

Analyzation of Weak Convergence on L^p Space Analyzation

R. Ranjitha Research Scholar, Department of Mathematics, Vivekanandha College of Arts and Sciences for Women, Tiruchengode,

Tamilnadu, India

S. Dickson

Assistant Professor, Department of Tiruchengode, Tamilnadu, India Mathematics, Vivekanandha College for Women,

J. Ravi

Assistant Professor, Department of Mathematics, Vivekanandha College for Women, Tiruchengode, Tamilnadu, India Mathematics, Vivekanandha

College for Women,

ndia Tiruchengode, Tamilnadu, India

2.2

linear space and let $f \in X$. The *norm* of f

ABSTRACT

In this paper a study on duality, weak convergences and
weak sequential compactness on L^p space. A new
generalized L^p space is investigated from the weak
sequential convergence. Some more special types and
propertie weak sequential compactness on L^p space. A new generalized L^p space is investigated from the weak sequential convergence. Some more special types and properties of L^p are presented. Few relevant examples are also included to justify the proposed notions.

Keywords: Dual space, Linear functional, Weak Convergence, Compact

1. INTRODUCTION

The L^p spaces were introduced by FrigyesRiesz [9] as part of a program to formulate for functional and mappings defined on infinite dimensional spaces dimensional spaces appropriate versions of properties possessed by by functionals and mappings defined on finite dimensional spaces. In this paper, we study the weak convergence and weak compactness on the so-called Lebesgue spaces (or L^p – spaces as they are usually called). spaces (or L^p – spaces as they are usually called).

2. **PRELIMINARIES**
 Definition 2.1

Let X be a measure space. The measurable function fis **RODUCTION**

each real number α ,

paces were introduced by FrigyesRiesz [9] as

a program to formulate for functional and ii) $||f|| \ge 0$ and $||f|| = 0$ if an

a program to formulate for functional and ii) $||f + g|| \le ||f|| + ||g||$

2. PRELIMINARIES

Definition 2.1

said to be in L^p if it is p-integrable, that is, if $\int |f|^p d\mu < \infty$. The L^p norm of f is defined by p $p \rightarrow \lambda^{1/p}$ $\left\Vert f\right\Vert _{L^{p}}=\left(\int\bigl|f\bigr|^{p}\ d\mu\right)$

Definition 2.2

Let X be a linear space and let $f \in X$. The **norm** of f is denoted by $||f||$ and it is defined as, **Example 2018** Control 1 For Space

on

on **J. Ravi**

Department of Assistant Professor, Department of

rekanandha Mathematics, Vivekanandha
 College for Women,

illnadu, India Tiruchengode, Tamilnadu, India
 efinition is denoted by $||f||$ and it is defined as,
 $||f|| = \sqrt{(f, f)}$.
 Definition 2.3

Let X be a linear space. A real-valued functional|| . ||on

Definition 2.3

X is called a norm provided for each f and g in X and each real number α ,

- i) $||f|| \ge 0$ and $||f|| = 0$ if and only if $f = 0$,
- ii) $||f+g|| \le ||f|| + ||g||$,
- iii) $\|\alpha f\| = |\alpha| \|f\|$. By a *normed linear space* we mean a linear space together with a norm.

Definition 2.4

Let $f: X \to \mathbf{R}$ be a measurable function on a measure Let X be a linear space and let $f \in X$. The **norm** of f
is denoted by $||f||$ and it is defined as,
 $||f|| = \sqrt{(f, f)}$.
Definition 2.3
Let X be a linear space. A real-valued functional $|| \cdot ||$ on
X is called a norm provided for ea ess sup f X $\sup f = \inf \{a \in \mathbb{R} : \mu[x \in X : f(x) > a] = 0\}.$ space (X, A, μ) . The *essential* supremem of f on X is

Equivalently, $\operatorname{ess} \sup_{X} f = \inf \left\{ \sup_{X} g : g = f \text{ point } w \text{ is each} \right\}$

Thus, the essential supremum of a function depends only on its μ -a.e. equivalence class. only on its μ -a.e. equivalence class.

Definition 2.4

Let (X, A, μ) be a measure space. The space $L^{\infty}(X)$ \mathbb{R} and \mathbb{R} and consists of point wise a.e.- equivalence classes of essentially bounded measurable functions $f: X \to \mathbf{R}$ with norm $||f||_{L^{\infty}} = ess \sup_{X}$ $f \big|_{I^{\infty}} = \text{ess sup} |f|$. In future, we will write ess sup $f = \sup f$.

Definition 2.5

If p and q are positive real numbers such that $p+q = pq$ or equivalently, $\frac{1}{p} + \frac{1}{q} = 1$ $\frac{p}{p}$ $\frac{p}{q}$ $+\frac{1}{-}=1$,

 $(1 < p < \infty, 1 < q < \infty)$. Then we call p and q a pair of conjugate exponents.

Definition 2.6

A sequence of function $\langle f_n \rangle$ is said to *converge to* f in the mean of order P if each f_n belongs to L^p and $f - f_n \big\|_p \to 0$.

Note:

Convergence in L^{∞} is nearly uniform convergence.

Definition 2.7

A *linear functional* on a linear space X is a real-valued function T on X such that for g and h in X and α and β real numbers,

 $T(\alpha.g + \beta.h) = \alpha. T(g) + \beta.T(h)$.

Note: 2.8

- 1. The collection of linear functionals on a linear space is itself a linear space.
- 2. A linear functional is bounded if and only if it is continuous.

