAML standards: prioritizing human-readability while retaining
machine-readability. The aim of the ROCK is to provide a standard that enables
researchers to exchange data and analyses in a format that is readable even
without running any specific software. In other words, coded transcripts should
be readable as is.

This open standard enables development of programs or scripts to perform spe-
cific functions that are not yet present in any of the existing applications that
support the ROCK format. In addition, this enables all existing qualitative
data analysis programs to import data files in this format and to export to this
format.

In this chapter, the vocabulary explained in Chapter 6 is used to describe the
ROCK standard. Qualitative data files that implement the ROCK standard
can be recognized by their extension: .rock. These files normally follow the
conventions set out in this chapter.

7.0.1 Codes

Codes are by default any string of characters (specifically, lower or uppercase
letters, digits, periods, underscores, larger-than signs, and dashes) in between
two pairs of square brackets ([[and]]). This is described by the regular
expression \[\[([a-zA-Z0-9._>-]+)\]\]; note that the escaping backslashes
must be escaped themselves by prepending a second backslash when specifying
this regular expression in R. Codes are designated per utterance, or in other
words, per line. As many codes can be specified per line as one wishes. For
example, see these two lines (utterances):

25

26 CHAPTER 7. THE ROCK STANDARD

So what went right [[reflection-positive]]
What went wrong [[reflection-negative]]

The first line is coded with reflection-positive, and the second line with
code reflection-negative.

7.0.2 Structuring inductive codes

When engaging in inductive coding (i.e. when not working with a prespecified
code structure, but instead developing the code structure as one goes along;
see the section below re: deductive coding), it can be desirable to structure
the codes hierarchically. For example, perhaps a researchers wants to specify
a parent code such as reflection with two child codes such as positive and
negative. This helps one to identify patterns in the data, and makes it possible
to easily extract all utterances coded as any type of reflection. By default, the
marker that can be used to structure inductive codes is the greater than sign
(specified by the regular expression >). For example, see the same fragment but
coded in two levels:

So what went right [[reflection>positive]]
What went wrong [[reflection>negative]]

When this source is parsed by rock, it will recognize these deductive codes
and their structure, and it will generate the corresponding hierarchical coding
structure, as illustrated in the more extensive example below.

7.0.3 Specifying identifiers

It is often desirable to attach specific attributes to utterances. For example,
one may want to compare the patterns in codes between different categories of
participants, such as those who do and do not own a car, or those that listen
to progressive metal versus those that listen to psychedelic trance. Instead of
coding all utterances with all relevant attributes, instead, it is possible to specify
identifier to easily link utterances to characteristics of the data provision (such
as data providers, for example participants, or the moment of data collection,
for example daytime or nighttime, or winter or summer, or the location of data
collection, such as in a busy place or in a silent office).
This can be done by specifying identifiers. These are again specified using
regular expressions. By default, two types of identifiers are specified: case
identifiers and stanza identifiers. They are again specified using two pairs of
square brackets, but this time, the opening brackets are immediately follow
by a string of identifying characters (the ‘identifier identifier’, so to speak),
followed by an equals sign, and then by the unique identifier. This may seem a
bit abstract; it will become clearer as we look at the first example.

27

7.0.3.1 Case identifiers

Case identifiers can be used to link utterances to data providers, such as par-
ticipants. Their ‘identifier identifier’ is cid, and by default, their full regular
expression is \[\[cid=([a-zA-Z0-9._-]+)\]\]. A source excerpt coded with
only case identifiers may look like this:

CAIAPHAS: No, wait! We need a more permanent solution to our problem. [[cid=1]]

ANNAS: What then to do about Jesus of Nazareth? Miracle wonderman, hero of fools. [[cid=2]]

PRIEST THREE: No riots, no army, no fighting, no slogans. [[cid=3]]

CAIAPHAS: One thing I'll say for him -- Jesus is cool. [[cid=1]]

ANNAS: We dare not leave him to his own devices. His half-witted fans will get out of control. [[cid=2]]

(Note that in this example, the names of the participants were retained; nor-
mally, the researcher would anonimyze the transcripts so as to allow publication
of the coded transcripts.)
WHen rock parses this source, it will know that the first and fourth utterances
belong to the same case, as do the second and fifth. The attributes specified
for these cases will then be attached to these utterances (see the section about
metadata below).

7.0.3.2 Stanza identifiers

A stanza is a unit of analysis in ENA analysis (see the glossary for the exact
definition).

7.0.4 Specifying deductive coding structures

When a researcher works with a prespecified coding structure (i.e. engages in
deductive coding), they only use codes that were determined a priori. Like in
inductive coding, there are often multiple levels in such a coding structure, with
the codes organised hierarchically. To efficiently be able to collapse codes to
higher levels, rock needs to know the deductive coding structure. This can
be specified using YAML fragments in the sources. YAML fragments are, by
default, delimited by two lines that each contain only three dashes (---). Be-
tween those delimiters, YAML (a recursive acronym that stands for ‘YAML
ain’t markup language’) can be specified. Specifically, in YAML terminology,
each fragment should be a sequence of mappings that is named codes.
The coding tree specified in the section on inductive coding, for example, can
be efficiently specified as a deductive coding structure like this:

28 CHAPTER 7. THE ROCK STANDARD

codes:

-
id: reflection
children:

-
id: positive

-
id: negative

If all children of a code are so-called ‘leaves’ (i.e. in the coding tree, they have
no children of their own1) they can be specified more efficiently:

codes:

-
id: reflection
children: ["positive", "negative"]

When rock parses the sources, it will collect all such code specifications and
combined them into one coding three using each code’s identifiers. It is possible
to specify a parent in other code specification fragment by adding the field
parentId. For example, in other sourrce, we could add this fragment:

codes:

-
id: neutral
parentId: reflection

This would add neutral as a sibling to positive and negative.

7.0.5 Specifying metadata

7.1 Examples

7.1.1 Section breaks

So what went right
1This is less sad than it may look; voluntary childlessness is becoming more and more

common, and not having children is one of the most effective choices one can make to save
the environment.

7.1. EXAMPLES 29

What went wrong
---paragraph-break---
Was it a story
or was it a song
---paragraph-break---
Was it over night
Or did it take you long
---paragraph-break---
Was knowing your weakness
what made you strong

Source excerpt as example of section breaks (lyrics from Smiley Faces by Gnarls
Barclay)

7.1.2 Identifiers

CAIAPHAS
No, wait! We need a more permanent solution to our problem.

ANNAS
What then to do about Jesus of Nazareth? Miracle wonderman, hero of fools.

PRIEST THREE
No riots, no army, no fighting, no slogans.

CAIAPHAS
One thing I'll say for him -- Jesus is cool.

ANNAS
We dare not leave him to his own devices. His half-witted fans will get out of control.

PRIESTS
But how can we stop him? His glamour increases By leaps every moment; he's top of the poll.

CAIAPHAS
I see bad things arising. The crowd crown him king; which the Romans would ban.
I see blood and destruction, Our elimination because of one man. Blood and destruction because of one man.

ALL (inside)
Because, because, because of one man.

CAIAPHAS
Our elimination because of one man.

ALL (inside)

30 CHAPTER 7. THE ROCK STANDARD

Because, because, because of one, 'cause of one, 'cause of one man.

PRIEST THREE
What then to do about this Jesus-mania?

ANNAS
How do we deal with a carpenter king?

PRIESTS
Where do we start with a man who is bigger Than John was when John did his baptism thing?

CAIAPHAS
Fools, you have no perception! The stakes we are gambling are frighteningly high!
We must crush him completely, So like John before him, this Jesus must die. For the sake of the nation, this Jesus must die.

This Jesus Must Die by Andrew Lloyd Webber

7.1.3 Codes

Chapter 8

The rock R package

The rock R package implements the ROCK standard for qualitative data analy-
sis. It is an extension to R, a program that was originally a statistical program-
ming language. R is not only open source, but also has a flexible infastructure
allowing easy extension with user-contributed packages. Therefore, R is quickly
becoming a multipurpose scientific toolkit, and one of its tools is the rock pack-
age.
When using R, most people use RStudio, a so-called integrated development
environment. It has many features that make using R much more userfriendly
and efficient. In this book, where we refer to using R, we actually mean using
R through RStudio. Both R and RStudio are Free/Libre Open Source Software
(FLOSS) solutions. This means that they are free to download and install in
perpetuity.

