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EXECUTIVE SUMMARY 

Field campaigns in the Arctic, like the ongoing Year Of Polar Prediction (YOPP, 
2017-2019) or the upcoming Multidisciplinary drifting Observatory for the Study of 
Arctic Climate (MOSAiC, 2019-2020) are key opportunities to conduct an evaluation 
of Earth System Models (ESMs) at the process level. This raises, however, a number 
of challenges as ESMs are not necessarily in phase with the actual climate for 
periods as short as one or two years. 

Here, a metric is developed to evaluate ESMs on their ability to simulate the snow 
and ice thicknesses and the underlying process of vertical heat conduction. The 
metric is derived from a diagnostic called the “heat conductivity index” that has the 
appealing property to be stable over time, and hence suitable for evaluation of Arctic 
sea ice where trends are generally strong and interannual variability high. The metric 
has been incorporated to the ESMValTool, a reference package for model 
evaluation. This will ensure wider use by the APPLICATE partners (WP1, 2, 4) but 
also by researchers analyzing the Coupled Model Intercomparison Project, phase 6 
(CMIP6) dataset.  
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1. INTRODUCTION 

Background and objectives 

The evaluation of sea ice in Earth System Models (ESMs) with in-situ data is in general not 
straightforward for several reasons. First, ESMs simulate the sea ice cover on grid cells that 
are several dozens of kilometres wide, while in-situ data are by definition highly localized. 
Second, ESMs are subject to internal climate variability, meaning that they are not supposed 
to replicate the exact observed values (sea ice thickness, concentration, snow depth...) at 
any given time and location. Another issue is that simulated sea ice biases are not 
necessarily reflecting errors in the sea ice models themselves, but can be the consequence 
of errors in the atmosphere and/or ocean components. These limitations call for new 
methods of evaluation that consider the ability of models to simulate processes rather than 
numbers, taking into account the large interannual variations that prevail at high latitudes. 

The objective of Task 1.2.4 of APPLICATE is to propose novel diagnostics and metrics for 
the evaluation of sea ice in ESMs, recognizing the three aforementioned limitations and 
making use of as many in-situ field data as possible. Here, we show one example of such a 
metric. The metric has been developed consistently with the Model Assessment Plan (D1.1) 
criteria, reaching a balance between ease of physical interpretation, stability over time and 
availability of observational counterpart.  

Organisation of this report 

We first introduce the physical rationale behind the diagnostic introduced here, named the 
Heat Conduction Index (Section 2). Then, we apply the HCI to both model data and in-situ 
observational data and propose a model evaluation based on this new index (Section 3). We 
propose perspectives in Section 4. 

2. METHODOLOGY 

In the Arctic and during the ice growing season (~October-April), new sea ice formation 
occurs chiefly by basal ice accretion, as a result of the imbalance between upward 
conductive heat fluxes and the ocean-ice heat flux. The ability of ESMs to correctly simulate 
heat conduction is therefore critical. However, measuring heat conduction is challenging. 
This process depends on a number of geophysical parameters, including the local snow and 
sea ice thicknesses, the air-ocean temperature contrast and the snow and ice conductivities. 
Evaluating these parameters individually in ESMs is challenging because of the lack of 
observational data, especially regarding the heat conductivities. 

Instead of evaluating each parameter individually, we propose to study how they interact with 
each other. To this aim, we define the Heat Conduction Index as the dependence of 
interfacial snow-ice temperature Ti to the snow surface temperature Ts: 

𝐻𝐶𝐼 =
𝑑𝑇'
𝑑𝑇(

 

To first order, the HCI can be interpreted as the sensitivity of sea ice thermodynamics 
(summarized by the variable Ti) to the atmospheric thermal forcing (summarized by the 
variable Ts). High values of HCI indicate that the internal temperature of the snow-sea ice 
system follows closely the atmospheric forcing (the process of heat conduction is very 
efficient) while low values indicate a weak sensitivity (the process of heat conduction is not 
efficient). 
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It is straightforward to obtain Ti and Ts from ESM outputs, but less so from observations for a 
sufficiently long interval. Therefore, we reformulated HCI in terms of other state variables, 
namely snow and ice thickness. For this reformulation, a number of hypotheses were taken 
(Fig. 1): (1) the ice-snow system has no heat capacity (2) the temperature profile is linear 
through the snow and ice media (3) the basal ice temperature is constant, and (4) the snow 
and ice conductivities are constant. Under these assumptions, the HCI can be reformulated 
(full derivation in Annex) as: 

𝐻𝐶𝐼 = )*+,
)*+,-),+*

  (Eq. 1) 

where ks and ki are the snow and ice heat conductivities, respectively, and hs and hi are the 
thickness of the snow and ice layers, respectively. 

