

Atmosphere-Ocean Single-Column Model (AOSCM)

A tool to help improve coupled models in the Arctic

Gunilla Svensson

Department of Meteorology,
Bolin Centre for Climate Research and
Swedish e-science Research Centre (SeRC)

Thanks to Kerstin Hartung, Hamish Struthers, Filip Vana, Glenn Carver, Nils Wedi, Michael Tjernström and Georgia Sotiropoulou

Surface response of synoptic events

Snow

Ice

Ocean

Stockholm University

Surface

Energy

Budget

Accelerating model development work Single-column models a link between scales and models

- Large-scale models contain all scales, all processes, and are expensive to run and have biases
- Parameterisations are mainly distributing momentum and heat in the vertical
- SCM framework allows to **separate the scales** using advective tendencies from the large-scale model (reanalysis, observations, full model ...) as forcing on the vertical column
- NEW feature here is the Atmosphere-Ocean Single-Colum Model (**AOSCM**), built within the EC-Earth development portal (*Hartung et al.*, 2018)
- Work centered around well-observed cases (Supersites, icebreaker Oden expedition data, MOSAiC etc) & LES simulations

Atmosphere-Ocean Single-Column Model Developed within the EC-Earth portal

AOSCM.v1_EC-Earth3

OpenIFS cycle 40r1
OASIS3-MCT
LIM3
NEMO3.6

Hartung et al., 2018, GMD

Arctic local processes

Pithan, Svensson et al., 2018

Aerosol, cloud microphysics and mixing

Solomon et al., 2015

Stockholm University

Ocean vertical mixing

Ilicak et al., 2016

Focusing on surface energy budget:

What atmospheric processes do we need to get right?

An extreme warm advection episode Observations on icebreaker Oden, ACSE 2014

Oden track

Observed surface energy budget

(atmospheric point of view)

LES and ASCMCloud liquid water content

Sensitivity to advectionLES (MIMICA) and ASCM simulation of ACSE case

Moisture advection necessary to maintain the cloud

Sensitivity to advection LES (MIMICA) simulation of ACSE case

72

h

Sensitivity to couplingLES (MIMICA) simulation of ACSE case

Same order of change in net surface radiation coupled/uncoupled as LES with/without advection Almost no sea-ice melt and constant mean albedo

LES

h

Sensitivity to advectionLES (MIMICA) simulation of ACSE case

When sea-ice is melting, the picture changes!

ASCM_{LES}

AOSCM_{LES}

h

AOSCM_{LES}

LES
ASCM_{LES}
AOSCM_{LES}
AOSCM_{LES} No Q adv.
AOSCM_{LES} No T adv.

Sea-ice is gone unrealistically fast – initialization of the ice is not adequate

Concluding remarks

Stockholm University

SCM simulations are intended for improved understanding of parameterized processes in more controlled conditions

AOSCM makes it possible to study interactions ocean/seaice/snow/atmosphere with focus on vertical coupling processes, physical and technical

Large-scale advection and local vertical processes can be separated

AOSCM is developed and maintained within the EC-Earth development portal, tagged version AOSCM.v1_EC-Earth3

Similar to the NWP Operational system IFS

Simulations of the ACSE case show that the coupling may has as large impact as the advection of moisture in the LES case

Initialization, especially the cloud and sea-ice temperature, has impact on the evolution of the cloud and the energy budget

AOSCM and MOSAiC

http://www.mosaic-expedition.org

