

An EU-Canada joint infrastructure

for next-generation multi-Study Heart research

Deliverable D2.1:

Initial infrastructure framework and
documentation

Reference D2.1_euCanSHare_BSC_07112019

Lead Beneficiary BSC

Author(s) Josep Ll. Gelpí, Laia Codó, Alejandro Canosa

Dissemination level Public

Type Report

Official Delivery Date 30th November 2019

Date of validation by the WP Leader 28th November 2019

Date of validation by the Coordinator 29th November 2019

Signature of the Coordinator

euCanSHare is funded by the European Union’s H2020 Framework

under Grant Agreement 825903.

2

Version Log

Issue Date Version Involved Comments

 19th Nov 2019 0.2 BSC Initial complete draft.

20th Nov 2019 UB First review

27th Nov 2019 UB Review by Project Manager and Project
Coordinator

29th Nov 2019 1.0 BSC Revised and corrected final version.

Executive Summary

EuCanSHare aims to establish a unified environment for cardiovascular data sharing and

analysis. The euCanSHare data platform will provide support for i) a unified Data Catalogue

combining in a single site all data managed by the project; ii) a platform to manage data access

credentials; iii) a computational platform that combines controlled access to data, analysis and

visualization tools.

This document describes the technological foundations of the euCanSHare data portal. It is a

cloud-based environment providing the computational infrastructure for data management and

analysis, an authentication and authorization system, and the necessary user interfaces. The

document is organized as follows: Section 1 describes the motivation and overall strategy;

section 2 summarizes the design of the infrastructure; software components are described in

detail in section 3 and finally, section 4 outlines the development roadmap until the release of

the first complete prototype (M24).

3

Table of Contents

1 Introduction 4

1.1 Motivation and strategy 4

1.2 Background 4

2 Computational infrastructure initial design 5

2.1 Conceptual design 5

2.2 Infrastructure technical design 6

3 Software components 8

3.1 Cloud infrastructure 8

3.3.1 Authentication 11

3.3.2 Personal workspace 12

Getting data 12

The workspace 13

3.3.3 Job process management 14

OGS/Oneflow: Auto-scalable queuing system 15

COMPSs programming model 16

PMES: Programming Model Enacting Service 16

3.3.4 Data repository 17

3.4 Support for the integration of new tools 17

3.4.1 Protocol for the preparation and inclusion of new tools 17

3.4.2 Developer’s specific workspace 18

4 Present status and Development roadmap 20

4.1 Development roadmap 20

5 Annexes 21

5.1 euCanSHare VRE Documentation 21

5.2 Documents, Software and data models 21

4

1 Introduction

1.1 Motivation and strategy

euCanSHare aims to establish a unified environment for cardiovascular data sharing and

analysis. euCanSHare will provide to the cardiac research community the first centralised, secure

and easy-to-use platform to leverage European and Canadian cardiovascular research data and

technologies, improve data discoverability, and lead to cutting-edge collaborative research in

the domain of cardiovascular personalised medicine. The main issue and the ultimate motivation

to build such infrastructure is the present high fragmentation of cardiovascular data. Phenotypic

data is spread in a plethora of institutions, each of them with particular data access policies,

and incompatible data formats. Some of the data providers have data access platforms but

others lack programmatic data access. None of them provide an infrastructure for in situ data

analysis. Genotypic or image data may be available, but it is not necessarily linked to general

bioinformatics resources available in Europe, and in consequence global analysis done at these

levels are not available. euCanSHare aims to solve some of these issues by generating a unified

platform.

Through the integrated platform, researchers should be able to identify in a common catalogue

studies and datasets provided by project’s supported cohorts and associated repositories like

the European Genome-Phenome Archive (EGA)1, EuroBioImaging (EuBI)2, or Biobanking and

Biomolecular Resources Infrastructure (BBMRI-ERIC)3. In the developed scenario users will apply

for data access through a specialized Data Access Manager and download data to a personal

workspace for further analysis. Data providers, in turn, would be able to register their datasets

in the catalogue and manage access rights to them. Developers would deploy analysis tools and

get them executed in a controlled environment. The computational infrastructure should

provide the means for: data management and data communication between providers and the

central data infrastructure, user authentication and management of data access credentials, a

virtual research environment providing private workspace and an execution platform for

analysis tools, and data visualization. Following previous developments, euCanSHare’s

computational infrastructure will be cloud-based. This provides maximum flexibility in the

combination of heterogeneous software deployments, while adding the possibility to deploy the

full system in additional computational sites, for instance, to deploy analysis tools at data

providers location to minimize data transfer needs. The components of the platforms will be

orchestrated as virtual machines, working in a protected network. User authentication and

authorization will be managed centrally to provide a single-sign-on facility for all components.