Definition 2.9

Let X and Y be a normed linear spaces. An *isometric* isomorphism of X into Y is a one-one linear transformation $f : X \to Y$ such that,

$$
||f(x)|| = ||x||, \quad \text{for all } x \in X.
$$

3. WEAK SEQUENTIAL CONVERGENCE ON L^p SPACE

Some basic inequalities and results have been discussed.

Young's inequality3.1

Let $1 < p < \infty$ and let q be defined by $\frac{1}{p} + \frac{1}{p} = 1$. $\frac{p}{p}$ $\frac{p}{q}$ $+\frac{1}{-}=1$. Then, for any $a, b \ge 0$, we have $ab \le \frac{a^p}{a} + \frac{b^q}{b}$. $\frac{1}{p}$ $\frac{1}{q}$, $\leq \frac{a^r}{s} + \frac{b^r}{s}$, with equality occurring if and only if $a^{p-1} = b$.

Holder inequality 3.2

Let $1 < p < \infty$, and let q be defined by $\frac{1}{p} + \frac{1}{q} = 1$. $\frac{p}{p}$ $\frac{p}{q}$ $+\frac{1}{-}=1.1f$ $f \in L_p(E)$ and $g \in L_q(E)$ then $fg \in L_1(E)$ and $\left| \int fg \right| \leq \int |fg| \leq ||f||_p ||g||_q$. $\left|\int\limits_E fg\right|\leq \left|\int\limits_E fg\right|\leq \left|\left|f\right|\right|_p \left|\left|g\right|\right|_q.$

Lemma 3.3

Let $1 < p < \infty$. If $f, g \in L_p$, then $f + g \in L_p$ and $\sum_{p=0}^{p} \leq 2^p \left(\left\| f \right\|_{p}^{p} + \left\| g \right\|_{p}^{p} \right)$ consequently, L^p $f+g\Big\|_p^p \leq 2^p \left(\left\|f\right\|_p^p + \left\|g\right\|_p^p \right)$ consequently, L^p is a vector space.

Minkowski's Inequality 3.4

Let $1 \le p < \infty$ and let $f, g \in L_p$. Then, $f + g \in L_p$ and $f + g\|_p \leq \|f\|_p + \|g\|_p$.

Definition 3.5

Let X be a normed linear space. Then the collection of bounded linear functionals on X is a linear space on which $\|\cdot\|_*$ is a norm. This normed linear space is called the *dual space* of X and denoted by X^* .

Definition 3.6

Let X be a normed linear space. A sequence $\{f_n\}$ in X is said to *converges weakly* in X to f in X provided $\lim_{n\to\infty} T(f_n) = T(f)$ for all $T \in X^*$. We write $\{f_n\} \to f$ in X to mean that f and each f_n belong to X and ${f_n}$ converges weakly in X to f.

Definition 3.7

A subset K of a normed linear space X is said to be weakly sequentially compact in X provided every sequence $\{f_n\}$ in K has a subsequence that converges weakly to $f \in K$.

Theorem 3.8

Let E be a measurable set and $1 \le p < \infty$. Suppose ${f_n} \to f$ in $L^p(E)$. Then ${f_n}$ is bounded in $L^p(E)$ and $||f||_p \leq \lim_{p \to \infty} \inf ||f_n||_p$.

Proof:

Let q be a conjugate of p and f^* the conjugate function of f . We first establish the right-hand side on the above inequality. We infer from Holder's Inequality that

$$
\int_{E} f^* \cdot f_n \leq ||f^*||_q \cdot ||f_n||_p \text{ for all } n.
$$

$$
\int_{E} f^* \cdot f_n \leq ||f_n||_p \text{ for all } n.
$$

Since $\{f_n\}$ converges weakly to f and f^* belongs to $L^q(E),$

$$
||f||_p = \int_E f^* \cdot f_n = \lim_{n \to \infty} \int_E f^* \cdot f_n
$$

$$
||f||_p \le \lim_{n \to \infty} \inf ||f_n||_p
$$

By contradiction to show that $\{f_n\}$ is bounded in $L^p(E)$. Assume $\{||f_n||_p\}$ is unbounded. Without loss of generality, by possibly taking scalar multiples of a subsequence, we suppose

$$
||f_n||_p = n \cdot 3^n
$$
 for all $n \Rightarrow \frac{1}{3^n} ||f_n||_p = n$ for all $n \rightarrow \textcircled{1}$

We inductively select a sequence of real numbers $\{\varepsilon_k\}$ for which $\varepsilon_k = \pm \frac{1}{\lambda_k}$ $\varepsilon_k = \pm \frac{1}{3^k}$ for each k. Define $\varepsilon_1 = \frac{1}{3}$ 3 $\varepsilon_1 = \frac{1}{2}$. If *n* is a natural number for which $\varepsilon_1, \varepsilon_2, ... \varepsilon_n$ have been defined. Define Assume $\left\{\|f_n\|_p\right\}$ is unbounded. Without loss of $\left\{\|f_n\|_p\right\}$ or $\left\{\|f_n\|_p\right\}$ is unbounded. Without loss of $\left\{\|f_n\|_p\right\}$ or $\left\{\|f_n\|_p\right\}$ or $\left\{\|f_n\|_p\right\} = n$ for all $n \to \infty$
 $\left\{\sum_{k=1}^{\infty} \$ s^n for all $n \Rightarrow \frac{1}{3^n} ||f_n||_p = n$ forall $n \rightarrow 0$
 $\epsilon_k = \pm \frac{1}{3^k}$ for each k. Define $\epsilon_1 = \frac{1}{3}$. If n is a