8.1 Downloading and installing R and RStudio

Because RStudio makes using R considerably more userfriendly (and pretty), in
this book, we will always use R through RStudio. Therefore, throughout this
book, when we refer to R, we actually mean using R through RStudio.
R can be downloaded from https://cloud.r-project.org/:1 click the “Download
R for …” link that matches your operating system, and follow the instructions
to download the right version. You don’t have to start R - it just needs to be
installed on your system. RStudio will normally find it on its own.
RStudio can be downloaded from https://www.rstudio.com/products/rstudio/
download/. Once it is installed, you can start it, in which case you should see
something similar to what is shown in Figure 8.1.2

1Yes, that page looks a bit outdated.
2It is easy to change RStudio’s appearance; simply open the options dialog by opening the

31

https://cloud.r-project.org/
https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/

32 CHAPTER 8. THE ROCK R PACKAGE

Figure 8.1: The RStudio integrated development interface (IDE).

R itself lives in the bottom-left pane, the console. Here, you can interact directly
with R. You can open R scripts in the top-left pane: these are text files with the
commands you want R to execute. The top-right pane contains the Environment
tab, which shows all loaded datasets and variables; the History tab, which shows
the commands you used; and the Connections and Build tabs, which you will
not need. The bottom-right pane contains a Files tab, showing files on your
computer; a Plots tab, which shows plots you created; a Packages tab, which
shows the packages you have installed; a Help tab, which shows help ages about
specific functions; and a Viewer tab, which can show HTML content that was
generated in R.

8.2 Downloading and installing the rock package

The rock package can be installed by going to the console (bottom-left tab)
and typing:

install.packages("rock");

Tools menu and then selecting the Global Options; in section Appearance, the theme can be
selected.

8.3. FUNCTIONS IN THE ROCK PACKAGE 33

This will connect to the Comprehensive R Archive Network (CRAN) and down-
load and install the rock package. If you feel adventureous, you can instead
install the one of the two development versions. One is the most current pro-
duction version, and the other is the development (‘dev’) version. The most
current production version will generally be as stable as versions on CRAN, and
will contain more features. This version will contain all features discussed in
this book. The dev version contains work on new features. This also means,
however, that it may contain bugs.

To conveniently install the most recent production and dev versions, another
package exists called remotes. You can install this using this command:

install.packages("remotes");

Then, to install the most up-to-date production version, use:

remotes::install_gitlab("r-packages/rock");

And to install the current dev version, use:

remotes::install_gitlab("r-packages/rock@dev");

More information about the rock package can be found at its so-called pkgdown
website, which is located at http://r-packages.gitlab.io/rock.

8.3 Functions in the rock package

8.3.1 clean_source and clean_sources

Sometimes, sources are a bit messy.3 In such cases, it can be efficient to prepro-
cess them and perform some search and replace actions. This can be done for one
or multiple source files using clean_source (for one file) and clean_sources
(for multiple files; it basically just calls clean_transcript for multiple files).

For example, a researcher will often want every sentence, as transcribed, to be on
its own line (as lines correspond to utterances). In fact, this is the basic function
of the clean_source function: by default, if used without other arguments,
they try to (more or less smartly) split a transcript such that each transcribed

3Well, they are messy more often than not, unfortunately.

https://pkgdown.r-lib.org/
http://r-packages.gitlab.io/rock

34 CHAPTER 8. THE ROCK R PACKAGE

sentence (as marked by a period (.), a question mark (?), an exclamation mark
(!), or an ellipsis (…)) ends up on its own line. Before doing this, clean_source
replaces all occurrences of exactly consecutive periods (..) with one period,
all occurrences of four or more consecutive periods with three periods, and all
occurrences of three or more newlines (\n) with two newlines.

But this function can also be used to perform additonal (or other) replacements.
For example, imagine that a transcriber used a dash at the beginning of a line,
followed by a space, to indicate when a person starts talking, like this:

- Something said by one speaker
- Something said by another speaker

To easily group all utterances by the same person together, it would be con-
venient if this was expressed in the source file in a way that fits with ROCK’s
conventions. That sequence of characters (actually a newline character (\n) fol-
lowed by a dash (-) followed by a whitespace character (\s)) can be converted
into section break ‘---turn-of-talk---’ with this command:

rock::clean_source(input = "
- Something said by one speaker
- Something said by another speaker
",

replacementsPre=list(c("\\n-\\s", "\n---turn-of-talk---\n")));

This will change those that bit of transcript into:

---turn-of-talk---
Something said by one speaker
---turn-of-talk---
Something said by another speaker

(You can copy-paste the command above into R and test this, assuming you
have the rock package installed. Note that by default, R doesn’t print newline
characters as newline characters. To show newline characters as newlines, wrap
the command in the cat command.)

To also maintain the default replacements, more can be added by specify-
ing them in argument extraReplacements instead of replacementsPre (or
replacementsPost). For clean_source, as the first argument (input), either
a character vector (like in the example above) or a path to a file can be spec-
ified, in which case the files contents will be read. If the second argument
(outputFile) is specified, the result is saved to that file; if not, it is returned
(and printed by R).

8.3. FUNCTIONS IN THE ROCK PACKAGE 35

8.3.1.1 A word of caution

If you use this function to clean one or more transcripts, make sure that when-
ever you edit the outputFile, you save it under another name! Otherwise,
rerunning the script to clean the transcripts will overwrite your edits. By de-
fault, the rock option “preventOverwriting” is set to TRUE, so by default, if a
file already exists on disk, it is never overwritten. You can change this behavior
for one function by specifying preventOverwriting=FALSE as a function argu-
ment. You can also change this for all functions by changing the option, with
the following command:

rock::opts$set(preventOverwriting=FALSE);

36 CHAPTER 8. THE ROCK R PACKAGE

Chapter 9

The iROCK interface

9.1 Background

iROCK is an interface for coding sources that consists of an application built in
HTML, CSS and Javascript. This means that it does not store any information
on a server, which has as a benefit that its use is necessarily GDPR compliant.
This means that even if you have not anonymized your sources, you can still
comfortably use iROCK, resting assured that you cannot violate the GDPR by
doing so.

iROCK is available at https://sci-ops.gitlab.io/irock/ - this is a version hosted
by GitLab. You can also download all files to your local PC, and run it from
there. To do that, simply visit the repository at https://gitlab.com/sci-ops/
irock and click the download button at the right-hand side (next to the “History”
and “Find file” buttons). You can download the archive, unpack it on your PC,
store the files somewhere, and then double-click the “index.html” file in the
“iROCK” directory.

Note that iROCK is Free/Libre Open Source Software (FLOSS), which means
that you can inspect the source code, and add functionality, if desired (see the
repository at https://gitlab.com/sci-ops/irock).

9.2 Using iROCK

37

https://sci-ops.gitlab.io/irock/
https://gitlab.com/sci-ops/irock
https://gitlab.com/sci-ops/irock
https://gitlab.com/sci-ops/irock

38 CHAPTER 9. THE IROCK INTERFACE

Chapter 10

A ROCK workflow

This chapter describes, or perhaps more accurately, prescribes, a recommended
workflow to use when working with the Reproducible Open Coding Kit (ROCK).
Consistent with the aims of the ROCK, this workflow is designed to optimize
transparency and reproducibility.

This ROCK workflow leans heavily on the rock R package and the iROCK
interface, but of course, any of the actions described can be implemented in
other ways as well.

10.1 A basic ROCK workflow

In qualitative studies where the collected data are already clean and only one
coder is used, the workflow is very simple. This workflow is explained first:
both because it is all some readers will need, and because it will give an im-
pression of the core elements to those readers who will need the more advanced
functionality.

10.1.1 A bit of project management

All projects require some minimal management. When working with computers,
this management concerns, among other things, how to organise the related files.
When working with qualitative data, there will usually be two types of files: files
with participants’ personal data, and files without personal data. The latter can
safely (and relatively indiscriminately) be synchronized with other computers,
while the former requires more care. It is important to have clear procedures
for anonymizing data and for making sure the right files are backed up in the
right way. For the anonymized transcripts, analysis scripts, and other scientific

39

40 CHAPTER 10. A ROCK WORKFLOW

materials, we recommend using a version control system such as Git. However,
file and project management go beyond the scope of this book.

