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Abstract :

The aim of this paper is to propose an approach to address time-variant reliability problems using sys-
tem reliability methods. The remaining challenge in time-variant reliability is related to problems with
low failure probabilities, high dimensionality, and including costly-to-evaluate performance functions.
One of the main steps towards resolving time-dependent problems is to descretize the desired time in-
terval. This step creates a similarity between time-variant and system reliability problems. Therefore
efficient system reliability methods can be used to address time-variant reliability problems. AK-SYS
is an efficient reliability method for systems that can be employed for performance functions that are
expensive to evaluate. In this paper, application of this method for time-variant reliability problems is
investigated.
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1 Introduction

Performance in many of engineering systems is a function of time. Time-variant reliability shows how
properly a system fulfill its duties under given conditions during its lifetime. This can provide an indi-
cator for maintenance and inspection planning of structures and life cycle cost analysis [1]. Involving
time makes reliability calculations more complicated since it adds an extra dimension to the problem.
The challenge in time-variant reliability methods is to have a reasonable trade-off between the accuracy
and efficiency especially for problems with low failure probabilities and/or high dimension. Hence, the
aim of this study is to introduce a new approach for time-variant reliability analysis with a reasonable
level of efficiency and accuracy.

Different methods have already been developed for time-variant reliability analysis. They are generally
categorized into two groups namely first passage-based and extreme value-based methods. Methods in
the first category use the out-crossing rate to estimate the failure probabilities. Rice formula [2], PHI2
[3] and PHI2+ [4] are among the popular methods in the first group. Methods in the second group are
based on the estimation of the extreme response of a time-variant performance function. Estimation
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of the extreme response is not so simple for costly-to-evaluate performance functions. Hence, meta-
models such as Kriging and Polynomial Chaos Expansion (PCE) are used to approximate the extreme
response. NERS [5], Mixed-EGO [6], and SILK [7] are among the Kriging based methods and t-PCE
is a PCE-based method [8].

Discretizing the time is one way to overcome the difficulty of dealing with continues time in most of the
time-variant reliability methods. The desired time interval is divided in a finite number of time nodes
and one can consider a performance function for each time node. This makes the problem very similar to
the reliability analysis of a serially connected system. Therefore, the goal here is to employ an efficient
system reliability method for time-variant reliability problems. AK-SYS is a Kriging-based reliability
method for systems that is going to be used for this reason [9].

The reminder of this paper is organized as follows: Section 2 reviews time-variant reliability. System
reliability and AK-SYS is then reviewed in Section 3. Section 4 is related to the proposed methodology.
Two case studies are used in Section 5 to show the accuracy and efficiency of the new method. A short
conclusion is finally provided in Section 6.

2 Time-variant reliability analysis

In most of the reliability problems, time-variant analysis is inevitable due to the temporal nature of ma-
terial properties, loading, and geometrical parameters. Time-variant reliability analysis is more compli-
cated than time-invariant analysis by introducing the time into the problem. The general time-dependent
performance function G(X, Y(¢), t) involves input random variables X, random processes Y () and time
t. However, by using some process representations such as Karhunen-Loeve (KL) transformation or
spectral representation [10] the general problem can be reduced to an explicit performance function

(G(X, ).

The main objective of a time-variant reliability analysis is to calculate the cumulative probability of
failure for a system. It tries to measure the probability of having at least one failure over a given period
of time [to, t;], see Equation 1. In the other hand, an instantaneous failure probability can be defined for
each time instant ¢ as in Equation 2. Figure 1 shows the difference between these two failure probabilities
[11].

Pf’c(to,tl) = PI‘Ob(HT S [to,tl],G(X, T) < 0) (D)

Pya(t) = Prob(G(X, 1) < 0) @)

Descretizing the lifetime of a system allows an equivalence between time-variant and system reliability
analyses. This similarity let us to employ system reliability methods to solve time-variant reliability
problems. Among recently developed methods for system reliability, AK-SYS has a promising effi-
ciency. Consequently, application of this method for time-variant reliability analysis will be explained.