Strictly speaking, the diagnostic given above does not measure the exact dependence of 
internal temperature to surface temperature, because of the assumptions above do not hold 
in reality. Yet, this diagnostic can be used in its own right to evaluate models, and in fact 
presents a number of advantages: 

• Snow and ice thicknesses are standard geophysical parameters and they are well 
measured during field campaigns. The heat conductivities are less constrained and, if 
no estimate is available from the field, the same reference values can be used  in 
models and observations; 

• The HCI is designed to evaluate a process (heat conduction) rather than a single 
geophysical parameter (e.g., sea ice thickness or snow thickness individually). This 
means that an ESM with sea ice thickness twice as large as in observations could still 
simulate the right HCI value, provided the snow depth is also twice as large as in 
observations. 

• The formulation of the HCI is simple and can be applied without running dedicated 
experiments: no new output variables are needed to evaluate the diagnostic. In 
particular, the HCI can be applied to existing models (CMIP3, CMIP5) as long as they 
have archived snow and ice thicknesses. 

 

 
 

Figure 1. Simple view of vertical snow and sea ice thermodynamics in winter: a layer of snow sitting 
on a slab of ice, with no heat capacity, linear profiles of temperature and constant ice basal 
temperature. 
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3. RESULTS AND DISCUSSION 

3.1 Stability of the Heat Conduction Index 

In addition to the advantages listed above, a robust feature of the HCI is its high stability over 
time, despite strong secular trends in Arctic snow and ice thickness. It is clear from the 
definition of HCI (Eq. 1) that, if snow and ice thicknesses are each multiplied by the same 
constant factor, the HCI remains unchanged. In fact, the physics behind the process of heat 
conduction itself is not supposed to change in a warmer climate, when both the snow and ice 
covers are thinning. HCI is in fact more sensitive to the location where it is evaluated than on 
the year (Fig. 2). In Fram Strait where ice is relatively thin but snow relatively thick, HCI is in 
general lower than in other regions. HCI reaches even lower values in Antarctica, where the 
climatological ice and snow thicknesses are on average lower and higher than in the Arctic, 
respectively (due to larger ocean-ice heat flux and higher snow precipitation, respectively). 

 

The stability of HCI and its low signal-to-noise ratio make it a unique diagnostic for the study 
of the Arctic sea ice and also for the comparison between models and observations. Indeed, 
most – if not all – common sea-ice related diagnostics usually show strong trends and large 
interannual to decadal variability, which complicates model evaluation especially when it 
comes to coupled models. Here, even if the observational period is as short as one field 
campaign, the comparison can be meaningful because one year is, within a certain range, 
representative of the others – according to model results (Fig. 2). In the following, we apply 
the HCI to model output and observational data, and then compare them with each other. 

3.1 Diagnostic in models 

All sea ice models output snow and ice thickness by default. The snow and ice conductivities 
that appear in the definition of HCI (Eq. 1) are taken by default to be 0.31 and 2.04 W/mK, 
following Maykut and Untersteiner (1971) and Lecomte et al. (2014). It is still possible to 

 

 
Figure 2. The Heat Conduction Index (Eq. 1) diagnosed from a 1979-2014 ocean-sea ice simulation 
(NEMO-LIM3 model) at four locations: North Pole, Fram Strait, Beaufort Sea and Weddell Sea. Error 

bars denote the median and the interquartile range of each time series. 
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prescribe other values for these parameters if those values are available from modelling 
groups. This should be the case for the upcoming CMIP6 data, as a full documentation on 
the models parameters was requested (Notz et al., 2015). 