Links to European-wide authentication systems like ELIXIR AAI4 will be provided. A central

metadata repository will be provided to power the data catalogue, and the appropriate data

channels will be set to communicate with data providers in a transparent manner.

1.2 Background

EuCanSHare computational infrastructure is based on already existing components, that will be

adapted to work in an integrated way and will be complemented with specific developments.

1 European Genome-Phenome Archive (EGA) http://ega-archive.org
2 EuroBioImaging (EuBI) https://www.eurobioimaging.eu/
3 Biobanking and Biomolecular Resources Infrastructure (BBMRI-ERIC) http://www.bbmri-eric.eu/
4 ELIXIR https://elixir-europe.org/services/compute/aai

http://ega-archive.org/
https://www.eurobioimaging.eu/
http://www.bbmri-eric.eu/
https://elixir-europe.org/services/compute/aai

5

The infrastructure layout has been designed as an evolution of MuGVRE5, the cloud-based

infrastructure built for the project MuG6. Its evolved infrastructure (openVRE7) will act as a base

where the different components will be plugged-in as necessary. openVRE will provide data and

tools management, data storage, and authentication and authorization services.

2 Computational infrastructure initial design

2.1 Conceptual design

EuCanSHare’s central platform is conceived as a unique reference site for the different types of

interested users. Non-identified users should have access to the necessary metadata for

obtaining a broad overview of the available studies, irrespective of their final location. This

should provide enough information to initiate the process of application for data access. In turn,

the system should allow data managers to handle such application and grant access according

to the appropriate policies. Once data access is granted, the system should provide a virtual

environment that includes analysis tools and manages the controlled access to the data.

Figure 1. Conceptual design for the euCanSHare computational infrastructure.
Greyed boxes indicate regions of the infrastructure under controlled access and controlled data transmission.

To build the indicated functionalities the following components should be designed and

implemented (Figure 1):

1. A web-based front-end providing a unified access point. The web-front end should link

to platform’s components, but also give access to the project information, conditions

and terms of use, access policies, general documentation and the relevant contact

points.

2. A Data Catalogue built on the metadata provided by project’s data repositories. These

include the participating data cohorts, the EGA and the EuBI archives, as well as, public

data repositories that can be considered necessary. Basic access to the Data Catalogue

would be public, but controlled access can also enabled to provide more detailed

information. One of the aspects that should be included in the Catalogue is the

documentation and procedures to apply for data access credentials.

5 L. Codó et al., “MuGVRE. A virtual research environment for 3D/4D genomics,” bioRxiv, p. 602474, Apr.

2019 doi: https://doi.org/10.1101/602474. Available at: http://vre.multiscalegenomics.eu/home/
6 Multiscale Complex Genomics project (MuG), http://www.multiscalegenomics.eu
7 openVRE, https://github.com/inab/openVRE

https://doi.org/10.1101/602474
http://vre.multiscalegenomics.eu/home/
https://github.com/inab/openVRE

6

3. An Access Manager designed to provide support for managing access credentials. The

access manager should provide a working environment for i) researchers applying for

data access, ii) data managers responsible for evaluating such applications. For each

role, the manager will provide a tailored interface. Researchers should have access to

their applications, follow their state, communicate with the Data Access Committee, and

eventually obtain the access credentials. Data managers will manage the received

applications, and eventually grant or revoke credentials as desired. When available, the

Access manager should provide the infrastructure for automatic granting procedures,

and interface with the Smart Contracts prototype (T3.6).

4. A Virtual Research Environment (VRE) acting as a central workspace for authenticated

users. For each user’s role, a specific workspace will be provided. The workspace will

combine analysis tools, data visualization, management tools, and access to the granted

data. The environment should be linked to the appropriate computational infrastructure

with the corresponding capabilities to perform the desired analysis. Programmatic

Access to the infrastructure will allow to generate large scale analysis and eventually

interface the infrastructure with external workflow managers.

5. A Data management infrastructure providing transparent communication channels

between the central catalogue, the VRE, cohort data providers and data repositories.

2.2 Infrastructure technical design

Given the increasing multidisciplinary nature of collaborations, complexity and heterogeneity of

scientific data, and high-end computation needs, it is becoming common practice to develop

virtualized infrastructures with interoperable modules to provide an adaptable, reusable and

scalable system. Accordingly, the initial EuCanSHare platform is built upon existing research

infrastructures and IT solutions combined to fulfil the following requirements:

Table 1. EuCanSHare platform requirements and adopted solutions.

Design Requirements Technical Solution

Intuitive and interactive web-based
catalogue that simplifies and facilitates
the discovery, exploration, sharing and
analysis of data for researchers,
regardless of their programmatic skills.

