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Abstract—The growing share of Distributed Generators (DG)
brings with it a fundamental change in dispatchability and loca-
tion of the overall power generation portfolio. A significant share
of DGs are renewable-based and connected to the distribution
system, replacing the conventional generators placed at high volt-
age levels. With this fundamental shift in the power system, more
active approaches to distribution system operation are required.
In this paper the authors propose a model to utilize distributed
flexibilities to locally balance power generation and demand,
minimizing the power exchange between low and medium voltage
levels. The proposed model is applied to several low voltage
networks in the German distribution system. Simulation results
show that the proposed model decreases the peak load in tested
LV networks by 2.6-12.5%, and leads to an overall flattening of
the load profile.

I. INTRODUCTION

Increasing share of distributed generation in the European
power systems has given rise to a number of challenges in
the distribution grid, such as voltage deviations, equipment
overload, network robustness issues, and reverse power flows
[1, 2]. One way to deal with the challenges of distributed
generation and at the same time increase their share is
reinforcing the distribution grid, based on a design that allows
bidirectional power flows and high DG without encountering
voltage instability. Since this approach requires large
investments, a great deal of research projects, both academic
and industrial R&D, are focused on finding alternative
solutions. InterFlex is a project initiated by the European
Commission, with the objective to empower distribution
system operators (DSOs) in their transition towards more
flexible local energy systems. As part of Avacon Netz has
defined a use case with the purpose of evaluating the affects
of local balancing on the performance of the distribution
system.

Local balancing of the distribution system is proposed in
[3] as a means to decrease the stress that DG put on the
distribution system. That is, [3] proposes an active distribution
management approach based on economic dispatch, by using
an objective function that minimizes system operation costs,
taking into account the voltage and power constraints of the

network. The German Renewable Energy Act (EEG), enables 
distributed RES-based generators to inject power into the 
grid without being included in an active dispatch mechanism 
to enhance the integration of RES-based generation. To 
comply with EEG, and to further promote RES, an alternative 
approach for local balancing is proposed and evaluated 
in this paper. The proposed model utilizes the flexibility 
provided by heat pumps and Electrical Energy Storage (EES) 
devices owned by residential customers, to increase the 
load-generation balance at LV level, and thereby decrease 
power exchange with, and the loading of MV and HV feeders.

Numerous models for utilizing distributed flexibilities have 
been presented and analyzed in the available literature. The 
models can be broadly classified into real-time and day-ahead 
approaches. In a real-time model, the system keeps a regularly 
updated list of available flexibilities a nd a ctivates t hem as 
per need, e.g. when voltage or power limits are exceeded as 
demonstrated in [4], or to match the RES-based generation 
as demonstrated in [5, 6]. The simulation results in [5] show 
that in cases where local generation exceeds local load, a 
real-time approach might result in an overall increase in 
power consumption. To avoid this, and to ensure optimal 
resource allocation, a day-ahead approach is adopted here.

For day-ahead scheduling, the majority of the available 
literature use methods based on optimization. Among these, 
the most frequent objective functions are cost minimization 
and profit m aximization d epending o n t he p oint o f v iew of 
the decision maker, [7–12]. Models for using optimization 
to improve system performance, e.g. through peak clipping 
and valley filling [ 13, 1 4] o r m inimizing l oad variance 
[15] are also available, but less frequent. A method for 
increasing PV-power injection in low-voltage networks has 
been proposed in [16]. The method in [16] however, unlike 
the method proposed here, is based on hourly price signals, 
whereas the demand-side management program used here is 
incentive based, i.e. the market prices do not affect the DSO 
decisions.

As previously described, the objective of this paper is 
increasing the local load-generation balance. For this purpose,



a novel model based on numerical methods is developed.
The model creates a day-ahead schedule for distributed
flexibilities by allocating the available flexibility resources to
the hours with highest load-generation mismatch to decrease
the power exchange with the upstream network. The designed
algorithm adopt an iterative method for allocating flexibilities
to ensure that the flexibility-activation schedule does not
cause additional fluctuations in the load profile. The algorithm
proposed here has an effect similar to the algorithm proposed
in [5]. To the best of the authors’ knowledge, local balancing
of low-voltage networks using distributed flexibility resources
independent of price signals and generation costs are lacking
in the literature.

II. METHODOLOGY

The flexibilities utilized in this use case are electrical heat
pumps and EES devices. This section provides a detailed
description of the operational principle of these devices, and
the algorithm used for local balancing.