umber $s \{ \epsilon_k \}$
 $\ge n - \left[\sum_{k=n+1}^{\infty} \frac{1}{3^k} \right] ||f_n||_p =$
 $\epsilon_k = \pm \frac{1}{3^k}$ for each k. Define $\epsilon_1 =$ We match
very select a sequence of real numbers $\{ \varepsilon_k \}$
for which $\varepsilon_k = \pm \frac{1}{3^k}$ for each k. Define $\varepsilon_i = \frac{1}{3}$. If *n* is a
natural number for which $\varepsilon_i, \varepsilon_2, ..., \varepsilon_n$ have been $\left| \int_{E} g.f_n \right| = \frac{n}{2}$.
defi

$$
\varepsilon_{n+1} = \frac{1}{3^{n+1}} \text{ if } \int_{E} \left[\sum_{k=1}^{n} \varepsilon_{k} \left(f_{n} \right)^{*} \right] f_{n+1} \ge 0 \text{ and } \varepsilon_{n+1} = -\frac{1}{3^{n+1}} \text{ if }
$$

the above integral is negative.

Therefore, by (1) and the definition of conjugate function,

$$
\left| \int_{E} \left[\sum_{k=1}^{n} \varepsilon_{k} \left(f_{k} \right)^{*} \right] f_{n} \right| \geq \frac{1}{3^{n}} \left\| f_{n} \right\|_{p}
$$

$$
\left| \int_{E} \left[\sum_{k=1}^{n} \varepsilon_{k} \left(f_{k} \right)^{*} \right] f_{n} \right| \geq n \rightarrow \infty
$$

and
$$
\left\| \varepsilon_{n} \left(f_{n} \right)^{*} \right\|_{q} = \frac{1}{3^{n}} \text{ for all } n.
$$

th and Development (IJTSRD) ISSN: 2456-6470

Since $\left\| \varepsilon_k \cdot (f_k)^* \right\|_q = \frac{1}{3^k}$ for all k, the sequence of partial

sums of the series $\sum_{k=1}^{\infty} \varepsilon_k \cdot (f_k)^*$ is a Cauchy sequencein . $\mathcal{\epsilon}_{k} \cdot (f_{k})^{*} \Big|_{q} = \frac{1}{3^{k}}$ for all k, the sequence of partial since $\|\varepsilon_k \cdot (f_k)^*\|_q = \frac{1}{3^k}$ for all k, the sequence of partial
sums of the series $\sum_{k=1}^{\infty} \varepsilon_k \cdot (f_k)^*$ is a Cauchy sequence in
 $L^q(E)$.
We know that, "If X is a measure space and $1 \le p \le \infty$, 1 $_{k}.(f_{_{k}})$ k f $^{\circ}$ $\sum_{k=1} \varepsilon_k \cdot (f_k)^*$ is a Cauchy sequencein $L^q(E)$. (IJTSRD) ISSN: 2456-6470
 $\frac{1}{k}$ for all k, the sequence of partial
 $\sum_{i=1}^{k} \varepsilon_k \cdot (f_k)^*$ is a Cauchy sequencein
 ζ is a measure space and $1 \le p \le \infty$,

splete" [2] tells us that $L^q(E)$ is
 $g \in L^q(E)$ by $g = \sum$ = $\frac{1}{3^k}$ for all k, the sequence of partial

s $\sum_{k=1}^{\infty} \varepsilon_k \cdot (f_k)^*$ is a Cauchy sequencein

f X is a measure space and $1 \le p \le \infty$,

complete" [2] tells us that $L^q(E)$ is

on $g \in L^q(E)$ by $g = \sum_{k=1}^{\infty} \varepsilon_k \$

We know that, "If X is a measure space and $1 \le p \le \infty$, then $L^p(X)$ is complete" [2] tells us that $L^q(E)$ is complete.

Define the function $g \in L^q(E)$ by $g = \sum \varepsilon_k \cdot (f_k)$. 1 $_{k}.(f_{k})$ k $g = \sum_{k=1}^{\infty} \varepsilon_k \cdot (f_k)^*$ $=\sum_{k=1}^{\infty} \varepsilon_k \cdot (f_k)^*$. Fix a natural number n .

We infer from the triangle inequality, (2) , and Holder's Inequality that

$$
|f_n| \rightarrow f \text{ in } L^n(E) \text{. Then } |f_n| = \lim_{h \to 0} \inf ||f_n||_p.
$$

\nProof:
\n
$$
L(f_k) = \lim_{h \to 0} \inf ||f_n||_p.
$$

\nProof:
\nLet g be a conjugate of p and f the conjugate function
\n
$$
L^p(E).
$$

\nProof:
\nLet g be a conjugate of p and f the conjugate function
\nwe know that, "If X is a measure space and $1 \leq p \leq \infty$,
\n
$$
\int_{E} f \cdot f_n \leq |f_n||_p
$$
 for all n .
\n
$$
\int_{E} f \cdot f_n \leq |f_n||_p
$$
 for all n .
\n
$$
\int_{E} f \cdot f_n \leq |f_n||_p
$$
 for all n .
\n
$$
\int_{E} f \cdot f_n \leq |f_n||_p
$$
 for all n .
\n
$$
\int_{E} f \cdot f_n = \lim_{h \to \infty} \int_{E} f \cdot f_n
$$
 where $\{f_n\}$ converges weakly to f and f^* belongs to
\nline functions $g \in L^q(E)$ by $g = \sum_{k=1}^{\infty} \varepsilon_k (f_k)^*$.
\n
$$
\int_{E} g \cdot f_n = \lim_{h \to \infty} \int_{E} f \cdot f_n
$$
 where f from the triangle inequality, (Q) , and Holder's
\nis
\n*f*':
\n
$$
f(f)
$$
.
\n
$$
\int_{E} g \cdot f_n = \lim_{h \to 0} \int_{E} f \cdot f_n
$$
 where f from the triangle inequality, (Q) , and Holder's
\n*f*':
\n
$$
f(f)
$$
.
\nBy contradiction to show that $\{f_n\}$ is bounded in
\n
$$
\int_{E} \left[\sum_{k=1}^{\infty} F_k(f_k)^* \right] \cdot f_n
$$
 and
\n
$$
\int_{E} f \cdot f_n = \
$$