EuCanSHare catalogue will be initially
based on the OBIBA software stack,
designed for a complete support to cohort
data management. It will be
enriched/completed with the metadata
obtained from EGA and EuBI and public
repositories.

Flexible and modular design to
guarantee an easy incorporation of new
services and data sources.

All components will be
assembled/developed as independent
modules, implemented in virtualized
systems, using the appropriated data
communication channels

Integration of advanced authentication
and authorization services able to
centrally manage fine-grain data access

The central authentication services will be
based on KeyClock, providing support for
OpenID connect identity providers. Obiba’

7

control on federated EuCanSHare
resources.

Agate server will be configured as OpenID
client. All data communications and API
accesses will be controlled using the
OAuth2 protocol. Authorization services
will be initially kept at their original sites.

Portable and versatile cloud-based
computational infrastructure that permit
to conveniently integrate heterogeneous
software components while providing
scalable compute resources on-demand.

The platform will be built on top of
OpenVRE system, relying on OCCI
compliant cloud cloud managers like
OpenNebula or OpenStack.

Software scheduler(s), able to manage
analysis workflows, and computational
resources in a transparent and adaptable
manner. This will be an elastic
infrastructure with automatic adaptation
to user loads.

Two initial software schedulers, available
at openVRE will be used. Open Grid
Engine will be used for applications
requiring stable computational needs,
while PyCOMPS/PMES will be used when
computational needs may depend on the
specific analyses.

Data storage solutions able to grow on
demand, with a fast data mobilization
infrastructure, and providing the
necessary data synchronization
capabilities among data providers and
analysis.

Lower level storage system will be based
on NoSQL MongoDB database manager. It
provides the necessary characteristics of
stability, ability of growth, and horizontal
scalability. Cohort data will be managed by
Obiba’s Opal server, also over MongoDB

Figure 2. EuCAnSHare central platform infrastructure.

8

3 Software components

The following section describes individually the software components used in the initial

installation and their specific function.

3.1 Cloud infrastructure

The infrastructure is built on top of the ELIXIR-ES cloud infrastructure, an on-premises private

cloud located at the Barcelona Supercomputing Center (BSC) and hosting other relevant

research infrastructures like MuGVRE or EGA. Based on Starlife8 HPC facilities, the cloud stack is

managed by OpenNebula9 a well-known cloud middleware that enables an efficient

administration of the underlying cloud resources by multiple tenants. Following the classical

cluster-like architecture, OpenNebula is composed by a front-end with different interfaces (such

as REST, XML-RPC and Web-based) controlling multiple remote hosts where a hypervisor (e.g.

Xen10; KVM11; or VMWare12) virtualize the actual computational resources (e.g. cores, RAM

memory, network, etc.). The euCanSHare prototype is based on KVM-enabled virtual machines.

Moreover, OpenNebula offers good connectivity with other infrastructure providers, like

Amazon EC13, which could be used to outburst resources if the local infrastructure is not enough,

or with a number of open cloud standards, like the Open Cloud Computing Interface14(OCCI),

that permits the remote management of virtual machines (VMs) and other cloud resources by

compliant cloud orchestration services.

Table 2: ELIXIR-ES computational resources

 Cores RAM memory Storage Network

ELIXIR-ES
cloud

14 x 40 cores 14 x 160GB
Shared GPFS of 1TB

(NFS access)
10Gb Ethernet

EuCanSHare
“tenancy”

36 cores 120GB 500 GB
local cloud VLAN
1 public address

euCanSHare has a set of dedicated resources in the ELIXIR-ES cloud (see table 2). Through

OpenNebula, the resources are managed to maintain a series of euCanSHare VMs allocating web

servers, database systems and other housekeeping servers. Cloud administrators instantiated

these VMs at boot time and maintain them permanently on the system. Additionally, the

platform can include auto-managed VMs, as computational services implemented as openVRE

tools are able to be fully automatically controlled making use of the OCCI server (see below

Programming Model Enacting Service).