A. Electrical heat pumps

The heat pumps are modeled as in [17], where the indoor
temperature at the end of each control period t is given by:

θt = εθt−1 + (1− ε)(θAt + ηCOPt

PHPt

A
) (1)

0 ≤ PHPt (2)

θmin ≤ θt ≤ θmax (3)

ε = exp[−∆t/TC] (4)

where
θt [◦C]: indoor temperature at the end of period t,
θAt [◦C]: ambient temperature during period t,
PHPt [kW ]: active power consumed by the heater
ηCOPt : coefficient of performance (COP) of the heater,
A [kW/◦C]: overall thermal conductivity of the building,
ε: factor of inertia,
∆t [h]: duration of one control period t,
TC: time constant of the system.
θmin and θmax: lower and upper limits of the thermal comfort
zone specified in Table II.

B. Electrical Energy Storage

The operational principle of EES, as defined in [9, 18], is
given by

EEESt = EEESt−1 + ηEESPEESt ∆t (5)

EEESmin ≤ EEESt ≤ EEESmax (6)
PEESt ≤ PEESmax (7)

EEESmin = 0.05EEESr EEESmax = 0.95EEESr (8)

where
EEESt [kWh]: energy stored in the battery at the end of t,
ηEES : charging efficiency of the battery,

PEESt [kW]: power input of the ESS during t,
PEESmax [kW]: maximum charging/discharging power,
EEESmin and EEESmax recommended lower and upper limits of
EEESt [9]

Depending on whether the EES is being charged or dis-
charged, PEESk has a positive or negative value respectively.

C. Scheduling algorithm

As previously mentioned, the model proposed here creates
day-ahead schedules for heat pumps and EES devices, by
allocating the flexibility sources to time periods with highest
local load-generation mismatch. The day-ahead schedules are
created based on load, generation, and temperature forecasts,
and perfect forecasting is assumed. The algorithms for
EES charging, EES discharging, and heat pump activation
are provided in Algorithm 1, Algorithm 2, and Algorithm
3 respectively. The following sections provide a detailed
description over the functionalities of each algorithm. These
algorithms are described in the same order that they are
implemented. The forecasted net load is in each step updated,
and passed on to the next algorithm.

1) EES Charging: To increase the local load-generation
balance, the algorithm seeks to charge the EES during the
time periods when local net load

Pnet = PLoad − PDG (9)

is at its lowest. Here, PLoad and PDG are the local load and
generation respectively. Charging all EES capacity in one or
two time periods could potentially create fluctuations in the
load profile. In order to avoid this, an iterative method is
proposed. With this method, during each iteration, the time
period with lowest net load is identified and a fraction of the
available storage capacity is schedule to be charged during that
time period, t. The forecasted net load of that time period is
updated, taking into account the scheduled EES charging, and
a new minimum is identified for allocation of the next fraction
of storage capacity. The number of iterations are chosen such
that the EES-charging schedule creates as small fluctuations
as possible.

The algorithm for EES charging consists of several nested
loops. The main loop is the Iteration-accession loop, which
creates an empty array to store the indices of the modified time
periods, and passes it on to the Capacity-allocation loop. This
while loop starts by calculating a fraction of EES capacity,
CEESfraction, to be allocated during each iteration. An array
containing the local net-load, Pnet = PLoad +PEES −PDG
is then created/updated. The time period with lowest net load,
t, is then identified and stored in the array containing the
modified indices, Indmodified. The allocated EES capacity,
∆EES is chosen such that the following three conditions are
met:

• ∆EES ≤ CEESfraction

• the EES does not store more than is locally produced
• PEESt ≤ PEESmax
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Algorithm 1 Algorithm for EES charging
Input: PDG, PLoad, CEES , tolu, tolex
Output: EES charging schedule EEES

Initialisation :
Define tolfluct, e, Iterate = 1, isgood = 0

1: while isgood = 0 (Iteration-accession loop) do
2: Create an empty array to save the indices of the

modified time-periods, IndCH=[ ]
3: Create an array to save the EES charging schedule,

EEES = [0, ..., 0]
4: while min(CEES , sum(PDG)) > tolc (Capacity-

allocation loop) do
5: At each iteration, allocate a fraction of the available

EES capacity
CEESfraction = CEES

Iterate

6: PEES = EEES/∆t
7: Pnet = PLoad + PEES − PDG
8: Find the net load for the time-periods with nonzero

generation, and available EES power capacity
Pnetsearch = {Pnet|PDG 6= 0&PEESt < PEESmax }