This is a contradiction because, the sequence $\{f_n\}$ converges weakly in $L^p(E)$ and g belongs to $L^q(E)$. The sequence of real numbers $\{g.f_n\}$ E $\left\{\int\limits_{E} g.f_n\right\}$ c converges and therefore is bounded. Hence $\{f_n\}$ is bounded in L^p .

Corollary 3.9

Let E be a measurable set, $1 \le p < \infty$ and q the conjugate of p. Suppose $\{f_n\}$ converges weakly to f in $L^p(E)$

and
$$
\{g_n\}
$$
 converges strongly to g in $L^q(E)$. Then $\{f_n\} \to f$ in
\n
$$
\lim_{n \to \infty} \int_E g_n f_n = \int_E g.f
$$
\nfor all $g \in \mathcal{F}$.
\n**Proof:**

For each index n

\nInternational Journal of Trend in Scientific Research and Development (ITSRD) ISSN: 2456-6
\nand
$$
\{g_n\}
$$
 converges strongly to g in $L^q(E)$. Then $\{f_n\} \to f$ in $L^p(E)$ if and only if $\lim_{n\to\infty} \int f$ for all $g \in \mathcal{F}.\to \mathbb{Q}$.\n

\n\n**Proof:** $\text{Proof: } \text{Proof: } \text{Proof$

According to the preceding theorem, there is a constant $C \ge 0$ for which $||f_n||_p \le C$ for all *n*.

Consider
$$
\left| \int_{E} g_n \cdot f_n - \int_{E} g \cdot f \right| = \left| \int_{E} [g_n - g] \cdot f_n + \int_{E} g \cdot f_n - \int_{E} g \cdot f \right|
$$

Therefore, by Holder's Inequality,

$$
\left| \int_{E} g_n f_n - \int_{E} g f \right| \leq \left| \int_{E} [g_n - g] f_n \right| + \left| \int_{E} g f_n - \int_{E} g f \right|
$$

$$
\left| \int_{E} g_n f_n - \int_{E} g f \right| \leq C \left| g_n - g \right|_{q} + \left| \int_{E} g f_n - \int_{E} g f \right| \text{ for all } n
$$

Taking limit on both sides, we get

Taking limit on both sides, we get

$$
\lim_{n\to\infty}\left| \int_{E} g_n f_n - \int_{E} g.f \right| \le \lim_{n\to\infty} \left| C \left\| g_n - g \right\|_q + \left| \int_{E} g.f_n - \int_{E} g.f \right| \right|
$$
\n
$$
\lim_{n\to\infty} \left| \int_{E} g_n f_n - \int_{E} g.f \right| \le C \lim_{n\to\infty} \left| g_n - g \right|_q + \left| \lim_{n\to\infty} \int_{E} g.f_n - \int_{E} g.f \right| \to 0
$$
\nFrom these inequalities and the fact that both\n
$$
\lim_{n\to\infty} \left\| g_n - g \right\|_q = 0 \text{ and } \lim_{n\to\infty} \int_{E} g.f_n = \int_{E} g.f.
$$

Substitute above inequalities in equation (1) , we get

 ${\cal E}$

$$
\left|\lim_{n\to\infty}\int_{E}g_{n}f_{n}-\int_{E}g.f\right|\leq C.0+\left|\int_{E}g.f-\int_{E}g.f\right|
$$

\n
$$
\left|\lim_{n\to\infty}\int_{E}g_{n}f_{n}-\int_{E}g.f\right|=0
$$

\n
$$
\lim_{n\to\infty}\int_{E}g_{n}f_{n}-\int_{E}g.f=0
$$

\nIt follows that
$$
\lim_{n\to\infty}\int_{E}g_{n}f_{n}=\int_{E}g.f.
$$

Proposition 3.10

Let E be a measurable set, $1 \le p < \infty$, and q the conjugate of p. Assume $\mathcal F$ is a subset of $L^q(E)$ whose linear span is dense in $L^q(E)$. Let $\{f_n\}$ be a bounded sequence in $L^p(E)$ and f belong to $L^p(E)$. Then

$$
\{f_n\} \to f \text{ in } L^p(E) \text{ if and only if } \lim_{n \to \infty} \int_E f_n \cdot g = \int_E f \cdot g
$$

for all $g \in \mathcal{F} \to \mathbb{I}$

Proof:

Assume that Ω holds. To verify weak convergence, let $g_{_0}$ belong to $L^q\left(E\right)$.