One trick that does fall within the scope of this book is the functionality of R
Projects. An R Project is a collection of related files that sit in a directory. In
RStudio, you can create an R Project though the New Project menu option in
the File menu. You can either create a project in an existing directory; create
a fresh project in a new directory; or connect to a version control system such
as Git to clone an existing project to your computer.

Once you created a project, RStudio will remember which files you had opened
in your script file panel (top-left). It also conveniently shows the files and
directories in your project in the Files tab of the bottom-right panel, and if
you use Git, allows you to synchronize your changes using the Git tab in the
top-right panel. Most importantly for our present purposes, using an R Project
allows easy access to your files and directories regardless of where on the PC
they are located. Therefore, start by creating an R Project. One you created
it, to continue working on this project, simply open the associated file (with the
“.Rproj” extension).

10.1.2 Source collection and preparation

We will assume that the data are organised into one or more sources, which are
plain-text files where each smallest codable element is placed on a separate line
(i.e. each utterance is separated by newline characters). Note that the smallest
codable element is not the smallest element that could be coded in theory, but
instead represents the smallest element that the researchers are interested in
coding. If the data are not yet organised like this, you will first need to clean
and organise them; please refer to those sections in the extensive workflow.

In each source, add case identifiers. Case identifiers indicate which utterances
belong to which case. Cases are usually data providers, such as participants or
organisation. Case identifiers can be, for example, numbers, letters, codes, or
pseudonyms. Case identifiers are added to the ROCK like this:

[[cid=1]]

The “1” is the identifier itself; this could also be, for example, “F23b”, “Alice”,
or “F”, depending on the system used to identify the sources. This case identifier
is used as an efficient way to attach attributes to the relevant utterances. By
default, case identifiers are so-called “persistent identifiers”, which means that
once they have been specified on a line, all subsequent utterances in that source
will be considered to have been coded with that case identifier, until a new case
identifier is encountered.

10.1. A BASIC ROCK WORKFLOW 41

10.1.3 Attribute specification

Cases function as a method for attaching attributes to utterances. For example,
if sources are transcripts from interviews, cases can be the participants that
were interviewed. This enables attaching participants’ attributes to utterances,
such as their age, gender, or area of residence (of course, constructs measured
by measurement instruments such as questionnaires can also be used, such as
scores on extraversion or self-efficacy).

These attributes can be defined in so-called YAML fragments that are delimited
with three dashes (“---”), such as this fragment:

ROCK_attributes:

-
caseId: 1
sex: female
age: 50s

Such fragments can be placed in sources (usually at the beginning or the end,
although the rock doesn’t care), but it may make more sense to combine them
all in one separate file. To combine the attribute specifications for multiple
cases, simple repeat the same information, including the dash:

ROCK_attributes:

-
caseId: 1
sex: female
age: 50s

-
caseId: 2
sex: male
age: 30s

Note that when working with YAML, indentation is very important. The word
“ROCK_attributes” must always start at the beginning of the line; the dash
that indicates that attributes for a new case start must always be indented
exactly two spaces; and the caseId and attribute names and their values must
always be indented exactly fout spaces. If this is violated, the yaml package will
throw a “Parser error”.

42 CHAPTER 10. A ROCK WORKFLOW

10.1.4 Coding

To code, one can use any text editor able to edit plain text files, such as Notepad,
TextEdit, Notepad++, Vim, or BBEdit. However, in this workflow, we will
work with iROCK, an interface optimized for working with the ROCK. iROCK
is a simple, userfriendly and GDPR-compliant interface for coding sources. The
iROCK interface is discussed in detail in Chapter 9. To load it, visit https:
//sci-ops.gitlab.io/irock/ in your browser (or follow an alternative method as
explained in Chapter 9).

In iROCK, import a source by clicking the red rectangle marked “Sources”.
Then, if you want to engage in inductive coding, you can simply start coding.
At the right-hand side, you can create codes, and once created, a code can
be dragged and dropped from the list onto the utterance you want to apply
it to. Click an applied code (in the source) to remove it again. To indicate
that a code falls under another code, use the ROCK hierarchy marker: “>”, e.g.
“parentCode>childCode”.

If you want to use deductive coding, import your codes by clicking the red
rectangle marked “Codes”. You can import a plain text file: every line of the
file will be imported as one code. If you already coded one or more sources, you
can use the rock R package to efficiently create this list from the used codes.
First, use the rock::parse_sources() function to import the sources. This is
explained more in detail in the next section, but looks roughly like this:

parsedSources <-
rock::parse_sources(input = here::here("data", "coded"));

Then, use the rock::export_codes_to_txt() function to export the codes.
For example, to export all codes, including their so-called “paths” (their explic-
itly specified position in the hierarchy using the ROCK hierarchy marker, “>”,
use:

rock::export_codes_to_txt(input = parsedSources,
output = here::here("codes", "exported-codes.txt"));

Alternatively, you can specify that you only want the “leaves” of the code tree,
in other words, you don’t want to select codes that have child codes, using
“leavesOnly=TRUE”, and you can specify that you don’t want to include the
path, but instead only want the codes themselves, using “includePath=FALSE”:

https://sci-ops.gitlab.io/irock/
https://sci-ops.gitlab.io/irock/

10.2. AN EXTENSIVE ROCK WORKFLOW 43

rock::export_codes_to_txt(input = parsedSources,
output = here::here("codes", "exported-codes.txt")
leavesOnly=TRUE,
includePath=FALSE);

To only select codes with a given parent, specify a value for “onlyChildrenOf”,
and to only select codes that match a given regular expression, specify it as
“regex”.

The rock::export_codes_to_txt() function will write a plain-text file to disk
that can then be directly imported into the iROCK interface.

10.1.5 Analysing the results

10.1.6 (Re)Coding

10.1.7 Publishing the project

10.2 An extensive ROCK workflow

Below follows a more extensive workflow description. For the sake of complete-
ness, this also includes common tasks in qualitative research that are unrelated
to the ROCK. It is, after all, the extensive workflow.

10.2.1 Planning

10.2.1.1 Research questions

Like with any study, it is vital to have a clear research question. The research
question determines which methods can be used. For example, not all research
questions can be studies using qualitative research (and not all research ques-
tions can be studied using quantitative research). Typical research questions
that require quantitative research are questions about associations or causality.
Typical research questions that require qualitative research are questions about
experiences, narratives, and contents of constructs. And if strong conclusions
are desired, research syntheses are required, rather than a single study.

The research question is important because once it is clear, the required analy-
sis approach can be determined, which allows determining the required coding
approach, which allows determining how to collect the data. Because the re-
search question is so fundamentally connected to all other aspects of the study,

44 CHAPTER 10. A ROCK WORKFLOW

one approach to clarify your research question is to think about what potential
answers may look like.

One important implication of a research question is whether the coding will be
deductive or inductive. Deductive coding uses predefined codes, and inductive
coding uses codes created during the coding. Deductive (‘closed’) coding al-
lows more transparency and reproducibility and enables procedures to minimize
bias. The price the researcher pays for these advantages is less flexibility during
coding. Inductive (‘open’) coding allows identifying patterns and categories in
the data that could not be anticipated a priori. In that sense, inductive coding
plays to the strengths of qualitative research: it imposes no constraints on anal-
ysis. The downside is that it cannot use tools to manage subjectivity; such tools
inevitably impose structure and as such decrease the purely inductive nature of
the coding.

In practice, coding is often a mix. Researchers rarely start collecting data in a
field where no relevant theory exists. Therefore, those theories often shape the
coding, in which case making that explicit by prespecifying a deductive coding
structure aids transparency. This coding structure can then form the basis for
the coding process, while still allowing coders to add more coding trees to the
coding structure’s root (for codes that cannot be captured by the prespecified
codes and their definitions) and to add more codes as ‘children’ of prespecified
codes.