9: Find the time period with lowest net load Pmint =
min(Pnetsearch)

10: IndCH=[IndCH, t]
11: ∆EES = min{CEESfraction, P

DG
t ∆t, (PEESt −

PEESmax )∆t}
12: Update PEESt , PDGt , and CEES

13: end while
14: Update Pnet, and EEES

15: Remove doubles from IndCH
16: Define a counter Fluct=0
17: for (t ∈ IndCH) (Fluctuation-counting loop) do
18: if (Pnett − Pnett−1 > tolfluct) or (Pnett − Pnett+1 >

tolfluct) then
19: Fluct=Fluct+1
20: end if
21: end for
22: if (Fluct > 0) then
23: if iterate is too large then
24: tolfluct = tolfluct + e
25: end if
26: Iterate = Iterate+ 1
27: else
28: isgood = 1
29: end if
30: end while

The Capacity-allocation loop then updates CEES , PDG,
and PEES . PDG is updated to make sure that the algorithm
does not store more energy than is locally produced and the
loop is repeated until either the unallocated part of CEES or
the generated power that has not been stored is smaller than
a tolerance value tolc. This value is given by

tolc = EEESr − EEESmax (10)

When the Capacity-allocation loop has finished running, the
net load, Pnet is updated, taking into account the EES

charging schedule. The Fluctuation-counting loop is then used
to count the number of fluctuations in Pnet created during the
modified time periods. To ensure that the algorithm always
converges, a tolerance value, tolfluct, is used, i.e. if the power
fluctuation is less than tolfluct, the fluctuation is neglected.
If the EES charging schedule causes power fluctuations, the
algorithm checks to see whether the number of iterations
has exceeded a preset value, and in that case increases the
tolerance for fluctuations. The number of iterations is increased
and the Iteration-accession loop is repeated. If the fluctuations
caused by EES charging are negligible, the algorithm exits the
Iteration-accession loop.

2) EES Discharging: The EES discharging algorithm,
similar to the charging algorithm, seeks to increase the local
load-generation balance by discharging the EES when local
net load, Pnet, is at its highest. In order to avoid causing
fluctuations in the power profile, this algorithm also adopts
an iterative method, during which, a fraction of the available
stored capacity is scheduled to be discharged during each
iteration. The number of iterations are then successively in-
creased until the obtained discharging schedule causes as small
fluctuations as possible.

The discharging algorithm also contains an Iteration-
accession loop, which calculates the EES power input, PEES ,
the total available stored energy, Estored, and creates an
empty array to store the indices of the modified time-periods,
Indmodified. The second main loop is the Energy-allocation
loop which starts by calculating a fraction of the stored energy,
Estoredfraction, to be allocated during each iteration. The array,
Pnetsearch is then created to limit the search to time periods
during which the state of charge of the EES, SOCEES , is non-
zero and the discharging power of the EES has not reached its
limit. The time-period, t, with highest net-load is identified and
saved to IndDC . The amount of stored energy to be allocated,
∆EES is then chosen such that

• ∆EES ≤ Estoredfraction

• the EES does not discharge more than is locally con-
sumed

• |Pnett | ≤ PEESmax

The Energy-allocation loop then updates Pnet, PEESt ,
Estored, and SOCEES , and repeats until either the unallocated
part of Estored, or the net load is smaller than the tolerance
value toldc.The tolerance is given by

toldc = EEESr − EEESmin (11)

Similar to the charging algorithm, when the Energy-
allocation loop has finished running, the Fluctuation-counting
loop is then used to count the number of fluctuations in Pnet

created during the modified time periods. Similarly, a tolerance
value, tolfluct, is used to exclude the oscillations that are
smaller than tolfluct. If the fluctuations are negligible, the
algorithm exits the Iteration-accession loop. Otherwise, the
number of iterations is increased and the algorithm is repeated.