8 BSC Starlife, https://www.bsc.es/es/marenostrum/star-life
9 OpenNebula, http://www.opennebula.org
10 Xen, http://www.xen.org/

11 KVM, http://www.linux-kvm.org/page/Main_Page

12 VMWare, http://www.vmware.com/

13 Amazon EC2, http://aws.amazon.com/en/ec2/

14 OCCI, http://occi-wg.org

https://www.bsc.es/es/marenostrum/star-life
https://www.bsc.es/es/marenostrum/star-life
http://www.opennebula.org/
http://www.opennebula.org/
http://www.xen.org/
http://www.xen.org/
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
http://www.vmware.com/
http://www.vmware.com/
http://aws.amazon.com/en/ec2/
http://aws.amazon.com/en/ec2/
http://occi-wg.org/
http://occi-wg.org/

9

3.2 EuCanSHare catalogue. OBIBA software stack

The euCanSHare data catalogue will combine cohorts data, genomic data hosted at the EGA1

and image data provided by EuBI2). Support for cohorts’ data management within the catalogue

is being based in the Obiba software stack15,16. We have deployed servers for Agate

(authentication and authorization server)17, Opal (data server - Figure 4)18, and Mica (Cohorts

server - Figure 5)19 and a provisional front end based on the Mica Drupal client (Figure 6)20. Table

3 lists them.

Table 3: EuCanSHare data services at BSC.

Service Description Site Access

EuCanSHare
platform

Main platform portal https://eucanshare.bsc.es public

Virtual Research
Environment

Analysis framework https://vre.eucanshare.bsc.es Restricted

Mica front-end Cohort browser https://studies.eucanshare.bsc.es Public

Mica server Cohort studies server https://mica.eucanshare.bsc.es Restricted

Opal server Cohort data repository https://opal.eucanshare.bsc.es Restricted

Figure 3. Integration of OBIBA software stack in EuCanSHare computational infrastructure.

15 http://obiba.org
16 Doiron, D., Marcon, Y., Fortier, I., Burton, P. and Ferretti, V., 2017. Software Application Profile: Opal

and Mica: open-source software solutions for epidemiological data management, harmonisation and
dissemination. International journal of epidemiology.
17 https://agate.eucanshare.bsc.es
18 https://opal.eucanshare.bsc.es
19 https://mica.eucanshare.bsc.es
20 http://studies.eucanshare.bsc.es

https://eucanshare.bsc.es/
https://vre.eucanshare.bsc.es/
https://studies.eucanshare.bsc.es/
https://mica.eucanshare.bsc.es/
https://opal.eucanshare.bsc.es/

10

Figure 3 describes how OBIBA software stack is integrated into the euCanSHare computational

infrastructure. The Agate server is configured as an OpenId21 Client of the euCanSHare central

authentication server (based on the KeyCloak) providing a single-sign-on system for the project

and being able to accept identity providers like the forthcoming European Life Sciences ID

systems based on ELIXIR AAI4. The Opal server at BSC will host the euCanSHare public datasets,

while controlled access datasets will be declared at the central Mica server but will be kept in

distributed Opal servers (data already available from MORGAM, and SHIP cohorts).

Figure 4. Variables related to a test dataset stored in the Opal server.

Figure 5. Mica server displaying datasets information coming from the Opal server.

21 https://openid.net

11

Figure 6. Mica client searching feature that allows the filtering of Mica server data.

3.3 openVRE: the computational infrastructure

openVRE7 is a Platform as a Service (PaaS) composer that collects job deployment requests from

a web exposed Virtual Research Environment (VRE) and coordinates the resource and service

deployment over dynamic PMES virtual appliances or directly on a queueing batch system like

OGS. openVRE aims to be a white canvas with a set of operational services and protocols to

handle the computational and data resources on an underlying OCCI-compliant cloud provider.

As a result, a tailored computational infrastructure is rapidly assembled, enabling to build, run,

and operate applications in cloud-based infrastructures. After configuring openVRE for a

particular project, the researcher accesses to a tailored VRE with a set of ready-to-use services

(datasets, analysis tools and visualizations) fully adapted to their needs. Examples of openVRE

implementations are MuGVRE5, and OpenEBench22.

3.3.1 Authentication

The euCanSHare infrastructure should assure a complete data privacy with respect to users’ data
and activities. To this end, access to the catalogue, workspace and tools, either interactively or
through REST APIs is made using an encrypted channel (https, ssh), and users are authenticated
on every access.

The euCanSHare site uses Keycloak23 as Identity and Access Management solution. Keycloak
implements OpenID Connect 1.0 (OIDC), which supports the OAuth2 code authentication flow
for Web access (based on username/password), and a token-based authentication for the
remaining services. EucanSHare openVRE displays the access tokens in use and allows to refresh
them (see Figure 7.b) so that the user is able to authorize himself to the publicly available
services via REST.

To ease user registration, additional external OIDC identity providers (idPs) might be accepted,
like Google, ORCID or ELIXIR AAI4. Once the authentication through these providers has taken
place, an openVRE internal user record is created, with all security considerations in place
independently of the idP used.

22 https://openebench.bsc.es/vre
23 https://www.keycloak.org/

12

Figure 7. (a) EuCanSHare Login page. (b) User profile details including authorization tokens. (c) Schema of the
centralized authorization service based on Keycloak.