10.2.1.2 Coding instructions

Unless there are no preconceived ideas about the coding process whatsoever,
the coding process will inevitably require matching utterances to some defi-
nition. It is therefore important to have the relevant definitions available, in
sufficiently clear and explicit formulations, as well as coding instructions. Cod-
ing instructions are important for decreasing undesirable, invisible subjectivity
and bias and in the coding process. They explicitly capture the characteristics
that a piece of data must satisfy to code it with a given code, including explicit
guidelines for resolving edge cases (see section 12.2.3).

It is usually desirable to make sure the coding instructions are consistent over
studies. Ideally, the exacty same coding instructions are used in all studies in a
lab, department, or even institution (also see section 12.1.1).

If the qualitative study concerns humans, and therefore, the codes relate to con-
structs (e.g. psychological, sociological, or anthropological constructs), using a
decentralized construct taxonomy (DCT) supports clear definitions that can
consistently be applied over multiple studies. These are introduced in Chap-
ter 12. For studies with humans, it is therefore strongly recommended to not
proceed until a set of DCT specifications has been produced and the coding
instructions have been generated from those DCTs.

10.2. AN EXTENSIVE ROCK WORKFLOW 45

If coding another type of content, it is still important to develop clear, unequivo-
cal coding instructions before proceeding. The coding instructions should ideally
be good enough to render individual coders more or less interchangeable.

10.2.1.3 A note on data management

• encryption
• password management

10.2.2 Data collection

The operational aspects of data collection vary with the type of data that are
collected. We will cover two scenarios here: recording audio from individual
interviews, group interviews or focus groups, and collecting existing data such
as social media posts or archive materials.

10.2.2.1 Recording audio

• 2 recorders (one backup; redundancy)

10.2.2.1.1 Transcription into sources

• with group interviews, pay attention to distinguishing group members;
make sure they introduce themselves

10.2.2.2 Collecting existing data

10.2.3 Source cleaning

Once a dataset has been collected, it is usually necessary to perform some
cleaning. In a ROCK workflow, this cleaning includes rudimentary segmentation
into utterances (see Chapter 6). In the ROCK specification, utterances are
separated by a newline character: in other words, every utterance is on its own
line. Utterances are the smallest codable unit, and as such, this is not a trivial
step. The logic underlying the convention that utterances are separated by
newline characters is that although sentences are themselves often hard to fully
understand without context, at least they are often self-containing, whereas
parts of a sentence are rarely comphehensible on their own.

To clean sources, we will use the rock package function rock::clean_sources()
(for more details, see Section 8.3.1). We assume here that the data are located
in a directory called data in your Project directory (see Section 10.1.1). In this

46 CHAPTER 10. A ROCK WORKFLOW

directory, we assume that the raw sources (i.e. the raw transcripts) are located
in the subdirectory called raw. In addition, we will write the cleaned sources to
another subdirectory of the data directory called cleaned.
The following command reads all files in the data/raw directory in your Project
directory, applies the default cleaning operations (e.g. add a newline character
following every sentence ending), and wrotes the cleaned sources to a directory
called data/cleaned in your Project directory:

rock::clean_sources(input = here::here("data", "raw"),
output = here::here("data", "cleaned"));

Note that if you only want to read files that have a certain extension, such
as .txt or .rock, you can specify this by specifying a regular expression to
match against filenames as argument filenameRegex. For example, to only
read both .txt files and .rock files, you would pass the regular expression
"\\.txt$|\\.txt$", to only read .txt files, the regular expression "\\.txt$",
and to only read files with the .rock extension, you would use this command:

rock::clean_sources(input = here::here("data", "raw"),
output = here::here("data", "cleaned"),
filenameRegex = "\\.rock$");

The rock::clean_sources() function has many other functions, which you
can read about by requesting the manual page. You can do this by typing
?rock::clean_sources in the R console (the bottom-left panel in RStudio).

10.2.4 Prepending utterance identifiers

10.2.5 Coding and segmentation

10.2.5.1 Automating coding and segmentation

In a sense, cleaning codes already applies some automatic segmentation: after
all, the default
rock::code_sources()

10.2.6 Manual coding and segmentation

To manually code and segment, any software that can open and save plain text
files can be used. To achieve this software independence was, after all, one of

10.2. AN EXTENSIVE ROCK WORKFLOW 47

the reasons the ROCK was developed. Most operating systems come with basic
plain text editors (e.g. notepad on Windows; TextEdit on MacOS; and vim with
most Unix systems), and many Free/Libre and Open Source Software (FLOSS)
alternatives exist, such as the powerful Notepad++ for Windows and BBEdit
for MacOS.

These editors can be used to open sources and add codes and section breaks.
Many allow the creation of plugins that can further facilitate this, and in addi-
ton, plain text editors can be used in tandem with spreadsheet applications such
as the FLOSS LibreOffice Calc. This allows having neatly a organised coding
structure in a spreadsheet, which can then easily be copied to the clipboard and
pasted in a source in a text editor. By using key combinations such as Alt-Tab
(Windows) or Command-Tab (MacOS) the coder can quickly switch between
the source and the code overview.

In addition, iROCK can be used, a rudimentary graphical user interface that
simply allows appending predefined codes to utterances and inserting section
breaks (for segmentation). More details are available in Chapter @(irock).

Finally, the ROCK standard enables development of a variety of other tools for
specific use cases.

10.2.7 Inspecting coder consistency

10.2.8 Merging sources

rock::merge_sources

10.2.9 Viewing source fragments by code

rock::collect_coded_fragments

10.2.10 Recoding

Sometimes, it is desirable to change codes. For example, a set of codes that
was initially obtained through inductive coding may, upon inspection, have a
hierarchical structure. When using the ROCK, ideally, the originally coded
sources remain in their original state so as to enable scrutiny of the coding
process. Instead, the recoding is applied using a command that opens the
sources, makes the changes, and then writes them to disk again.

At present, the rock R package has four functions to code and recode.

rock::search_and_replace_in_sources

https://www.microsoft.com/en-us/p/windows-notepad/9msmlrh6lzf3?activetab=pivot:overviewtab
https://support.apple.com/en-gb/guide/textedit/welcome/mac
https://www.vim.org/
https://notepad-plus-plus.org/
https://www.barebones.com/products/textwrangler/
https://www.libreoffice.org/

48 CHAPTER 10. A ROCK WORKFLOW

10.2.11 Generating HTML versions

rock::export_to_html

10.2.12 Exporting the coding spreadsheet

Chapter 11

Using the ROCK for
Epistemic Network Analysis

Epistemic Network Analysis (ENA) is a convention and software housed within
the larger methodological framework of Quantitative Ethnography (Shaffer,
2017). ENA was originally developed for modelling and comparing the structure
of connections among various elements in a data set. In case of qualitative data
(narratives), connections in the data are generated from co-occurrences of codes
within segments; these co-occurrences are visualized in a network. ENA is a
useful tool if one is working with (a large number of) variables in a single sys-
tem and can benefit from modelling complex structures in search of patterns in
the data. To read more about ENA and Quantitative Ethnography, see Shaffer
(2017).

Below we offer guidelines for using the ROCK to prepare data for use in ENA.
the ROCK provides help in the process of preparing and performing coding and
segmentation, merging coded documents from multiple raters, and creating the
qualitative data table (CSV file) necessary for making networks. the ROCK
will aid you the most if you are working with continuous narratives (e.g. semi-
structured interviews, from more details see below: Planning Segmentation)
and performing manual coding (as opposed to automated coding, for more see
NCoder).

The following is a step-by-step account of how to employ the ROCK in creating
networks from your data, but these steps are not in strict order as work pro-
cesses are highly dependent on the project in question. the ROCK conventions
will be illustrated with a worked example. In general, the guidelines will be
structured as follows: theoretical considerations presented in separate sections,
instructions for use in the ROCK, and the corresponding information from our
worked example under each sub-section.

49

http://www.n-coder.org

50CHAPTER 11. USING THE ROCK FOR EPISTEMIC NETWORK ANALYSIS

11.1 Starting point

These guidelines assume that the researcher is familiar with the basic tenets
of Quantitative Ethnography (QE) and ENA (although important terms will
be clarified). The starting point of the guidelines also presupposes that the
researcher is working with an anonymized database of raw, qualitative data that
was collected in a systematic manner during a project where the research ques-
tion, sub-questions, methods, and sampling have all been established. The
guidelines do not provide advice on research design.