3



Algorithm 2 Algorithm for EES discharging
Input: SOCEES , Pnet, EEES , tolu
Output: EES discharging schedule

Initialisation :
Define tolfluct, e, Iterate = 1, isgood = 0, calculate
SOCEES

1: while isgood = 0 (Iteration-accession loop) do
2: IndDC=[ ]
3: PEES = EEES/∆t
4: EStored = sum(EEES)
5: while min(EStored, Pnet) > toldc (Energy-allocation

loop) do
6: At each iteration, allocate a fraction of the stored

energy
Estoredfraction = Estored

Iterate

7: Pnetsearch = {Pnet|SOCEES 6= 0&|PEESt | ≤
PEESmax }

8: Find Pmaxt = max(Pnetsearch)
9: IndDCd=[IndDC, t]

10: ∆EES = min{Estoredfraction, P
net
t ∆t, (|PEESt | −

PEESmax )∆t}
11: Update Pnett , PEESt , Estored, and SOCEES

12: end while
13: Remove doubles from IndDC
14: Define a counter Fluct=0
15: for t ∈ IndDC (Fluctuation-counting loop) do
16: if ((Pnett−1 − Pnett ) > tolfluct) or ((Pnett+1 − Pnett ) >

tolfluct) then
17: Fluct=Fluct+1
18: end if
19: end for
20: if Fluct>0 then
21: if Iterate is too large then
22: tolfluct = tolfluct + e
23: end if
24: Iterate = Iterate+ 1
25: else
26: isgood = 1
27: end if
28: end while

3) Heat-Pump Activation: One of the challenges with ther-
mostatically controlled loads is the load rebound. Assuming
that in the absence of DSM, the indoor temperature is kept at
the reference temperature θref , if the DSM program decreases
the temperature for peak hours, the heating system corrects
the low indoor temperature at the end of the peak hours
by increasing the heat pump power consumption, causing
a rebound. To avoid this, we propose using PHP as the
controlled variable, instead of the indoor temperature. For this
purpose, three arrays are created:

• PHPmin: the power needed to keep the indoor temperature
at θmin

• PHPref : the power needed to keep the indoor temperature

Table I
THERMODYNAMIC PARAMETERS OF BUILDINGS

Parameter Symbol Value Unit
System time constant TC 25 h
Thermal conductivity A 0.14 kW/◦C

at θref = θmin+θmax

2
• PHPmax: the power needed to keep the indoor temperature

at θmax
Using Equation 1, we obtain

PHPref =

T∑
t=1

(
A

ηCOPt

)(θref − θAt ) (12)

PHPmin and PHPmax are obtained by replacing θref in Equation
12 with θmin and θmax respectively. Using PHPref as the
default setting, the algorithm changes PHPt for peak hours
to the corresponding values in PHPmin, and for the hours with
low net load to their corresponding values in PHPmax. These
hours are selected using IndCH and IndDC created by the
EES charging and discharging algorithms. The heat-pump
activation algorithm then calculates the indoor temperature θt
for each hour using Equation 1, and corrects the heat pump
schedule for the time periods when the indoor temperature is
outside the comfort zone.

Algorithm 3 Algorithm for heat-pump activation
Input: Pnet, θref , θmax, θmin
Output: Heat pump activation schedule

Initialisation :
Calculate PHPmin, PHPmax, PHPref

set PHP = PHPref

1: for (i in IndCH ) do
2: PHPt = PHPt,max

3: end for
4: for (i in IndDH ) do
5: PHPt = PHPt,min

6: end for
7: for t in T do
8: Calculate θt
9: if θt < θmin or θt > θmax then

10: Modify PHPt

11: end if
12: end for

III. MODEL IMPLEMENTATION

A. Thermodynamic parameters

The model used to calculate the indoor temperature as a
function of the electricity consumption of the heater is given
in Equation 1. Values corresponding to the time constant and
the thermal conductivity of a typical building are taken from
[17] and presented in Table I.
Table II shows the thermal comfort zones for indoor spaces,

specified by the ASHRAE standard [19] Here, we use the
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model proposed in [17] and disregard the humidity.

Table II
THERMAL COMFORT ZONES

Summer Winter
Indoor Air Temperature 23-26◦C 20-24◦C

The coefficient of performance (COP) is the main factor
of interest for evaluating the performance of heat pumps
and depends on the temperature difference between the two
working environments [20]. The Swedish Energy Agency,
Energimyndigheten, performed a series of tests between 2009
and 2013 on 19 different heat pumps [21]. For each heat pump,
COP was calculated for four different outdoor temperatures.
The mean values of COP at each temperature for these 19
cases are presented in Table III. o obtain the COP for a wider
range of temperatures, it is assumed that the polynomial has
constant slope between -20◦C and -7◦C, and between 2◦C and
15◦C. Linear interpolation is then used to acquire ηCOP for
each specific ambient temperature.