Here, for the purpose of illustration, we apply the HCI diagnostic to a 1979-2014 ocean-sea 
ice simulation conducted with the model NEMO-LIM3, following the protocol described in 
Barthélemy et al. (2016). In short, the ocean-sea ice model is run at a nominal resolution of 
1° and forced by atmospheric reanalyses (DFS5.2; Dussin and Barnier, 2015). We evaluate 
HCI from the monthly mean values of actual snow and ice thicknesses (not the snow and ice 
volumes per unit grid cell area), since heat conduction depends on the actual thickness of 
the snow and ice layers, not on their grid cell average. 

3.2 Diagnostic in observations 

Contrary to model output, observations of snow and ice thickness are not available over 
decades nor on a regular grid. To emulate the context of ongoing or upcoming field 
campaigns like the YOPP or the MOSAiC, we analyze the Operation Ice Bridge (OIB) data 
over six one-day campaigns (2nd, 5th, 12th, 19th, 20th, 21stof April, 2010) that took place North 
of Greenland and the Canadian Arctic Archipelago (Fig. 3, left panel). OIB data (Kurtz and 
Farrell, 2011) are acquired by airborne radar instruments on aircrafts flying at ~500 m altitude 
and have a very high (~40 m) spatial resolution. 

For each single measurement with non-zero snow and ice thicknesses, we evaluate the HCI 
following the formula above (Eq. 1) and take the same values for snow and ice conductivities 
as for models. 

3.3 From diagnostic to metric: model-observation comparison  

We map in Fig. 3 (left panel) the OIB sea ice thickness for the six one-day campaigns of April 
2010 and for NEMO-LIM3 model output. The month of April was chosen as it is the one with 
the most observational campaigns, but also the month for which sea ice thickness and snow 
depth peak to their respective maxima (Hezel et al., 2012). Comparison between observed 
and modeled sea ice thickness reveals that the modeled sea ice thickness deviates 
significantly from the OIB data. 

The HCI was then computed at a particular location in the Beaufort Sea (red cross of Fig. 3) 
in both the OIB data and from model output (Fig. 3, right panel), to mimic the situation of 
localized measurements that may happen during the YOPP Special Observing Periods or the 
MOSAiC. For the model output, we considered the one grid cell that contains the selected 
location. For the observational data, we included all April 2010 data that fell within +/- 0.5 ° of 
latitude and longitude relative to the selected location. As this was the case for other 
locations, the model displays stable values of HCI over time in that region (Fig. 3, right). The 
comparison between model results and observations further suggests that, despite 
differences in sea ice thickness, the simulated and observed HCI are not inconsistent with 
each other.  
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4. CONCLUSIONS AND OUTLOOK 

The Heat Conduction Index is a first example of metric that can be used to bridge small-scale 
in-situ observations with large-scale output from climate models. The HCI is also an example 
of how climate models can be evaluated based on data from short field campaigns.  

The HCI satisfies at least four of the six criteria that were listed in the Model Assessment 
Plan to make a “good metric”: interpretability (the metric evaluates a normalized snow/ice 
thickness that can be directly related to the sensitivity of internal thermodynamics to the 
atmospheric forcing); stability (the HCI is not much influenced by interannual variability); 
transparency (the HCI is coded in ESMValTool); and observability (the HCI can be estimated 
from field campaigns as long as snow and ice thickess estimates are available). 

The next steps will be to apply this metric using data from the February-March 2018 YOPP 
Special Observing Periods and on a multi-model ensemble like CMIP6.  
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Figure 3. (Left) Sea ice thickness from Operation Ice Bridge (dots) for April 2, 5, 12, 19, 20 and 
21, 2010, and from the ocean-sea ice model NEMO-LIM3 for April 2009 monthly mean 
(background). The red cross is the location where HCI is computed in the model – observations 
comparison in the right panel. (Right) Time series of simulated HCI in the grid cell that contains 
the red cross in the left panel, for April 1979-2014 (blue line) and the distribution of HCI from the 
188,077 measurements that fell within 0.5° of the red cross during April 2010 in Operation Ice 
Bridge. The dot is the median and the bar is the interquartile range. 
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6. ACRONYMS 