As a preliminary step, please install the required software as explained in sec-
tions 8.1 and 8.2 in Chapter 8.

Our example

Very succinctly, we were interested in modelling cognitive and behavioral
patterns in patient decision-making processes regarding choice of therapy,
i.e. for a certain diagnosis, what sources of information are considered, what
specific decisions are made during the patient journey, and what conceptual
framework the patient has concerning illness causation. We wanted to know
what cognitive patterns underlie the decision to use different types of medicine
(conventional and non-conventional). To read more about the research ques-
tions and design (methods, sampling, etc.), please see the methods section of
@zorgo_patient_2018 and @zorgo_qualitative_2018, and the methodological
considerations in @zorgo_epistemic_2019.

11.2 Planning coding

11.2.1 What is a code?

One aim of QE is to localize patterns within a community of practice (cul-
ture or subculture), which may be referred to as “Discourse” (capitalization
intended). To do this, the researcher gathers “discourse”, that is, data from the
scrutinized community, such as transcripts from interviews or focus groups, field
notes from observations, etc. “Codes” (capitalization intended) can be defined
as culturally relevant and meaningful aspects of a Discourse, the elements that
the researcher wishes to address in the process of analysis; these elements will
constitute the nodes of the network model. Finally, “codes” are manifestations
of these elements that one identifies in their data, i.e. evidence for Codes within
the narratives. For a more elaborate description of the QE framework see: xxx.

11.2. PLANNING CODING 51

11.2.2 Types of coding

As with coding qualitative data in general, there are several decisions one needs
to make. Should I code with a predetermined set of codes (deductive coding)
or should I allow for the codes to emerge from the narratives as I progress in
analysis (inductive coding)? Both manners of coding have their advantages
and disadvantages (for more details see Smith and Osborn (2008), Denzin and
Lincoln (2000) and Babbie (2007)), the ROCK enables the researcher to employ
one or the other, or even both.

Another consideration, with both deductive and inductive coding, is whether
the set of codes should be hierarchical or not. A hierarchy would imply that
some codes constitute part of other, more abstract codes, such as the parent
code fruit containing the child code banana. If codes are not arranged hier-
archically, they would still constitute a single analytical system in light of the
research question, but cannot be conceptualized as containing one another, such
as fruit, dairy, meat, grains, and vegetables. Again, the ROCK supports
both hierarchical and non-hierarchical constructs.

11.2.3 How to represent codes in the ROCK

The general format for representing codes in the ROCK is placing the code name
(e.g. fruit) in between two square brackets, for example: [[fruit]]. If the code
name contains two or more words, we suggest using an underscore to separate
them, e.g.: [[exotic_fruit]]; we also suggest keeping the code names concise
but informative.

Both hierarchical and non-hierarchical inductive coding can be generated in the
above format with the help of the Interface for the ROCK (the iROCK) platform
(see below: Coding and Segmentation).

Both inductive and deductive hierarchical codes necessitate a greater-than sign
to signal their place in the overall structure, for example: [[fruit>banana]]
connotes a two-level hierarchy; [[fruit>exotic>banana]] connotes three lev-
els.

Hierarchical and non-hierarchical deductive codes need to be specified before
coding begins and listed in a file designated specifically for this. Deductive
codes may be structured in several code clusters or trees (for more detail see:
xxx). Non-hierarchical deductive coding should follow the above format for the
ROCK codes, for example, the codes in the previous example would look like
this:

[[fruit]]
[[dairy]]
[[meat]]
[[grains]]

52CHAPTER 11. USING THE ROCK FOR EPISTEMIC NETWORK ANALYSIS

[[vegetables]]

Hierarchical and non-hierarchical deductive codes are essentially a list of codes,
in the above format, placed into a separate file, preferably with a .rock ex-
tension (see previous section: General background and introduction: .rock file
format).

Our example

In our case, Discourse refers to patterns in cognition and behavior among pa-
tients using biomedicine only, and patients using non-conventional medicine to
treat their illness(es). We can also consider the individuals in these two groups
as all belonging to larger groups delimited by their “primary diagnosis”. In our
case, we began by choosing four diagnoses (D1-4): Diabetes (D1), Musculoskele-
tal diseases (D2), Digestive diseases (D3), and Nervous system diseases (D4).
Thus, every individual in our study belongs to a group indicating their primary
diagnosis (D1-4) and their choice of therapy. Individuals can be grouped further
based on other characteristics (for more on this subject, see below: Designating
Attributes).

Our discourse consists of transcripts from semi-structured interviews conducted
with patients belonging to one of the four types of diagnosis groups and repre-
senting different choices of therapy (for more on the latter, see below: Desig-
nating Attributes).

The Codes we were interested in encompass the three main areas of interest
within the project: sources of information (epistemology), concepts of illness
causation (ontology), and decisions in the patient journey (behavior). We em-
ployed both deductive and inductive coding. We coded the above three areas
of interest with a predetermined set of hierarchically organized codes, on three
levels of abstraction, comprising 52 low-level codes in total. The complete code
tree can be accessed here: xxx. Our inductive coding only concerned illnesses.
As interviewees also spoke about comorbidities during the interview, we found
it important to distinguish among primary diagnosis and other, specific comor-
bidities the patient is referring to within the narrative.

11.3 Planning Segmentation

11.3.1 What is discourse segmentation?

Segmentation, according to QE, is the process of dividing data up into sensible
structures, meaningful parts. There are different levels and modes in which
one can segment narratives; these segments will be important in the creation

11.3. PLANNING SEGMENTATION 53

of a network because connections are formed based on the number of code co-
occurrences within the designated segments.

Following the QE framework, there are three important levels of segmentation to
consider: the smallest unit of segmentation (utterance), a middle level (stanza),
and a high level (unit). At this point we will address the first two of these, units
will be dealt with later (see below: Creating Networks).

An utterance is the smallest entity of analysis in a narrative. This can be one
sentence (e.g. a semi-structured interview’s utterances are sentences articulated
by the interviewee) or more than one sentence (e.g. one remark made by one
participant in a focus group). An utterance can also be one line or one entry in
a field journal, for example. In any case, coding will occur at this level.

Albeit coding occurs on the level of utterances, co-occurrences are computed
based on a higher level of segmentation, the stanza. A stanza is a level of
discourse structure composed of one or more utterances that occur in close
proximity and discuss the same topic (i.e. recent temporal context). Stanza size
reflects how much content the researchers consider indicative of psychological
proximity. Researchers who are only interested in tightly connected concepts
may prefer shorter stanzas, however, if the research topic concerns broader,
more complex issues, researchers may want to define larger stanza sizes. Stanza
size crucially determines analysis results, thus the rules for segmentation should
not be arbitrary and should be made transparent. In order to explore various
versions of segmentation, more than one stanza-type can be employed (i.e.:
multiple ways of defining stanza length and multiple identifiers). Furthermore,
stanzas constitute merely one way of segmenting data on the middle level, one
may want to utilize many forms of section breaks (for details see: Cognitive
Interviews).

11.3.2 Continuous and discontinuous narratives

Qualitative data can come in many forms and have varying characteristics, an
anthropological field journal presents us with very different text compared to a
focus group or an interview, for example. Thus far ENA has mainly been used
for discontinuous data, namely, teams of people performing tasks in a common
virtual reality or performing virtual tasks in a shared physical reality (see: Ruis
et al. (2018)). Similar to focus group situations, these studies worked with data
that was supplied by several participants and on several, discrete occasions.
Naturally occurring “turns of talk” among participants provide for excellent
segmentation, for example, students discussing how to accomplish a common
task in a chatroom (Bressler et al., 2019).

Continuous narratives are distinguished from discontinuous narratives by the
lack of naturally occurring possibilities for segmentation; such text may originate
from the transcript of a semi-structured interview or an audio dairy. Because
there are no “turns of talk” (or they are between interviewer and interviewee and

54CHAPTER 11. USING THE ROCK FOR EPISTEMIC NETWORK ANALYSIS

yield little contextual information), and the whole text may be intricately con-
nected internally, demarcating stanzas becomes a challenge. Similar problems
may occur with the smallest unit of analysis, especially if it is defined as “one
sentence”. The verbatim transcription of spoken speech comes with inherent
subjectivities; as a sentence in speech may persist across vast reaches, the tran-
scriber makes many judgement calls in punctuation. Yet, as co-occurrences are
computed based on stanza, length of utterance is not decisive in this particular
case.