Table III
AVERAGE COP OF TESTED HEAT PUMPS

Outdoor
Temperature −15◦C −7◦C 2◦C 7◦C

COP 2.27 2.53 2.79 3.48

B. EES Parameters

The efficiency of ESS depends on the technology used,
and varies between 0.7 and 0.98 [22]. The storage capacity
and the rated power of the EES strongly depends on the
manufacturing. The technical data of three commercial home
battery systems are presented in Table IV. For the simulations
in this thesis, the averages of the parameters of these three
models are used, presented in the last row of Table IV.

Table IV
EES TECHNICAL DATA

EEES
r PEES

max ηEES

[kWh] [kW] [%]
E.ON Aura 4.4 2.5 92
Tesla Powerwall 13.5 7 90
Sonnenbatterie 8.0 3.3 98
Test model 8.63 4.27 93.3

C. Test area

In order to evaluate the effects of the proposed model,
the model is applied to measured grid data of Avacon Netz
GmbH. For the simulations, an MV feeder in InterFlex test
area is selected. The feeder connects 65 LV networks. The
model is applied to eight of these LV networks where the
concentration of InterFlex customers is high. Table V provides
an overview of the Installed PV capacity, number of household
connections, and number of heat pumps and EES owned by
InterFlex customers.

Table V
INTERFLEX LOW-VOLTAGE NETWORKS

PV Household Heat Pumps EES
Bus
number [MW] connections Case

A Case B Case
A Case B

1 0.011 125 2 38 1 3
2 0.08 105 3 28 1 6
3 0.026 104 2 31 1 4
4 0.044 93 2 21 1 6
5 0.153 59 1 13 1 3
6 0.080 54 4 17 2 2
7 0.070 187 3 52 1 13
8 0.079 126 2 23 1 6

D. Simulation cases

The system is simulated for three different cases, as de-
scribed below:

• Base Case: this corresponds to the status quo of the
system

• Case A: the proposed model is applied to the devices that
are currently available to InterFlex

• Case B: based on an estimation performed by Avacon
Netz, the number of heat pumps available to InterFlex
corresponds to 8% of the total number of residential heat
pumps in the test area. For Case B, it is assumed that all
PV generators are equipped with EES and the proposed
model is applied to all the heat pumps and EES devices
available in the area. To estimate the total number of
heat pumps in each LV network, i.e. to go from the
approximate 8% utilized in Case A to utilizing 100%
of the heat pumps, the number of heat pumps in each
network is scaled with a factor of 12.5. The number of
heat pumps is then distributed among LV networks with
respect to the number of residential customers in each
network.

For all three cases, simulations are performed for the
following two days:

• Day 1: the day with highest PV generation. This occurred
on a weekday in summer

• Day 2: a weekday in winter
Each simulation is performed over a 24h period with 15-
minute intervals:

∆t = 15minutes T = 96

To evaluate the collective affect of the peak reductions, the
active power loading of the MV feeder is also analyzed for
the different cases. For this purpose we also look at the load
factor of the MV feeder, given by [23]

Load Factor =
Average Load

Peak Load
(13)

IV. RESULTS

A. Base Case, status quo

As previously mentioned, eight LV networks are used for the
simulations in this study. Figures 1 and 2 show the net load for
each network during Day 1 and 2. The load of each network
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includes the residential load and the total power consumption
of the heat pumps in the area. It can be seen that during the day
with highest PV generation, the net load in bus 5 is negative,
i.e. this network might cause reverse power flows on days with
high PV generation. The effect of the model on the reverse
power flow in Bus 5 is analyzed in Section IV-E. The load
variations are clear in all eight networks, with distinct evening
peaks.

Figure 1. Net Load of InterFlex Buses, Day 1 (summer)

Figure 2. Net Load of InterFlex Buses, Day 2 (winter)

B. Case A, InterFlex flexibilities
The proposed model is applied to the buses in Table V.

Table VI shows the reduction in peak load for each bus caused
by the heat pump and EES schedules both in [kW] and as a
percentage. It can be seen that the proposed model reduces the
peak load of each network with 6.98-12.37 kW,alternatively by
2.43-8.51%.