We show that
$$
\lim_{n \to \infty} \int_{E} f_n g_0 = \int_{E} f \cdot g_0
$$
. Let $\varepsilon > 0$. We

must find a natural number N for which

$$
\left|\int\limits_E f_n \cdot g_0 - \int\limits_E f \cdot g_0\right| < \varepsilon \text{ if } n \ge N. \longrightarrow \textbf{(2)}
$$

Observe that for any $g \in L^q(E)$ and natural number *n*,

$$
\left\{\begin{array}{ll}\{g_n\} \text{ converges strongly to } g \text{ in } L^q(E) \text{. Then } \{f_n\} \to f \text{ in } L^p(E) \text{ if and only if } \lim_{n \to \infty} \int f_n g = \int f \cdot g \text{ for all } g \in \mathcal{F}.\text{---} \text{.}\\ \text{for all } g \in \mathcal{F}.\text{---} \
$$

$$
\left| \int_{E} f_n g_0 - \int_{E} f g_0 \right| \leq ||f_n - f||_p \cdot ||g_0 - g||_q + \left| \int_{E} f_n g - \int_{E} f g \right|.
$$

Since $\{f_n\}$ is bounded in $L^p(E)$ and the linear span of is dense in $L^q(E)$, there is a function g in this linear span for which

$$
||f_n - f||_p \cdot ||g_0 - g||_q < \frac{\varepsilon}{2}
$$
 for all *n*.

We infer from (1) , the linearity of integration, and the linearity of convergence for sequences of real numbers, that

$$
\lim_{n\to\infty}\int_E f_n g = \int_E f.g.
$$

Therefore, there is a natural number N for which

$$
\left| \int_{E} f_n \cdot g - \int_{E} f \cdot g \right| < \frac{\varepsilon}{2} \text{ if } n \ge N. \text{ It is clear that (2) holds for } \text{ this choice of } N. \text{ Therefore, } \lim_{n \to \infty} \int_{\mathbb{R}} f_n \cdot g = \int_{\mathbb{R}} f \cdot g \text{ is true}
$$

 $n\rightarrow\infty$ E for all $g \in \mathcal{F}$.

4. DUALITY ON L^p SPACE

Theorem 4.1

Suppose that (X, A, μ) is a measure space and International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN

4. DUALITY ON L^p SPACE

Let $g = (sgn f) \frac{\chi_B}{\mu(B)}$. Then $g \in L^1$

Theorem 4.1

Suppose that (X, A, μ) is a measure space and
 $1 < p \le \infty$ $f \in L^{p^1}(X)$, then $F(g) = \int fg \ d\mu$, $F(g)$ defines a bounded linear functional $F: L^p(X) \to \mathbf{R}$, It follows the and $||F||_{L^{p^*}} = ||f||_{L^{p^1}}$. If X is a σ -finite, then the same result holds for $p = 1$. Suppose that (X, A, μ) is a measure space and
 $1 < p \le \infty$. If $f \in L^{p'}(X)$, then $F(g) = \int fg \ d\mu$, $F(g) = \frac{1}{\mu(B)} \int_{g} |f| d\mu \ge$

defines a bounded linear functional $F : L^{p}(X) \rightarrow \mathbf{R}$, It follows that $||F||_{L^{p'}} \ge ||f||_{L^{p'}}$

a

Proof:

From Holder's inequality, we have for $1 \le p \le \infty$ that $\|F(g)\| \le \|f\|_{L^{p^1}} \|g\|_{L^p}$ which implies that F is a bounded linear functional on L^p with $||F||_{L^{p^*}} \le ||f||_{L^{p^1}}$.

 In proving the reverse inequality, we may assume that $f \neq 0$ (otherwise the result is trivial).

First, suppose that $1 < p < \infty$.

Proof:
\nby
$$
J:L^p(X) \to L^p(X)
$$
,
\nFrom Holder's inequality, we have for $1 \le p \le \infty$ that $J(f): g \to \int fg \ d\mu$, Is a
\n $|F(g)| \le ||f||_{L^{p^1}} ||g||_{L^{p^1}}$ which implies that F is a bounded
\nlinear functional on L^p with $||F||_{L^{p^*}} \le ||f||_{L^{p^1}}$. The following result is t
\nIn proving the reverse inequality, we may assume that
\n $f \ne 0$ (otherwise the result is trivial).
\nFirst, suppose that $1 < p < \infty$.
\nLet $g = (sgn f) \left(\frac{|f|}{||f||_{L^{p^1}}}\right)^{p^{1/p}}$. Then $g \in L^p$, since $f \in L^{p^1}$, absolutely continuous me:
\nand $||g||_{L^p} = 1$.
\n H is a closed on that if $F: L^p(X)$, the
\nadd $||g||_{L^p} = 1$.
\n H is a closed on that if $F: L^p(X)$,
\nand $||g||_{L^p} = 1$.
\n $f(g) = \int (sgn f) f \left(\frac{|f|}{||f||_{L^{p^1}}}\right)^{p^{1-1}} d\mu = ||f||_{L^{p^1}}$.
\nSince $||g||_{L^p} = 1$, we have $||F||_{L^{p^*}} \ge |F(g)|$, so that
\n $|F||_{L^p} \ge |f||_{L^p}$, where q is
\nto $L^q(X, \mu)$, where q is

Also, since

$$
\frac{p^1}{p}=p^1-1,
$$

$$
F(g) = \int (\operatorname{sgn} f) f \left(\frac{|f|}{\|f\|_{L^{p^1}}}\right)^{p^1 - 1} d\mu = \|f\|_{L^{p^1}}.
$$

Since $||g||_{L^p} = 1$, we have $||F||_{L^{p^*}} \geq |F(g)|$, so that measure, $F\|_{L^{p^*}} \geq \|f\|_{L^{p^1}}$.