3.3.2 Personal workspace

The euCanSHare personal workspace, provided by openVRE, is the central environment for the
activity of authenticated users. The contents and layout of the workspace is adapted to the
user’s assigned roles. It is a filesystem-based layout where uploaded data and analysis results
are available. The workspace gives also access to analysis and tools, selected according to data
types and file types (formats), recovering results as soon as they are available.

Getting data

Users can populate the workspace in several ways (Figure 8):

● Direct upload: Files from user’s local computer can be uploaded directly in the
workspace through an HTTPS protocol. The amount of data that can be uploaded in this
way is limited due to the technical limitations of the protocol.

● Create files: A text editor is available to create simple plain text files. This is intended
for data or metadata of reduced format that can be simply typed in.

● Upload from External URL: given a URL (FTP/HTTP), the platform downloads the data
into the workspace. This is the recommended procedure to include bulky data, as the
procedure is performed in the background and no limit in size applies, being only limited
by the user’s quota available in their workspace. This option is also recommended for
obtaining data from public repositories.

13

● Import from Repository: internally operating as “Upload from External URL”, the
platform might integrate any REST-based data repository allowing the user to browse
the content and import it into the workspace with one click. This feature will be
extended to include the euCanSHare Catalogue.

Figure 8. Options to upload data into the workspace.

Data files should be “validated” after upload. Validation includes a number of internal checks on
formats, but also requires the user to fill in a series of metadata items. These include descriptor
fields like data types (e.g. ‘DNA sequence’) and formats (e.g. ‘FASTA’) selected from a predefined
list. Data types and formats enable the system to select the appropriate set of tools and
visualizers usable with the uploaded files. Metadata for files obtained from installed tools are
automatically obtained from the tools metadata manifest.

The workspace

VRE workspace (Figure 9) is organized with a file system layout with an intuitive look-and-feel.
There are two types of data objects: files and folders grouping files. The Uploads folder include
all data uploaded by the user in either manner (direct, edit, or URL). Data from repositories that
is grouped under Repository folder. The remaining folders correspond to “run” folders
containing the result files of executed tools. A new folder is generated for any new process
started in the VRE. Files can be filtered by any name, format, data type, or project. Also, a tools-
based filter allows to select only valid data input for a given tool.

Three interactive toolkits are associated with workspace’s data and allow to select the desired
analysis tool, visualize result files, etc. Toolkits’ content is adapted to each file/folder thanks to
the available metadata. The toolkits contain the following options:

● File toolkit: Download data or folder, edit metadata, delete, pack and compress.
● Visualization toolkit: List of visualizers accepting the selected file/s (based on file the

format).
● Tools toolkit: List of tools accepting the selected file/s as inputs (based on data type and

format metadata).

14

Figure 9. euCanSHare personal workspace built on openVRE.

The selection of a specific tool triggers the analysis configuration screen (Figure 10) where user
can assign the selected data files to the appropriate input parameters and arguments. After
configuration, the job is sent to the VRE backend who orchestrates the cloud services in a
transparent way. Progress of the execution can be followed in the main workspace.

Figure 10. Configuration screen for a sample tool.

openVRE provides constant tracking of the state of the operations performed and the available
space in the VRE.

3.3.3 Job process management

The openVRE backend is able to process VRE’s job petitions using (i) an auto-scalable queueing

system based on OGS/Oneflow, or (ii) an elastic cluster deployment service based on

pyCOMPs/PMES. Open Grid Scheduler (OGS) successfully manages web application backends

where the major requirement is to be able to deal with variable levels of user demand.

15

Workflows that show a more complex structure where, for instance, computational resources

should be adjusted at run time, are recommended to be configured using COMPSs/PMES.

OGS/Oneflow: Auto-scalable queuing system

Open Grid Scheduler (OGS)24 (former Sun Grid Engine SGE) is designed to manage distributed

software executions in heterogeneous computational environments. OGS is used normally in

cluster-based infrastructures as a general process scheduler. Capabilities of OGS include, among

others, resource management, remote execution, parallel execution management, interactive

processes, monitoring and accounting, and integration with Amazon EC2 or Hadoop. To better

exploit OGS features into a cloud-based environment like openVRE (Figure 11), an OpenNebula

self-provisioning tool called oneFlow25is added to the equation. oneFlow is able to automatically

trigger the deployment/undeployment process of VMs in front of monitorized parameters, like

the CPU workload of these VMs, the I/O stress or a certain network, etc.