3 System reliability and AK-SYS

Reliability analysis at the system level is different than for components since a system can have several
failure modes. This study considers the reliability of serially connected systems only. In series systems
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Figure 1: An illustration of cumulative and instantaneous failure probabilities in time-variant problems

with p components, failure happens if one component fails. The jth failure event of the system can be
formulated as

B; = {G;(X) < 0) 3

where G;(.), j = 1,...,p denotes the performance function defined for jth component. The system’s
failure probability is defined as the probability of the union of all events.

Py = Prob(U_, E;) = Prob(U%_,G;(X) < 0) 4)

AK-SYS is one of the efficient methods to calculate this failure probability especially when computation-
ally expensive performance functions are involved. It works in the same way as Monte Carlo simulation
(MCS). However, in AK-SYS each performance function of the system is replaced with Kriging meta-
model. One important step in using meta-models is the enrichment process to reach a reasonable level
of accuracy. For this reason, AK-SYS uses an active learning process using the learning function U that
is introduced in [12]. A modification has been done on this learning function to make it suitable for
systems. The new learning function is called composite criterion learning function and it is formulated
in Equation 5 by:

G (x|

0y —
Us(X ) Ués(x(i))

&)

This learning process is applied on N Monte Carlo generated input samples. For each point x(), i =

., N the minimum performance function G, among G 7(X), 7 =1,...,pis found first. The learning
process is then performed on this function to find the best training point. The point x(*) that minimizes
U is the best training point. The Kriging meta-model G, is subsequently updated. The learning process
stops when for all sample points minUs; > 2. Using this learning process for the enrichment process
makes AK-SYS very efficient because it only updates the performance functions which significantly
impact the system’s failure. Besides, it is a general method meaning that it can be applied on different
kinds of limit states since it does not make any assumptions on them.
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4 Proposed methodology
4.1 From time-variant to system reliability

Discretizing the time is one step to tackle the difficulty of dealing with time-variant problems. In this
manner, the lifetime of a system will be divided into /V; nodes. An instantaneous performance function
G, (X) is defined for each node ¢,,, n = 0, ..., V;. Also, a failure event can be defined for each time
node as expressed in Equation 6. Figure 2 shows an illustration of the time descretization.

-—> time
tor ty, t, = nAt, ti_y, tp=NAt
EyZ, B E,=G,(x)<0 Ey_1  Ey

Figure 2: A representation of time discretization

E,={x: G,(x)<0)} (6)

Therefore, the cumulative failure probability in time-variant reliability problems can be approximated
by Equation 7.
Py.o(to, 1)) ~ Prob{UNt (E,} = Prob{U (G, (X) < 0)} (7)

Comparing Equations 7 and 4 helps us to highlight the similarity between time-variant and system re-
liability analyses. In the next part, application of AK-SYS for time-variant reliability assessment is
introduced.

4.2 AK-SYS for time-variant reliability analysis

The main reason of introducing the new approach using AK-SYS is to exploit the efficiency and gener-
ality of this method for time-variant reliability assessment. Different steps of the proposed methodology
is depicted in Figure 3. The algorithm starts by discretizing the desired lifetime into /V; time nodes, gen-
erating the initial Monte Carlo population of size Njscs from the joint distribution of X, and preparing
the initial DOE of size Npog. The DOE is subsequently used to calibrate [V, Kriging meta-models
related to /Ny time nodes. The composite criterion learning function Uy is employed in the next step.
The sample point that minimizes the learning function is used to enrich the DOE and to train the meta-
models. The learning process continues until the minimum value of learning function is greater than 2
over the Monte Carlo population.

The cumulative probability of failure can be calculated in the next step. This can be done in the same
manner as MCS where the original performance functions are replaced by Kriging meta-models. The
ratio between the failed realizations of the time-variant performance function over the total number of
generated realizations Nj;c g realizations calculates the cumulative failure probability. The coefficient
of variation of Pﬁc computed by Equation 9 is checked. This helps to make sure that the resulting failure
probability is close enought to the result of MCS.
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Figure 3: General algorithm for proposed methodology

5 Case studies

The new method is tested on two numerical cases in this section and the results are compared with MCS.
To demonstrate the validity of the model, the number of realizations that are misclassified is calculated.
This can be calculated by Equation 10. The relative percentage error ,see Equation 12, can also be
used for the sake of comparison if there is any misclassification. It should be noted that for comparison
purpose, the same time discretization strategy is used for both methods.