If $p = \infty$, we get the same conclusion by taking $g = sgn f \in L^{\infty}$. Thus, in these cases the supremum defining $\|F\|_{L^{p^*}}$ is actually attained for a suitable function g . and $||g||_p = 1$,

Also, since $\frac{p'}{p} = p^1 - 1$, $\text{Let}(X, A, \mu)$ be a $\sigma -$
 $F(g) = \int (\text{sgn } f) f \left(\frac{|f|}{\|f\|_{L^p}} \right)^{p^1 - 1} d\mu = ||f||_{L^p}$.

Since $||g||_p = 1$, we have $||F||_{L^p} \geq |F(g)|$,
 $\text{So that } \begin{vmatrix} \text{measurable, } ||f||_q & \text{the } 1 \\ \text{function$

Suppose that $p = 1$ and X is σ -finite. For $\varepsilon > 0$, let $A = \{x \in X : |f(x)| > ||f||_{r^{\infty}} - \varepsilon\}.$

Then $0 < \mu(A) \le \infty$. Moreover, since X is σ -finite, there is an increasing sequence of sets A_n of finite measure whose union is A such that $\mu(A_n) \to \mu(A)$. So we can find a subset $B \subset A$ such that $0 < \mu(B) < \infty$.

Let
$$
g = (sgn f) \frac{\chi_B}{\mu(B)}
$$
. Then $g \in L^1(X)$ with $||g||_{L^1} = 1$,

and

$$
h \text{ and Development (IJTSRD) ISSN: 2456-6470}
$$
\n
$$
\text{Let } g = (\text{sgn } f) \frac{\chi_B}{\mu(B)}. \text{ Then } g \in L^1(X) \text{ with } \|g\|_{L^1} = 1,
$$
\n
$$
\text{and}
$$
\n
$$
F(g) = \frac{1}{\mu(B)} \int_{B} |f| d\mu \ge \|f\|_{L^{\infty}} - \varepsilon.
$$
\n
$$
\text{It follows that } ||F||_{L^{\infty}} \ge ||f||_{L^{\infty}} - \varepsilon, \text{ therefore } ||F||_{L^{\infty}} \ge ||f||_{L^{\infty}}
$$
\n
$$
\text{since } \varepsilon > 0 \text{ is arbitrary.}
$$
\n
$$
\text{This theorem shows that the map } F = J(f) \text{ defined by } J : L^{p^1}(X) \to L^p(X)^*,
$$
\n
$$
J(f) : g \to \int fg \ d\mu, \text{Is a isometry from } L^{p^1} \text{ into } L^{p^*}.
$$
\n
$$
\text{Note: 4.2}
$$

Note: 4.2

The following result is that J is onto when $1 < p < \infty$, meaning that every bounded linear functional on L^P arises in this way from an L^{p^1} - function. The proof is based on that if $F: L^p(X) \to \mathbf{R}$ is a bounded linear functional on $L^p(X)$, then $v(E) = F(\chi_E)$ defines an absolutely continuous measure on (X, A, μ) .

Lemma4.3

Let (X, A, μ) be a σ -finite measure space and $1 \le p < \infty$. For f an integrable function over X, suppose there is an $M \ge 0$ such that for every simple function g on X that vanishes outside of a set of finite measure, $\left| \int fg \, d\mu \right| \leq M \cdot \left\| g \right\|_p \dots$ $\iint_X fg \, d\mu \leq M \cdot \|g\|_p \dots (1).$ Then f belongs to $L^q(X, \mu)$, where q is conjugate of p. Moreover, $f\Big\|_q \leq M$.

Proof:

First consider the case $p > 1$. Since f is a non-negative measurable function and the measure space is σ -finite, according to the Simple Approximation Theorem, there is a sequence of simple functions $\{\varphi_n\}$, each of which vanishes outside of a set of finite measure, that converges point wise on X to $|f|$ and $0 \le \varphi_n \le |f|$ on E for all n .

Since $\{\varphi_n^q\}$ converges point wise on X to $|f|^q$.

We know that," If (X, A, μ) is a measure space and ${f_n}$ a sequence of non-negative measurable functions

on X for which ${f_n} \rightarrow f$ point wise a.e. on X and if f is measurable. Then $\int_{X} f \ d\mu \le \liminf_{x} \int_{X} f_n d\mu$." [3]

The above statement tells us that to show that $|f|^q$ is integrable and $||f||_q \leq M$ it suffices to show that

q q n X ^d ^M for all n…................................(2)

Fix a natural number n. To verify (1), we estimate the functional values of φ_n^q as follows:

q q ¹ n n n 1 . q n f ^q ⁿ 1 .sgn . ^q n f f on X…............................(3)

Define the simple function g_n by $g_n = sgn(f) \cdot \varphi_n^{q-1}$ Let $\{J_j\}_{j=1}$ be on X.

We infer from (1) and (2) that

$$
\int_{X} \varphi_n^q d\mu \le \int_{X} f \, g_n d\mu
$$
\n
$$
\int_{X} \varphi_n^q d\mu \le M \, \|g_n\|_p \, \dots \qquad (4)
$$

Since p and q are conjugate, $p(q-1) = q$ and

therefore
$$
\iint_X |g_n|^p d\mu = \int_X \varphi_n^{p(q-1)} d\mu = \int_X \varphi_n^q d\mu
$$

Thus we may rewrite (4) as
$$
\int_X \varphi_n^q d\mu \leq M \cdot \left[\int_X \varphi_n^q d\mu \right]^{1/p}
$$

For each *n*, φ_n^q is a simple function that vanishes outside of a set of finite measure and therefore it is integrable. Thus the preceding integral inequality may be rewritten as

$$
\left[\int_{X} \varphi_n^q d\mu\right]^{1-1/p} \le M.
$$

Since $1 - \frac{1}{p} = \frac{1}{q}$, we have verified (2).