Figure 11. Schema of the implementation on OneFlow

Analysis tools are implemented as VMs under the control of OGS. Each VM packs an application

with the corresponding OGS queue configuration. In the case of increased demand on a certain

application (i.e. certain VM), oneFlow instructs OpenNebula to replicate such VM, which is

translated into an increased number of hosts available in the queue system for such an

application. Once the workload for such group of VMs decreases, OneFlow undeploys them one

by one, always keeping at least one instance ready to accept new job petitions. In this way,

allocated resources are dynamically and transparently adjusted on-demand.

24 OGS, Open Grid Scheduler (former SGE, Sun Grid Engine)

 https://sourceforge.net/projects/gridscheduler
25 OpenNebula, http://docs.opennebula.org/5.8/integration/system_interfaces/appflow_api.html

16

COMPSs programming model

COMP Superscalar (COMPSs)26 is a programming model designed to ease the development of

applications for distributed infrastructures (e.g. Clusters, Grids, and Clouds). To this end,

COMPSs features a runtime system able to discover applications’ parallelism of at execution

time and dynamically distribute the tasks. openVRE implements COMPSs python binding

(pyCOMPSs) as advanced software scheduler.

COMPSs hides parallelization complexities to developers so that programmers do not need to

deal with the duties of parallelization, such as thread creation and synchronization, data

distribution, messaging or fault tolerance. Instead, COMPSs is based on user’s sequential

programming, which makes it appealing to users that either lack parallel programming expertise

or are looking for better programmability. User’s Java applications are directly supported by

COMPSs runtime, while other languages like Python, are supported through the appropriate

bindings (pyCOMPSs). Although programming is sequential, execution is parallel, since at

runtime COMPSs builds a workflow composed by the tasks of the application, which is

connected through edges that denote data dependencies between them, and determined by

annotations specifying the needs of each task. From this workflow, the COMPSs runtime is able

to execute different application tasks at a time within a master-workers architecture (Figure

12.a). In this scenario, the user submits its application to the master node, which orchestrates

the parallelization and launches the tasks in the available resources, distributing the input data

and collecting the results.

PMES (discussed next section) and COMPSs form a good tandem for enabling virtual elastic

compute clusters (Figure 12.b). At execution time, when COMPSs tasks demand extra resources,

the master schedule extra jobs in a queue system, or provisions extra VMs on the cloud,

elastically demanding the resources according to the specific needs of the execution. PMES

server provisions these VMs, which become COMPSs workers and remotely start user’s

execution.

Figure 12: (a) Architecture of task distribution in COMPs (b) Virtual clusters’ deployment using COMPS and PMES.

PMES: Programming Model Enacting Service

The Programming Model Enacting Service (PMES)27 allows users to submit job executions to

remote clouds. PMES receives user’s job (e.g. application's name, list of inputs) and it is able to

26 COMP Superscalar, an interoperable programming framework, SoftwareX, Volumes 3–4, December

2015, Pages 32–36, Badia, R. M., J. Conejero, C. Diaz, J. Ejarque, D. Lezzi, F. Lordan, C. Ramon-Cortes, and
R. Sirvent, DOI: 10.1016/j.softx.2015.10.004

27 F. Lordan et al., “ServiceSs: An Interoperable Programming Framework for the Cloud,” J. Grid Comput.,

vol. 12, no. 1, pp. 67–91, Mar. 2014

17

(i) remotely instantiate and contextualize the image packing the application, (ii) stage-in the

input data there, (iii) run the application in the virtual environment, and (iv) stage-out output

data. Application's execution might either be a standalone executable, or a COMPSs enabled

workflow, in which case PMES starts the COMPSs' runtime within the virtual machine, that

becomes the master of the COMPSs’ virtual cluster. Since PMES is also deployed within a virtual

machine, as well as the COMPSs runtime deployed for the application execution, both of them

interact with the Cloud provider (e.g. OpenNebula) through the use of an OCCI connector.

The use of COMPSs as workflow manager is considered within PMES in order to improve the

performance on workflow executions. These applications are executed by launching the

COMPSs runtime in a virtual machine; whereas to execute standalone applications, the PMES is

also able to run the required command.

3.3.4 Data repository

openVRE user’s data is divided in two types of repositories. Metadata is held in a MongoDB28
database hosted at the Starlife data storage system following a data model mainly based on a
collection of data types, files types among other file related attributes like the path where the
file can be found in the file system.

The MongoDB server not only holds the metadata referring to user’s files, but also the necessary
data to correctly define tools and visualizers and how they interact with user’s files. MongoDB
also keeps track of user management, job execution, and other VRE functionalities like help,
sample data collections, etc.

Data itself is stored in a standard filesystem in its original format. The filesystem is shared with
the virtualized environments via the network file system protocol. The filesystem layout is
organized per user so that the privacy of data is maintained. In fact, process managers
specifically mount to the deployed VM only the data belonging to the user executing the
application.