11.3.3 How to represent segmentation in the ROCK

Utterances are represented in the ROCK by something called an “utterance
identifier” (UID). It is one line in the ROCK file (a line being defined as zero
or more characters ending with a line ending). When the ROCK reads a cer-
tain file containing text and utterance identifiers, it splits each file at the line
endings (with newline characters). This parsing is necessary to perform the
coding of each utterance in a file and be able to work with that information
later on. An example of a UID is: [[uid=73ntnx8n]], each utterance receives
a unique identifier. Utterances may be grouped together with the aid of sec-
tion breaks, one of which is the stanza; the ROCK uses this particular format:
<<stanza-delimiter>>, where the name “stanza delimiter” may be changed
according to the segmentation needs of the project.

Our example

In our project, an utterance is defined as one sentence. Each sentence constitutes
one line in the ROCK; each utterance/line receives a unique identifier. Regard-
ing the stanza, we employed the generic definition above, but we had three differ-
ent raters perform segmentation autonomously based on their judgement of psy-
chological proximity. Their three identifiers were: <<stanza-delimiter-low>>,
<<stanza-delimiter-mid>>, and <<stanza-delimiter-high>>. The names
indicate the level of knowledge each rater had concerning the scrutinized research
topic; “low” signified a (naïve) rater not connected to the research project, only
privy to the interview transcripts. “Mid” was employed by a research assistant
with a significant amount of prior knowledge on research objectives and codes,
while the “high” delimiter was used by the principle investigator. Thus, we
had three different stanza-types for all interview transcripts in order to explore
which stanza-type creates the best models.

11.4. DESIGNATING SOURCE AND CASES 55

11.4 Designating Source and Cases

11.4.1 What is a source and how is it represented in the
ROCK?

A source is a file with content to code (or coded content); it can contain the
transcript of an interview or a focus group discussion, or even a list of twitter
posts. Sources comprise one or more utterances from one or more participants
of a study. Sources should be plain-text files and can bear any name, although
they should be kept concise, as these will be displayed in the ENA interface
later on. Information relevant to the study can also be displayed in the name,
such as: “5-female-30s”, indicating this is the fifth interview and it is with a
female participant in her 30s.

11.4.2 What is a case and how is it represented in the
ROCK?

A case signifies a participant, a provider of data within a study. This can
be a person, a family, an organization, or any other unit of research. In case
of individual interviews, the source and the case may be identical, but it is
important to distinguish between these as one source can contain data from
many cases. For example, a focus group transcript constitutes a source, while the
six participants connote separate cases within the source. Each case receives a
unique identifier (case id, CID) and is represented in the ROCK with two square
brackets and a designated name, for example: [[cid=alice]]. Naturally, in
anonymized studies it is preferred to have an alias of some sort, it can even be
a number.

11.5 Designating Attributes

11.5.1 What is an attribute?

Cases can be supplemented with characteristics or variables; we refer to these
as “attributes” (ENA term: metadata). For each participant you may want to
collect additional data, such as demographic variables, or even conduct a survey
in addition to an interview, for example, and record the answers respondents
provide. You may want to register aspects, such as the date the interview
was conducted, the researcher who led the focus group, or the sequence audio
diaries were recorded in. Attributes essentially allow you to group participants
in various ways (thus creating different networks) and enable other types of
analysis through flexibly changing the sets of data you want to see a network
for (i.e. conditional exchangeability), for more see below: Creating Networks.

56CHAPTER 11. USING THE ROCK FOR EPISTEMIC NETWORK ANALYSIS

11.5.2 How to record attributes in the ROCK

There are two main ways you can record attributes for cases in your study
using the ROCK. One is to place this information into the source directly. For
example, you open the plain-text file of your semi-structured interview and enter
the attributes above or below narrative. The other option is to create a separate
.rock file containing the attributes of all participants. In either case, the format
for entering attribute-related information is the following:

ROCK_attributes:

-
caseId: 1
sex: female
age: 50s

-
caseId: 2
sex: male
age: 30s

The above displays the aggregated version of recording attributes (illustrated
with two cases). The list of entries begins with three dashes, followed by the
attributes listed in the manner displayed, and ends with three dashes. In later
phases of data preparation, the ROCK will read this information and assign it
to the appropriate case.

Our example

For each interview we recorded the following attributes: interview date, inter-
viewer ID, interviewee ID, interviewee sex, age, and level of education, diagno-
sis type (D1-4), specific illness, comorbidities, illness onset, time of diagnosis,
and therapy choice (treatment type concerning primary diagnosis: biomedicine
only, complementary use of non-conventional medicine, alternative use of non-
conventional medicine). For complementary and alternative medicine (CAM)
users we also registered type of CAM use, attendance in CAM-related courses,
disclosure of CAM use to conventional physician and the employed CAM modal-
ities. For users of solely biomedicine, reason for rejecting CAM was also coded
(deductively).

To summarize, here is a list of terms we have discussed thus far and some
examples for each term:

11.5. DESIGNATING ATTRIBUTES 57

Term Explanation Example
Discourse Patterns within a community

of practice (culture or
subculture)

E.g.: patterns in cognition
and behavior among those
using biomedicine only, and
and those using
non-conventional medicine to
treat their illness(es)

discourse Data from the scrutinized
community

E.g.: transcripts of
semi-structured interviews
conducted with patients

Code Culturally relevant and
meaningful aspects of a
Discourse

E.g.: sources of information,
concepts of illness causation,
and decisions in the patient
journey

code Manifestations of these
elements that one identifies in
their data, i.e. evidence for
Codes

E.g.: hierarchical, three levels
of abstraction, 52 low-level,
e.g. the ROCK
non-hierarchical code format,
e.g.: [[exotic_fruit]] the
ROCK hierarchical code
format, e.g.:
[[fruit>banana]]

Segmentation The process of dividing data
up into sensible structures,
meaningful parts

• Utterance (e.g.: one
sentence)

• the ROCK utterance
identifier (UID) format:
[[uid=73ntnx8n]]

• Stanza (e.g.:
psychological proximity,
recent temporal context)

• the ROCK section break
format, e.g.:
<<stanza-delimiter>>

Discontinuous
narratives

Text containing naturally
occurring “turns of talk”
among participants

E.g.: students discussing how
to accomplish a common task
in a chatroom

Continuous
narratives

Text lacking naturally
occurring possibilities for
segmentation

Semi-structured interviews,
audio diaries, etc.

58CHAPTER 11. USING THE ROCK FOR EPISTEMIC NETWORK ANALYSIS

11.6 Coding and Segmentation

11.6.1 How is coding performed with the ROCK?

Although manual coding can be performed within a qualitative data table in a
spreadsheet (for more detail see: xxx), when conducting hermeneutic analysis
with a high number of codes, this is unwieldly. For this reason, we developed
the Interface for ROCK (iROCK), an online user platform, consisting of a file
that combines HTML, CSS, and javascript to provide a rudimentary graphical
user interface. Because iROCK is a standalone file, it does not need to be hosted
on a server, which means that no data processing agreements are required (as
per the GDPR). The iROCK interface allows raters to upload a source, a list
of codes, and segmentation identifiers. Coding is performed by dragging and
dropping codes upon utterances at the end of their line. Once coding is finished,
the coded sources can be saved. There are a few preparatory steps you need to
take before you can start coding your sources.

11.6.2 Creating code clusters or trees

Depending on your research design, the code structure, and the amount of codes
you are working with, you may want to have separate code clusters or discrete,
hierarchically organized trees. You may also want to assign different raters to
specific code clusters/trees, or have several raters use the same code structure
to perform autonomous coding (this allows for triangulation or even inter-rater
reliability testing, for more on this subject see: xxx). In these instances, you
end up with multiple coded versions of a source, for example, interview number
1 (cid=1) is coded by two raters (R1 and R2), so you end up with two coded
versions of Case 1. In a situation where R1 and R2 are autonomously coding
different sections of the whole code structure, they will need separate code trees
or clusters. Thus, the preparation of code lists depends on how many ways the
whole code structure is divided among raters: each code group (cluster or tree)
should be listed in its own .rock file. Naturally, if your code structure is not
divided up amongst raters then one, all-inclusive list suffices (even if that list is
used by multiple raters).