It remains to consider the case $p = 1$. We must show that M is an essential upper bound for f .

We argue by contradiction.

If M is not an essential upper bound, then there is some nonzero measure.

Since X is σ -finite, we may choose a subset of X_{ε} with finite positive measure.

If we let g be the characteristic function of such a set we contradict (1).

5. WEAK SEQUENTIAL COMPACTNESS

Theorem 5.1

Let X be a separable normed linear space and $\{T_n\}$ a sequence in its dual space X^* that is bounded, that is, there is an $M \ge 0$ for which $T_n(f) \le M$. $||f||$ (1) for all f in X and all n . Then there is subsequence ${T_{n_k}}$ of ${T_n}$ and T in X^* for which $\lim_{k \to \infty} T_{n_k}(f) = T(f) \dots (2)$ for all f in X.

Proof:

 $\int_{x}^{\varphi_n^d} d\mu \leq M^q$ for all f in X and all n . Then the

Fix a natural number n. To verify (1), we estimate the

fix a natural number n. To verify (1), we estimate the

finctional values of $\varphi_n^q = \varphi_n \cdot \varphi_n^{q-$ Let $\left\{f_j\right\}_{j=1}^{\infty}$ be a countable subset of X \Box a countable subset of X that is dense in X . We infer from (1) that the sequence of real numbers ${T_n(f_1)}$ is bounded. Therefore, by the Bolzano-WeierstrassTheorem,"Every bounded sequence of real numbers has a convergent subsequence." there is a strictly increasing sequence of integers $\{s(1,n)\}\$ and a sequence in its dual space X^{*} that is bounded, that is,
there is an $M \ge 0$ for which $|T_n(f)| \le M$. $||f||$(1)
for all f in X and all n.Then there is subsequence
 $\{T_{n_k}\}$ of $\{T_n\}$ and T in X^{*} for which
 $\lim_{k \to$ for all f in X and all n.Then there is subsequence
 $\{T_{n_k}\}\$ of $\{T_n\}$ and T in X^{*} for which
 $\lim_{k\to\infty} T_{n_k}(f) = T(f)$(2) for all f in X.
 Proof:

Let $\{f_j\}_{j=1}^{\infty}$ be a countable subset of X that is dense X and all n.Then there is subsequence

{ T_n } and T in X^{*} for which
 $= T(f)$ (2) for all f in X.

e a countable subset of X that is dense in

from (1) that the sequence of real numbers

bounded. Therefore, by the Bol

 $\lim_{n \to \infty} T_{s(1,n)}(f_1) = a_1$.

EVALUATE THE MANUSE THIS WE may previous $\int_{x}^{R_{n}} |x_{n}|^{2} dx = \int_{x}^{R_{n}} \int_{x}^{R_{n}} d\mu = \int_{x}^{R_{n}} \int_{x}^{R_{n}} d\mu$ Bolzano-Weierstrass Theorem, there is a subseq

Thus we may rewrite (4) as $\int_{x}^{\theta} \int_{x}^{R_{n}} d\mu \leq M$. \int_{x We again use (1) to conclude that the sequence of real Bolzano-Weierstrass Theorem, there is a subsequence $\{s(2,n)\}\$ of $\{s(1,n)\}\$ and a number for a_2 which **Proof:**

Let $\{f_j\}_{j=1}^{\infty}$ be a countable subset of X that is dense in

X. We infer from (1) that the sequence of real numbers
 $\{T_n(f_1)\}$ is bounded. Therefore, by the Bolzano-

Weierstrass Theorem, "Every bounded $\lim_{n\to\infty} T_{s(2,n)}(f_2) = a_2$. We inductively continue this selection process to obtain a countable collection of strictly increasing sequences of natural numbers X. We infer from (1) that the sequence of real numbers
 $\{T_n(f_1)\}$ is bounded. Therefore, by the Bolzano-

WeierstrassTheorem, "Every bounded sequence of real

numbers has a convergent subsequence." there is a

strictly $\left\vert s\left(\mathbf{j},n\right) \right\vert \}_{j=1}^{\infty}$ $_{=1}$ and a sequence of real numbers $\{a_j\}$ such that for each $j, \{s (j+1, n)\}\)$ is a subsequence of numbers has a convergent subsequence." there is a
strictly increasing sequence of integers {s(1,n)} and a
number a_1 for which $\lim_{n\to\infty} T_{s(1,n)}(f_1) = a_1$.
We again use (1) to conclude that the sequence of real
numbers $\lim_{n\to\infty}T_{s(j,n)}(f_j)=a_j$. full the sequence of real number a_i for which $\lim_{n\to\infty} f_{s(1,n)}(J_1) - a_1$.

We again use (1) to conclude that the sequence of real

numbers $\{T_{s(1,n)}(f_2)\}$ is bounded and so again by the

Bolzano-Weierstrass Theorem, Bolzano-Weierstrass Theorem, there is a subsequence

{ $s(2,n)$ } of { $s(1,n)$ } and a number for a_2 which
 $\lim_{n\to\infty} T_{s(2,n)}(f_2) = a_2$. We inductively continue this

selection process to obtain a countable collection of
 { $\sum_{n\to\infty} T_{n_k}(f)$ } or { $\sum_{n\to\infty} T_{n_k}(f)$ } and a number for a_2 which $\lim_{n\to\infty} T_{s(2,n)}(f_2) = a_2$. We inductively continue this selection process to obtain a countable collection of strictly increasing sequences of

 $^{\circ}$ $\{s(j,k)\}\$ and hence $\lim_{k \to \infty} T_{n_k}(f_j) = a_j$ for all j. Since $\{T_{n_k}\}\$ is bounded in X . The real numbers are complete. Therefore we may define

$$
T(f) = \lim_{k \to \infty} T_{n_k}(f)
$$
 for all $f \in X$.