Catalogue data and metadata are managed by the OBIBA software stack (Mica and Opal servers),
and stored in the MongoDB database at Starlife, for data locally stored at BSC and opal servers
at THL (MORGAM cohorts), and UMG (SHIP cohorts).

3.4 Support for the integration of new tools

3.4.1 Protocol for the preparation and inclusion of new tools

Tools to be executed at openVRE should be deployed in a Virtual Machine. Tools itself should
not be modified or adapted to the infrastructure. Instead, a tool’s integration protocol (Figure
13) has been implemented in order to better support the process of wrapping, submission and
annotation of user’s pipelines or applications into openVRE. The whole process can be divided
in two main steps, a wrapping process for preparing the application to be invoked from
openVRE, and the actual integration of such code into the infrastructure.

28 http://mongodb.com

18

Figure 13: openVRE protocol for integrating new tools.

Application wrapping is based on the Tool API, a Python library developed in the MuG project
that provides a common access interface for openVRE tools. It is formalized as a tool skeleton
on top of which user adapts the application. The user should clone the Tool API repository in
their own development environment and fill in the skeleton according to its pipeline’s
requirements. If parallelisation is to be enabled, pyCOMPSs decorators should also be added
here. Once the tool has been set up, we suggest a functional testing by which an openVRE
execution is emulated at user’s own installation by creating a set of test job configuration files
(job configuration and input’s metadata JSON files - see annex euCanSHare VRE documentation).
The process can be performed online through the developer’s workspace. When the tool locally
passes the functional tests, the code is ready to be documented and made available on an
accessible software repository, as openVRE coding guidelines suggest.

From the developer’s perspective, integrating a new tool into the openVRE infrastructure
essentially implies its definition and documentation. Through a developer’s workspace, the user
provides the code location, tool’s descriptive metadata (i.e. title, keywords, etc), deployment
details (i.e. CPUs, memory, tool main script path, etc), logo images, etc. to eventually “Submit”
the tool, at this point the ticketing system opens a communication channel with the user, and
euCanSHare’s support team is made aware of the Tool proposal. The submission is evaluated
and validated. Then, a virtual machine instance with the tool’s code is deployed in the cloud.
After provisioning, the new tool is activated under the testing mode, and tool-related web pages
are generated automatically based on the developer’s tool definition. Finally, the tool is
debugged, refined and tested on openVRE, example data sets are made available from the ‘Get
Sample Data’ menu, and the tool help pages are prepared through the openVRE online
markdown editor.

The whole integration protocol is fully described and documented step by step, including
training material (see annex euCanSHare VRE Documentation).

3.4.2 Developer’s specific workspace

Apart from the regular account, a user can be granted with the “tool developer” role, by which
developers are entitled to create and manage their own tool instances. Regular users can
upgrade their account by editing their profile settings, which produces a petition to be processed
by the openVRE support team. For debugging purposes, tool developers have extended access
to the metadata of workspace files and jobs, being able to access job configuration JSON files,
expected job output files, file metadata documents, etc. Moreover, they are granted access to
the developer’s workspace.

The developer’s workspace is split in two sections, one meant to create and help developing
new openVRE tools, and a second one dedicated to managing already integrated tools. In the
first (Figure 14), tool developers freely initiate a new tool entry, represented as a new line in the
central table. Each column represents the integration protocol steps described above for which
openVRE either offers support or gathers information from the tool developer. These steps are:
(1) the generation of test files for the in-house testing, a downloadable TAR file with the set of

19

JSON configuration files and a bash script with the very command openVRE will use to invoke
the tool. To this end, the tool developer needs to provide a definition of the input files,
arguments and expected output files of its tool. (2) The URL where the tested tool code is to be
found. (3) The JSON validation of the tool definition fields required for the registration
(deployment details, tool descriptions, etc). (4) The storage or automatic generation of tool logo
images. Finally, the last column represents the submission status that can take values like “in
preparation”, “submitted”, “to be reviewed”, “rejected” or “accepted”.

Figure 14: Tool developer’s workspace for integrating new tools.

A second developer’s Workspace is used once the tool is eventually accepted. It consists of a
panel listing all the tools belonging to that user (Figure 15). The workspace displays the definitive
tool definition as stored in the openVRE database, allows to download the tool usage statistics,
and administer the tool status on the infrastructure:

● Active: the tool is eligible to be run for all users.
● Inactive: the tool is not eligible to be run
● Testing: the tool is eligible only by the tool developer owing the tool.

Figure 15: Tool developer’s workspace for managing integrated tools.