Nt Nyces

Nmisclass = Z Z I(X(i);tn) (10)
n=1 i=1
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where o .
1x9, ) = Laf GxWit,) x G(xY, t,) < 0 an

0 Otherwise
Error(%) = M % 100 (12)

Prycs

5.1 Example 1: A nonlinear model

A nonlinear performance function with only one random variable has been chosen for illustration pur-
pose. This performance function is formulated in Equation 13. It includes one random variable X where
X ~ N(10,1) [6].

The cumulative probability of failure over [1,2.5] is given by:

Py (1,2.5) = Prob(3r € [1,2.5], G(X,7) < 0) (14)

A Monte Carlo population of size 5 x 10° and DOE of size 10 is used. Table 1 shows the results for
different descritization strategies where the probabilities calculated by MCS and the new methodology
are exactly the same. It can also be noted that the cumulative failure probability increases for cases
with higher number of time nodes. This shows that the descritization is crucial for estimation of failure
probabilities. Also, it should be mentioned that the C'OV is less than 0.05 for all cases.

Table 1: Results for example 1

Time Nodes | P_MCS | P_AK-SYS-based | N_calls | Misclass | Error(%)
5 0.002048 0.002048 19 0 0
10 0.002046 0.002046 20 0 0
20 0.010068 0.010068 23 0 0
50 0.011588 0.011588 21 0 0

5.2 Example 2: A general model

A more complicated performance function with dimension 10 is considered in this section. The perfor-
mance function is defined in Equation 15 where L. = dm, k = 5 x 1075, and pPst = 7.85 X 10*N.
ou, ag, by are input random variables and F'() is an input stochastic process. F'(t) is decomposed into
seven random variables using a spectral representation. Table 2 provides distributions of involved ran-
dom variables and their parameters for the input random variables.

G(X,Y (t),t) = —(F(t)L/4+ pgagboL?/8) + (ag — 2kt)(by — 2kt)?0, /4 (15)
7 7
F(t) = 6500+ > &> (ayjsin(bit + cij))) (16)
i=1 j=1

The matrices for coefficients a;j, b;;, and c;; can be found in [6]. The cumulative probability of failure
for 35 years lifetime for this performance function is defined as:
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P;.o(0,35) = Prob(37 € [0,35], G(x,Y (t),7) < 0) (17)

Table 2: Distribution of random variables for example 2

variable Mean Standard deviation | Distribution
o,(Pa) | 2.4 x 108 2 x 107 Normal
ap(m) 0.2 0.01 Normal
bo(m) 0.04 4%x1073 Normal
& 0 100 Normal
& 0 50 Normal
& 0 98 Normal
&y 0 121 Normal
&s 0 227 Normal
& 0 98 Normal
& 0 121 Normal

A Monte Carlo population of size 5 x 10* and an initial DOE of size 50 is used for this case. The
results for this example are provided in Table 3. Some misclassification appears for different discretiza-
tion strategies. However, comparing the relative percentage error still shows a promising accuracy for
this approach. Finally, comparing the results with the results of first example shows that by increas-
ing the dimension, the number of calls to the performance function increases as well as the number of

misclassification.

Table 3: Results for example 2

Time Nodes | P_MCS | P_AK-SYS-based | N_calls | Misclass | Error(%)
5 0.04416 0.04418 73 7 0.045
10 0.044065 0.044025 79 12 0.091
20 0.044163 0.044063 77 17 0.226
50 0.044203 0.044243 77 14 0.090

6 Conclusion

This paper proposes a new approach for time-variant reliability analysis. This method takes advantage of
AK-SYS method which is a system reliability method. In fact time descritization makes the similarity
between time-variant and system reliability analyses. Two illustrative examples show the efficiency
and accuracy of the proposed methodology. It can be seen that for problems with low dimensionality
the results are exactly the same as MCS, but by increasing the dimension, the error slightly increases.
However, the results remain very accurate with only few calls to the original performance functions
comparing to MCS.
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