CMIP  Coupled Model Intercomparison Project 

HCI  Heat Conduction Index 

MOSAiC Multidisciplinary drifting Observatory for the Study of Arctic Climate 

OIB  Operation Ice Bridge 

YOPP  Year Of Polar Prediction 

7. ANNEXES 

Formula for the Heat Conduction Index 

Assuming constant snow and ice conductivities, fixed basal ice temperature and linear 
vertical profiles of temperature through the sea ice and snow media, the heat conduction 
fluxes through snow and sea ice are given by Fourier’s heat conduction law: 

𝑞' = −𝑘'
1,213
+,

 and 𝑞( = −𝑘(
1*21,
+*

 

where qi and qs denote the heat conduction through the ice and snow media, respectively; Ts, 
Ti and Tb denote the snow-atmosphere, ice-snow and ocean-ice interfacial temperatures, 
respectively (Fig. 1 of the main text); ks and ki denote the snow and ice conductivities, 
respectively; and hs and hi the snow and ice thicknesses, respectively. Assuming no phase 
change at the ice-snow interface, the conservation of energy implies qi = qs. Solving for Ti, 
one has 

𝑘'ℎ( 𝑇' − 	𝑇6 = 𝑘(ℎ' 𝑇( − 	𝑇' 	
𝑘'ℎ( + 𝑘(ℎ' 𝑇' = 𝑘(ℎ'𝑇( + 𝑘'ℎ(𝑇6 

In that particular case, the heat conduction index, as initially defined in the text, becomes: 
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𝐻𝐶𝐼 =
𝑑𝑇'
𝑑𝑇(

=
𝑘(ℎ'

𝑘'ℎ( + 	𝑘(ℎ'
 

Python function evaluating the Heat Conduction Index 

This function is also available from the ESMValTool. 

#!/usr/bin/python 

# Author:    Francois Massonnet 

# Date:      August 2018 

# Purpose:   Function to make first-order evaluation  

#            of heat conduction 

# Reference: APPLICATE Deliverable 1.3 

# 

# Module imports 

from netCDF4 import Dataset 

import numpy as np 

import scipy.stats 

import esmvaltool.interface_scripts.preprocess 

import iris 

import logging 

import sys 

logger = logging.getLogger(__name__) 

def hci(sithick, snthick, ki = 2.034, ks = 0.31 ): 

  """ Function hci(sithick, snthick, ki = 2.034, ks = 0.31 ) 

        Inputs:    sithick: 2-D numpy array of  

                            actual sea ice thickness (as one  

                            would measure it) in [m] 

                   snthick: 2-D numpy array of  

                            actual snow thickness (as one  

                            would measure it) in [m] 

                   ki     : 2-D numpy array of  

                            sea ice conductivity [W/m/K] 

                            If not provide, takes default 
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                            value of 2.034 W/m/K (Maykut and Untersteiner, 1971) 

                   ks     : 2-D numpy array of  

                            snow ice conductivity [W/m/K] 

                            If not provide, takes default 

                            value of 0.31 W/m/K (Lecomte et al., 2015) 

        Output:    hci: Heat Conduction Index =  

                        ks * sithick / (ks * sithick + ki * snthick) 

                        For the Semtner 0-layer model, HCI is exactly 

                        equal to the derivative of interfacial snow-ice 

                        temperature to the surface temperature. 

   

                        HCI is a first-order measure of the way that the  

                        system's dynamics responds to the forcing. 

  

                        HCI is reported as NaN where both thicknesses 

                        are zero 

    """ 

  if (type(sithick) != np.ndarray and type(sithick) != np.float64) or \ 

     (type(snthick) != np.ndarray and type(snthick) != np.float64): 

    raise TypeError("(hci) Input arguments are not numpy arrays") 

  if sithick.shape != snthick.shape: 

    raise ValueError("(hci) Input arrays dimensions don't match") 

  # Create masked array to not have data for regions where there is no ice 

  mask_noice = 1.0 * (sithick * snthick == 0) 

  sithick = np.ma.masked_array(sithick, mask = mask_noice) 

  snthick = np.ma.masked_array(snthick, mask = mask_noice) 

  output  = ks * sithick / (ki * snthick + ks * sithick) 

  return output 

 
 