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1147

Since each T_{n_k} is linear, the limit functional T is linear.

Since $\left|T_{n_k}(f)\right| \leq M.\|f\|$ for all k and all $f \in X$, $\left|T(f)\right| = \lim_{k \to \infty} \left|T_{n_k}(f)\right| \leq M \cdot ||f||$ for all $f \in X$

Therefore T is bounded.

Note 5.2:

The following theorem tells the existence of week sequential compactness on L^p space

Theorem 5.3

Let E be a measurable set and $1 < p < \infty$. Then every bounded sequence in $L^p(E)$ has a subsequence that converges weakly in $L^p(E)$ to a function in $L^p(E)$. But (1)means

Proof:

Let q be the conjugate of p. Let $\{f_n\}$ be a bounded sequence in $L^p(E)$. Define $X = L^q(E)$.

Let *n* be a natural number. Define the functional T_n on X by $T_n(g) = \int f_n g$ for g in X E $T_n(g) = \int f_n g$ for g in $X = L^q(E)$.

We use the statement, "Let E be a measurable set, $1 \le p < \infty$, q the conjugate of p and g belong to $L^q(E)$. Define the functional T on $L^p(E)$ by subsequently

$$
T(f) = \int_E g.f \text{ for all } f \in L^p(E).
$$

Then T is a bounded linear functional on $L^p(E)$ and **6. CONCLU** $T \parallel_* = \parallel g \parallel_q$."

Now p and q interchanged and the observation that p is the conjugate of q , tells us that each T_n is a bounded linear functional on X and $||T_n||_* = ||f_n||_p$

Since $\{f_n\}$ is a bounded sequence in $L^p(E)$, $\{T_n\}$ is a bounded sequence in X^* .

Moreover, according to " A function f on a closed, bounded interval $[a, b]$ is absolutely continuous on $[a,b]$ if and if only if it is an indefinite integral over $[a, b]$." [3]

Since $1 < q < \infty$, $X = L^q(E)$ is separable.

Therefore, by "Let X be a separable normed linear space and $\{T_n\}$ a sequence in its dual space X^* that is bounded, that is, there is an $M \ge 0$ for which $T_n(f) \leq M \cdot ||f||$ for all f in X and all n".

Then there is subsequence $\left\{T_{n_k}\right\}$ of $\left\{T_n\right\}$ and T in X^* for which $\lim_{k \to \infty} T_{n_k}(f) = T(f)$ for all f in X ."There is a subsequence $\left\{T_{n_k}\right\}$ and $T \in X^*$ such that $\lim_{k \to \infty} T_{n_k}(g) = T(g)$ for all g in $X = L^q(E)...(1)$ The Riesz Representation Theorem, with p and q interchanged, tells us that there is a function f in $L^p(E)$ for which $T(g) = \int f \cdot g$ for all g in X E $T(g) = \int f \cdot g$ for all g in $X = L^q(E)$. But (1) means that $\lim_{k \to \infty} \int_{E} f_{n_k} \cdot g = \int_{E} f \cdot g$ for $\lim_{n \to \infty} \int f_{n_k} g = \int f \cdot g$ for all g in

$$
X = L^{q}(E) \lim_{n \to \infty} \int_{E} g.f_n = \int_{E} g.f
$$

According to" Let E be a measurable set, $1 \le p < \infty$ and q the conjugate of p. Then $\{f_n\} \to f$ in $L^p(E)$ if and only iffor all $g \in L^q(E)$."

Therefore $\left\{f_{_{n_{_{k}}}}\right\}$ converges weakly to f in $L^{p}\left(E\right) .$

Hence every bounded sequence in $L^p(E)$ has a subsequence that converges weakly in $L^p(E)$ to a function in $L^p(E)$.

6. CONCLUSION

In this paper the duality, weak convergences and weak sequential compactness on L^p space has been discussed. A new generalized L^p space viz. theorem of compactness on L^p spaceare investigated. We hope that the space will be a powerful tool to study the various properties of lebesgue space and this endeavor is a small step towards that goal.

REFERENCES

- 1. Novinger, W.P [1992], Mean convergence in Lp spaces, Proceedings of the American Mathematical Society, 34, 627-628.
- 2. Walter Rudin [1966], Real and complex analysis, 3rdedition, Tata McGraw Hill, New York, 1987.
- 3. Roydon, H.L[1963], Real Analysis, $3rd$ edition, Macmillan, New York, 1988.
- 4. Jain P.K, Gupta V.P and Pankaj Jain, Lebesgue Measure And Integration, 2nd edition, New Age International (P) Limited, New Delhi.
- 5. Carothers N.L, Real Analysis, Cambridge University press, UK.
- 6. Karunakaran .V, Real Analysis, Pearson, India, www.pearsoned.co.in/vkarunakaran.
- 7. Royden H.L, and Fitzpatrick P.M, Real Analysis, 4th edition, Pearson India Education Services Pvt. Ltd. India, www.peaeson.co.in.
- 8. FrigyesRiesz and BelaSz-Nagy, Functional Analysis,Dover, 1990.