Table VI
PEAK REDUCTION IN CASE A

Day 1 Day 2
Bus
number [kW] [%] [kW] [%]

1 9.83 2.91 10.76 3.13
2 7.33 2.84 10.13 3.57
3 7.76 2.83 10.08 3.54
4 8.54 3.60 9.71 3.89
5 6.98 5.36 8.02 5.08
6 10.71 8.51 11.36 7.70
7 11.94 2.46 12.37 2.43
8 8.66 2.76 10.80 3.24

Table VII
PEAK REDUCTION IN CASE B

Day 1 Day 2
Bus
number [kW] [%] [kW] [%]

1 17.66 5.22 17.98 5.24
2 25.90 10.03 31.87 11.23
3 19.29 7.05 23.08 8.10
4 26.10 11.01 30.76 12.34
5 14.95 11.48 16.88 10.69
6 10.81 8.60 11.88 8.05
7 54.15 11.18 56.83 11.16
8 28.24 9.00 34.48 10.34

C. Case B, potential flexibilities

For the simulations in Case B, all the available heat pumps 
and EES devices in the test area are utilized. The reductions 
in peak load are demonstrated in Table VII in kW , and as 
a percentage of original peak load. It can be seen that the 
peak reductions in Case B vary between 10.81-56.83 kW, and 
5.22-12.34%.

D. Loading of the medium-voltage feeder

Figures 3 and 4 show the active power loading of the MV 
feeder that connects the InterFlex buses. For the analysis in 
this case, it is assumed that the InterFlex buses are the only 
buses connected to the feeder. It can be seen that the proposed 
model has a peak shaving and valley filling effect, resulting 
in an overall flattening of the load profile. It can also be seen 
that for both days, the effects in Case B are more substantial, 
which was anticipated since the number of flexible devices is 
higher in Case B compared to Case A.

An overview of the effects of local balancing on the MV 
feeder is provided in Table VIII. The load factor is obtained 
as specified by Equation 13. Note that the peak reduction for 
the MV feeder does not equal the sum of all peak reductions 
in the LV networks, because the net load in the LV networks 
do not reach their peak values simultaneously.
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Figure 3. Active Power Loading of the Medium-Voltage Feeder Day 1
(summer)

Table IX
REVERSE POWER IN BUS 5, DAY 1

Peak [kW] Sum [kW] Duration
[minutes]

Base Case 33.08 353.31 255
Case A 28.76 317.63 255
Case B 19.54 239.35 255

Table VIII
PEAK REDUCTION AND LOAD FACTOR OF THE MV FEEDER

Peak Reduction
[kW] [%] Load Factor

Day 1
Base Case 0.61
Case A 48.92 2.29 0.63
Case B 173.47 8.13 0.67

Day 2
Base Case 0.61
Case A 83.81 3.63 0.63
Case B 230.71 9.99 0.68

E. Reverse power flow

As it was demonstrated in Figure 1, the PV generation in
Bus 5 causes reverse power flows on Day 1. Figure 5 shows
Pnet for Bus 5 during Day 1, for all three cases.

As it can be seen in the Figure, the proposed model
decreases both the reverse power flow and the peak load of Bus
5. The values of the reverse power flow are provided in more
detail in Table IX. The results show that the model decreases
the peak reverse power with 13.06% in Case A and 40.93%
in Case B. The model also reduces the total amount of reverse
power by 10.10% and 32.25% in Case A and B respectively.
The model however, does not affect the duration of reverse
power flow.

V. CONCLUSION

In this paper, a model for day-ahead scheduling of heat
pumps and EES based on numerical methods was proposed.

Figure 4. Active Power Loading of the Medium-Voltage Feeder, Day 2
(winter)

Figure 5. Net Load of Bus 5, Day 1 (summer)

The objective of the model is locally balancing the LV
networks and thereby decreasing the loading of higher-voltage
equipment. The proposed model was applied to eight LV net-
works in the InterFlex test area, based on measured grid data of
Avacon Netz GmbH. Two sets of simulations were performed:
Case A considering the devices available to InterFlex, and
Case B taking into account all the heat pumps and EES in
said area. The model proved effective in reducing the peak
load of LV networks, resulting in an overall decrease of the
loading on the MV feeder connecting these LV networks. The
model also showed promising results on decreasing the load
factor of the MV feeder, and in reducing reverse power flows
caused by high local generation.

Potential future work includes sensitivity analysis to eval-
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uate the effects of the different parameters such as local
generation, number of heat pumps and EES capacity on the
model. An economical analysis can also be performed to
evaluate the effects of the model on the operational and capital
expenditure of distribution system operation.
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