Extracted from MuGVRE for illustration purposes.

20

4 Present status and Development roadmap

At the present stage, the openVRE framework has been installed at StarLife cloud

(https://www.bsc.es/marenostrum/star-life), hosting a series of Virtual Machines providing the

basic functionality for the euCanSHare platform. Table 4 reports a summary of the VMs and

active functionalities.

Table 4. Present status of euCanSHare data portal and components.

Virtual Machine Function
provided

Installed
Software

Status

euCanSHare infrastructure

Login Internal login
node.
Main data
portal web site

Apache 2
PHP 7.2
MariaDB 10.1
Wordpress 5.33

Data portal front-end prototype
available at
https://eucanshare.bsc.es

OBIBA Agate, Mica,
Opal, servers,
catalogue front
end

Agate 1.5.2,
Mica Server 2-3.7
Opal 2.15.1,
Drupal 7.67

Servers available at
https://agate.eucanshare.bsc.es
https://mica.eucanshare.bsc.es
https://opal.eucanshare.bsc.es
https://studies.eucanshare.bsc.e
s

euCanSHare-VRE OpenVRE
adapted to
euCanSHare

openVRE stack
PHP 7.2
MongoDriver 1.5

Available at
https://vre.eucanshare.bsc.es

Starfile infrastructure

KeyCloak Authentication
server

KeyCloak v4.8 Available at
https://inb.bsc.es/auth

MongoDB MongoDB
manager

MongoDB 4.2 Available for internal use

4.1 Development roadmap

Once the basic framework has been established, we will continue on building the necessary

components to complete a fully functional euCanSHare data platform. Specific technical

milestones already scheduled are:

1. Implementation of openVRE REST API (Q1 2020). Will provide a fully programmatic

access to the platform via REST, including data upload/download into the workspace,

and analysis schedule. It will follow GA4GH specification for Task execution (TES), and

Data management (DRS). The availability of such interface will allow to integrate

openVRE hosted operations in external workflow managers and applications.

2. Implementation of User roles: Data manager, Data Access managers (Q3 2020). Full

integration of authorization roles across the platform. Will allow to deploy specific

workspaces according to user privileges.

https://www.bsc.es/marenostrum/star-life
https://eucanshare.bsc.es/
https://agate.eucanshare.bsc.es/
https://mica.eucanshare.bsc.es/
https://opal.eucanshare.bsc.es/
https://studies.eucanshare.bsc.es/
https://studies.eucanshare.bsc.es/
https://vre.eucanshare.bsc.es/
https://inb.bsc.es/auth

21

3. Implementation of Data Portal Front-end (Q3 2020). A complete front-end with access

to all portal components, including authentication and authorization.

4. Linking personal workspace with OBIBA’s internal workspaces (Q4 2020). Full

integration at the data level among openVRE and OBIBA workspaces, allowing to handle

opal, and mica data from EuCanSHare VRE.

5. Link to EGA and EuBI metadata and data (Q4 2020). Availability of metadata as part of

the euCanSHare catalogue and full controlled access to data from euCanSHare VRE.

6. Implementation of analysis tools (extended till the end of project). Complete the offer

of analysis tools available at euCanSHare VRE.

5 Annexes

5.1 euCanSHare VRE Documentation

 http://eucanshare.bsc.es/dataportal/?page_id=697

5.2 Documents, Software and data models

JSON schema and example of tool definition configuration file , compulsory for registering a

now tool in VRE

 1. tool definition JSON - schema

https://github.com/Multiscale-

Genomics/VRE_tool_jsons/blob/dev/tool_specification/tool_schema.json

 2. tool definition JSON - example

https://github.com/Multiscale-

Genomics/VRE_tool_jsons/blob/dev/tool_specification/examples/pydockdna.json

JSON examples for the configuration files sent between VRE and tool VMs during the tool life

cycle execution

 3. input metadata JSON - example

https://github.com/Multiscale-

Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.input_metad

ata.json

 4. configuration tool JSON - example

https://github.com/Multiscale-

Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.config.json

 5. submit file - examples

https://github.com/Multiscale-

Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.submit

 6. Output metadata JSON - example

https://github.com/Multiscale-

Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject_out/.results.js

on

http://eucanshare.bsc.es/dataportal/?page_id=697
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_specification/tool_schema.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_specification/tool_schema.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_specification/examples/pydockdna.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_specification/examples/pydockdna.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.input_metadata.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.input_metadata.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.input_metadata.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.config.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.config.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.submit
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject/.submit
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject_out/.results.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject_out/.results.json
https://github.com/Multiscale-Genomics/VRE_tool_jsons/blob/dev/tool_execution/sample_project/myPydockProject_out/.results.json