11.6.3 Preparing sources for coding

In order to perform coding, ROCK needs to “clean” your sources, i.e. parse
the plain-text files according to one sentence per line (or however utterance is
defined). ROCK also needs to add UIDs to each line in order to be able to merge
codes from various raters in a later phase of the process (see below: Merging
Coded Sources). Hence, you will need four directories, all of which need to be
retained: original-sources; cleaned-sources; sources-with-UIDs; coded-sources.
Below are the steps for preparing your data for coding:

11.6. CODING AND SEGMENTATION 59

1) Copy raw sources into “original-sources” folder (plain-text)
2) Locate the R chunk called “# Preparing and cleaning sources” and

run it. This will clean the sources and save them to the “clean-sources”
directory (and convert them to .rock format).

3) Locate the R chunk called “prepend-utterance-ids” and run it. This
will load the cleaned sources, prepend the UIDs, and save them to the
“sources-with-uids” directory.

You can safely repeat these steps; they will not overwrite existing files. When the
files have appeared in the sources-with-UIDs folder, they are ready for coding.

11.6.4 Using the iROCK interface

The iROCK platform can be found at: https://r-packages.gitlab.io/rock/
iROCK/. After you arrive to the website, you will see a ribbon at the top; by
clicking on “Sources” you can upload the file you wish to code, “Codes” and
“Section Breaks” can also be uploaded here. (Thus, coding and segmentation
can be conducted simultaneously.) Perform coding by dragging and dropping
the appropriate codes from your uploaded list to the end of each utterance.
When coding is complete, download the file to your computer and place it into
the “coded-sources” folder.

Our example

We divided up our code structure into three main areas that were reflected in
the research question and the complete code tree as well (three high-level codes):
epistemology, ontology, and behavior. The low-level codes belonging to these
three parent codes were given to three different raters, each of whom specialized
in one specific code tree. The three raters performed coding separately; none
of their codes overlapped. There was a fourth rater who inductively coded the
illnesses present in narratives. Each rater downloaded their coded files to a
shared folder housed by a secure cloud storage (we use GDPR-compliant Sync,
available at: https://www.sync.com/); the four raters had their own folder
where they dropped every source they coded. Subsequently, the coded sources
were copied to the “coded-sources” folder where all sources received a separate
directory, comprising four versions of the source (three versions of coding with
parent code trees and one version of inductively coded illnesses). Segmentation
was performed by two of the above four researchers and one naïve rater; each
used a <> matching their level of expertise (low, mid, high). Thus, in the
end, we had five versions of a source: 3 coded with parent code trees (including
segmentation; high-level), 1 coded with illnesses (including segmentation; mid-
level), and 1 segmented by a naïve rater (low-level). Because we had so many
versions of one source, neither of which was complete on its own, we needed to
merge these files (see below).

https://r-packages.gitlab.io/rock/iROCK/
https://r-packages.gitlab.io/rock/iROCK/
https://www.sync.com/

60CHAPTER 11. USING THE ROCK FOR EPISTEMIC NETWORK ANALYSIS

11.7 Merging Coded Sources (if necessary)

If the research design and protocol call for multiple raters coding all sources,
sources need to be merged into a master document. This is necessary be-
cause the ENA interface (to be used for creating the networks) will require a
Comma-Separated Values (CSV) file to be uploaded, which contains all sources,
attributes, utterances, codes, and segmentation, together a referred to as a
“qualitative data table” with rows and columns that are ontologically consis-
tent (Shaffer, 2017). This master document can be produced with ROCK by
locating the R chunk called “# Merging sources” and running it. Provided
the attributes were listed in a separate .rock file, use the R chunk called “#
Reading merged sources” to create the CSV file comprising the master docu-
ment with attributes added. Merging coded sources may also be required if the
project is later revisited with a different set of codes by the same researcher, or
if many researchers are collaborating on the same project non-synchronously.

11.8 Creating Networks

The CSV file can be uploaded to the ENA interface (available at: http://
www.epistemicnetwork.org/) or can be further processed with rENA (available
at: https://cran.r-project.org/web/packages/rENA/index.html). A tutorial on
how to apply the QE framework and employ ENA software can be found here:
http://www.epistemicnetwork.org/resources/. You may benefit from reading
ENA tutorials and worked examples in preliminary phases of your research, as
there are other questions that need to be addressed that may, for example,
influence planning discourse segmentation in your project.

http://www.epistemicnetwork.org/
http://www.epistemicnetwork.org/
https://cran.r-project.org/web/packages/rENA/index.html
http://www.epistemicnetwork.org/resources/

Chapter 12

Using the ROCK for
Decentralized Construct
Taxonomies

12.1 Introduction to Decentralized Construct
Taxonomies

When studying humans, one must deal with the somewhat challenging fact of
life that one often does not study natural kinds. The objects of study are gen-
erally variables that are assumed to exist in people’s psychology, usually called
constructs. Those constructs are not assumed to exist as more or less modular,
discrete entities (Peters and Crutzen, 2017). Instead, these constructs concern
definitions that enable consistent measurement and consistent manipulation of
certain aspects of the human psychology, without the pretense that the con-
structs are somehow clearly distinguished from other constructs.

As a consequence, data collection and analysis in research with humans differs
fundamentally from data collection in sciences that do deal with natural kinds.
Specifically regarding qualitative data, this lack of natural kinds further com-
plicates the challenges that come with having humans code rich, messy data.
Human perception and processing is flawed enough as it is. Without the ex-
istence of discrete, modular, objectively existing entities to code, the coding
instructions become the only tangible foothold coders can rely on.

Therefore, being able to engage in the scientific endeavour with any degree
of consistency over studies requires unequivocal communication about the con-
structs under study. However, many theories do not provide sufficiently explicit
definitions of the described constructs. Instead, there is often much room for

61

62CHAPTER 12. USING THE ROCK FOR DECENTRALIZED CONSTRUCT TAXONOMIES

interpretation: room that manifests as heterogeneity in constructs’ definitions,
operationalizations, and instructions for coding the constructs.

It has been argued that this heterogeneity is a feature, not a bug. … …

To facilitate unequivocal references to specific definitions of constructs, com-
bined with coherent instructions for operationalisation and coding, Decentral-
ized Construct Taxonomy specifications (DCTs) were developed. DCTs are
simple plain text files in the YAML format that specify, for one or more con-
structs:

• A unique identifier for the construct, the Unique Construct Identifier
(UCID);

• A human-readable label (title / name) for the construct (which doesn’t
need to be unique, as the identifier is already unique);

• An exact definition of the construct;
• Instructions for developing a measurement instrument to measure the con-

struct;
• Instructions for coding measurement instruments as measurement instru-

ments that measure this construct;
• Instructions for developing a manipulation to change the construct;
• Instructions for coding manipulations as manipulations that change this

construct;
• Instructions for generating qualitative data pertaining to this construct;
• Instructions for identifying when qualitative data pertains to this con-

struct and then coding it as such.

12.1.1 Consistency over studies

DCT specifications can easily be re-used in different studies, for example in all
studies in the same lab, in the same faculty, or organisation.

12.2 Creating a DCT

12.2.1 Thinking about constructs

Creating a DCT requires knowing which construct you want to describe and
what exactly the construct is and is not. This seems trivial - most psychologists
rely on the assumption that they have sufficient tacit knowledge of the constructs
they work with. Hwoever, because this knowledge never has to be made explicit,
this assumption is never tested. Producing a DCT for a construct confronts one
with ecactly how much one knows about a construct. Based on our experience,
this is usually depressingly little.

12.2. CREATING A DCT 63

The reason for this is that theories and the textbooks describing them usually
do not provide clear definitions, either. In fact, that is one of the causes of
the heterogeneity that exists. To a degree this is inevitable because constructs
are not directly observable, and often do not represent natural kinds. But to a
degree it can be remedied - by being very explicit about a construct’s definition,
by producing a DCT. Thus, while producing a DCT may not necessarily be
easy, it is definitely worthwhile.

When creating DCTs, it is important to keep in mind that there are no objec-
tively wrong or right “answers”. After all, the constructs do not correspond to
natural kinds. Various definitions can co-exist without any of them being wrong
or right. In fact, since the constructs do not correspond to more or less discrete
or modular entities anyway, one could argue that they are all ‘wrong’ (or are all
‘right’). Given that at present, most constructs lack clear, explicit definitions,
any explicitation is progress. And DCTs can always be updated or adjusted by
updating their UCID. If you end up iterating through several versions, that’s
clear evidence that there was room for improvement in your original, implicit,
definitions.

When creating a DCT, it doesn’t matter where you start. If you have a pretty
clear idea about the construct’s definition, you start by making that explicit.
But it’s possible that while there are a number of measurement instruments for
the construct (e.g. questionnaires), there is no clear definition available. In that
case, you can start with the measurement instruments, too, and first complete
the instruction for developing measurement instruments by deriving common
principles from the measurement instruments you have.

In any case the process will be iterative. Eventually, you will complete at the
the definition of the construct, and probably at least two of the instructions
(either the instruction for developing measurement instruments and for cod-
ing measurement instruments; or for developing manipulations and for coding
manipulations; or for eliciting (‘developing’) qualitative data and for coding
qualitative data). As you complete these sections, you will probably need to
update other sections to make sure everything stays coherent.

On the surface, producing a DCT just consists of putting stuff in words. After
all, you just need to type in the construct’s name, definition, and add the
instructions that allow you (and others) to work with the construct. This can
be done within an hour. Most time is not spent on specifying the DCT in a
file, but on arricing at definitions and instructions that you and your colleagues
agree on. However, that is time well-spent.

By discussing the constructs you work with and the varying definitions that
everybody uses, you achieve consensus. If you don’t manage to achieve consen-
sus about a given construct, that’s fine of course - simply create two DCTs for
two different constructs. You can even give them the same name - as long as
they have different identifiers (UCIDs). If after these discussions, all researchers
and their supervised students within your lab use the DCTs you produced, all

64CHAPTER 12. USING THE ROCK FOR DECENTRALIZED CONSTRUCT TAXONOMIES

research will be consistent. Of course, researchers without DCTs will often as-
sume such consistency as well. And if they are right, the process of producing
DCTs should be effortless. If the process proves more cumbersome, clearly it
was necessary.

12.2.2 Creating a DCT file

To create a DCT file, you can use any software that can create plain text files,
such as Notepad, Textedit, Notepad++, BBEdit, Vim, Nano, or the RStudio
IDE. A DCT file contains one or more DCT specifications, delimited by a line
containing only three dashes (“---”). This is an example of an extremely simple
DCT specification:

dct:

dctVersion: 0.1.0
version: 1
id: chair_75vl264q
label: "Chair"
definition:

definition: "A piece of furniture designed to support a sitting human."
measure_dev:

instruction: ""
measure_code:

instruction: ""
manipulate_dev:

instruction: ""
manipulate_code:

instruction: ""
aspect_dev:

instruction: ""
aspect_code:

instruction: "Objects that have legs and a surface that was designed for humans to sit on. Note that if the object is in use, the surface's height should be such that most humans can put their feet flat on the ground while sitting on the object."
rel:

id: furniture_75vl25k8
type: "semantic_type_of"

This example only specifies the UCID, name (label), definition, and instruc-
tions for coding, as well as one relationship to another construct with UCID
“furniture_75vl25k8” that this construct is apparently a type of. These rela-
tionships are parsed when the rock package reads a set of DCT specifications,
and they are used to build a hierarchical tree of constructs (i.e. a deductive

12.3. CODING WITH DCTS 65

coding structure). You could omit these relationships of course, if you will not
need to collapse codes or fragments based on higher levels in the hierarchy.

12.2.3 Description of edge cases

Clear definitions are most valuable when edge cases are encountered. For ex-
ample, most people will have little difficulty in identifying ‘chairs’ and agreeing
whether an object is a chair even without first explicitly communicating about
and calibrating the definitions they use. It is with edge cases such as seating
furniture with one, two, or three legs, or furniture that seats two or three people,
where unclear definitions become problematic.

For example, a definition of a chair could be “A piece of furniture designed to
support a sitting human”. In this case, a bicycle would fall under this definition,
and in a qualitative study, would therefore be coded as a [[chair]]. This
example is easily solved by updating the definition to “A piece of static furniture
designed to support a sitting human”. However, in this definition, a bar stool
with one leg would also be coded as [[chair]], which in this case might fall
beyond the intended definition. Describing all specific edge cases explicitly in
the definition may make the definition unwieldy.

Therefore, the specific instructions in a DCT normally discuss edge cases ex-
plicitly, referring the user to alternative codes where appropriate. For example,
the coding instructions for coding a piece of qualitative data as [[chair]]
could include the sentence “Note that furniture without back and arm support
and having three legs or less should not be coded as [[chair]] but instead as
[[stool]].”.

Thus, coding instructions are often most useful if they do not only describe
the core of a construct, but if they pay special attention to the periphery of
a construct’s definition. Coding errors often concern ambiguity, and coding
instructions should not add to this ambiguity.

12.3 Coding with DCTs

When coding with DCTs, you code slightly differently than when you code
without DCTs. Regular codes are simply delimited by two square brackets,
e.g. [[chair]]. However, if you use DCTs, you specify this in the code:
[[dct:chair_75vl264q]]. You can still combine this with inductive coding,
for example for indicating that an important subtype of chairs are the thrones:
[[dct:chair_75vl264q>throne]]. Like normal inductive codes, you can keep
on nesting such subcodes infinitely to indicate ever more precise subconstructs,
if need be (although one level will usually suffice).

66CHAPTER 12. USING THE ROCK FOR DECENTRALIZED CONSTRUCT TAXONOMIES

12.4 Analysing DCT-coded sources

Chapter 13

Using the ROCK for
Cognitive Interviews

Content goes here

67

68 CHAPTER 13. USING THE ROCK FOR COGNITIVE INTERVIEWS

Chapter 14

References

69

70 CHAPTER 14. REFERENCES

Bibliography

Babbie, E. (2007). The Practice of Social Research. Wadsworth, Belmont.

Bressler, D., Bodzin, A., Eagan, B., and Tabatabai, S. (2019). Using epistemic
network analysis to examine discourse and scientific practice during a collab-
orative game. Journal of Science Education and Technology, 28(5):553–566.

Denzin, N. and Lincoln, Y. (2000). Handbook of Qualitative Research. Sage
Publications, Thousand Oaks.

Peters, G.-J. Y. and Crutzen, R. (2017). Pragmatic nihilism: how a Theory
of Nothing can help health psychology progress. Health Psychology Review,
11(2).

Ruis, A. R., Rosser, A. A., Quandt-Walle, C., Nathwani, J. N., Shaffer, D. W.,
and Pugh, C. M. (2018). The hands and head of a surgeon: Modeling op-
erative competency with multimodal epistemic network analysis. American
Journal of Surgery, 216(5):835–840.

Shaffer, D. (2017). Quantitative Ethnography.

Smith, J. A. and Osborn, M. (2008). Interpretative phenomenological analysis.
In Smith, J. A., editor, Qualitative psychology: A practical guide to research
methods, pages 53–80. Sage Publications, London.

71

	Introduction
	I Qualitative Research
	Qualitative research
	Qualitative Ethnography?
	Qualitative methods in psychology
	Cognitive interviews
	Reporting Qualitative Research
	Introduction
	Methods
	Results
	Discussion

	II The ROCK
	The ROCK vocabulary
	The ROCK standard
	Examples

	The rock R package
	Downloading and installing R and RStudio
	Downloading and installing the rock package
	Functions in the rock package

	The iROCK interface
	Background
	Using iROCK

	A ROCK workflow
	A basic ROCK workflow
	An extensive ROCK workflow

	Using the ROCK for Epistemic Network Analysis
	Starting point
	Planning coding
	Planning Segmentation
	Designating Source and Cases
	Designating Attributes
	Coding and Segmentation
	Merging Coded Sources (if necessary)
	Creating Networks

	Using the ROCK for Decentralized Construct Taxonomies
	Introduction to Decentralized Construct Taxonomies
	Creating a DCT
	Coding with DCTs
	Analysing DCT-coded sources

	Using the ROCK for Cognitive Interviews
	References

