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Molybdenum disulfide nanoribbons with zigzag edges show ferromagnetic and metallic properties
based on previous ab-initio calculations. The investigation of the role of disorder on the magnetic
properties is, however, still lacking due to the computational costs of these methods. In this work
we fill this gap by studying the magnetic and electronic properties of several nanometer long MoS2

zigzag nanoribbons using tight-binding and Hubbard Hamiltonians. Our results reveal that proper
tight-binding parameters for the edge atoms are crucial to obtain quantitatively the metallic states
and the magnetic properties of MoS2 nanoribbons. With the help of the fine-tuned parameters, we
perform large-scale calculations and predict the spin domain-wall energy along the edges, which is
found to be significantly lower compared to that of the zigzag graphene nanoribbons. The tight-
binding approach allows us to address the effect of edge disorder on the magnetic properties. Our
results open the way for investigating electron-electron effects in realistic-size nanoribbon devices in
MoS2 and also provide valuable information for spintronic applications.

I. INTRODUCTION

Electronic and spintronic applications of two dimen-
sional (2D) materials are in the focus of scientific
attention.1–6 Transition metal dichalcogenides (TMDs),
and particularly molybdenum disulfide (MoS2), are one
of the most intensively studied materials due their di-
rect band gaps,4,7 which make them good candidates for
optical8 and electronic applications such as transistors9

or even microprocessors.10 MoS2 is a nonmagnetic semi-
conductor, however, several theoretical studies11–13 re-
ported magnetic moments on the edges of zigzag MoS2

nanoribbons similar to the case of zigzag graphene
nanoribbons.14,15 These density functional theory (DFT)
calculations revealed ferromagnetic and metallic behav-
ior of the edges, furthermore the emerged magnetism
was still preserved in several edge reconstructed and
passivated systems independent from the nanoribbons
width.11,16–18 In the last years, impressive advances on
the sample preparation were reported. MoS2 nanorib-
bons with nanometer width and well-defined edges have
been synthetized by using bottom-up19,20 and top-
down21,22 techniques. In addition, magnetic measure-
ments on large scale epitaxial growth of zigzag MoS2

nanoribbons show prominent ferromagnetic behavior.23

Due to these recent experimental results theoretical un-
derstanding of the edge magnetism in MoS2 nanoribbons
is quite important, especially in larger, realistic systems
including disorder.

In the case of zigzag graphene nanoribbons different
spintronic applications were proposed based on the ap-
peared magnetic moments along the edges.24–27 How-
ever, it has turned out that the computational cost of
ab-initio calculations does not allow the investigation of

graphene nanoribbons in realistic size with disorder. In
order to study systems involving a large number of atoms,
tight-binding (TB) approach is a more suitable alterna-
tive, which can also provide a simple starting point for
the further inclusion of many-body electron-electron ef-
fects. By using TB parameters and local Coulomb in-
teraction (the so-called Hubbard-U) the magnetic prop-
erties of the graphene nanoribbons were studied in large
scale systems.28–31 It was found that the magnetism of
the edge states is robust against disorder and potential
fluctuations. However, as far as we know, similar inves-
tigation of the magnetic properties of MoS2 nanoribbons
has not been performed yet.

Nowadays, a wide range of TB parameters is available
for TMDs including MoS2 monolayers.32–35 These mod-
els accurately reproduce the DFT band structure calcu-
lations near the conduction and valence bands, provid-
ing a key tool for further studies of electronic and trans-
port properties in larger systems. In the case of MoS2

nanoribbons several papers examined the electronic and
transport properties based on the monolayer MoS2 TB
parameters.36–41 Besides the important observations of
these works, none of them takes into account the differ-
ent environment of the edge atoms compared to the inner
atoms of the nanoribbon during the TB parametrization.
Therefore, the obtained band structures of the nanorib-
bons, where all of the Mo and S atoms are handled
equally, show only qualitative agreement with the DFT
band structure calculations. Namely, the TB calculations
display metallic properties of the zigzag nanoribbons, but
even the number of the metallic bands is different com-
pared to the DFT results. However, in order to describe
the proper magnetic properties of the nanoribbons, the
accurate treatment of the edge states is crucial, since the
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magnetism originates from the splitting of the metallic
edge states.

In this paper we demonstrate that the metallic states
of zigzag MoS2 nanoribbons can be reproduced with their
proper orbital characters by adapting TB parameters for
the edge atoms. These results provide us a starting point
for further inclusion of the electron-electron interactions,
where the Coulomb repulsion is taken into account by
using local Hubbard interaction terms in the fine-tuned
TB Hamiltonian. This Hubbard model within the mean-
field approximation, applied for the first time to MoS2

nanoribbons, circumvents the computational bottleneck
of ab-initio calculations. Our results show that this sim-
ple model is not only capable of describing the magnetism
in MoS2 nanoribbons with zigzag edges, but also gives
quantitatively accurate results for the magnetization val-
ues compared to DFT calculations. As a next step, we
extend our calculations to several nanometer long ribbon
containing 800 atoms. We have found that the domain-
wall energies are much lower compared to those of the
graphene nanoribbons,42 which predicts fluctuations of
spins along the ribbon edge. We also investigated short-
and long-range disorder originating from inhomogeneous
charge distribution of the substrate or other structural
imperfections.

The paper is organized as follows. In Sec. II. we
present the applied theoretical models for MoS2 nanorib-
bons with zigzag edges. In Sec. III. A we compare the
TB and DFT calculations of the electronic and magnetic
properties of the nanoribbons. In Sec. III. B we applied
our method for several nanometer long nanoribbons and
analyze the spin domain wall. Sec. III. C presents the ef-
fects of the short and long-range disorder on the magnetic
properties. Finally, we show our conclusions in Sec. IV.

II. METHODS

Band structure calculations of the zigzag MoS2

nanoribbon (Fig. 1) are performed by using DFT and TB
calculations. As Capuletti et al.33 pointed out an eleven-
orbital TB model within Slater-Koster scheme43 is able
to reproduce the band structure of the single layer MoS2.
This model considers an orthogonal basis composed of
five orbitals (4dxy, 4dyz, 4dxz, 4dx2−y2 , 4d3z2−r2) for each
molybdenum (Mo) atom and three orbitals (3px, 3py,
3pz) for each sulfur (S) atom resulting in z-symmetric
and z-antisymmetric states. In the case of our zigzag
nanoribbon calculations, we follow the method and use
the TB parameters (hopping terms and on-site energies)
described in Ref. [33] as a starting point. In the next
step, we modify the on-site energy parameters of the edge
atoms in the ribbon (Table I) in order to quantitatively
reproduce the DFT band structure results.

DFT calculations are carried out using the projector
augmented wave (PAW) method44 as implemented in
the Vienna ab initio simulation package (VASP).45 The
generalized gradient approximation of Perdew–Burke–
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FIG. 1. Side and top view of the relaxed geometry of zigzag
MoS2 nanoribbon with sulfur dimer passivation along the Mo
edge. Purple and yellow spheres represent molybdenum and
sulfur atoms, respectively. The edge regions, where TB pa-
rameters of the atoms are modified marked by the dotted
black lines.

Ernzerhof (GGA-PBE) is adopted for the exchange-
correlation (XC) functional.46 The band structure cal-
culations are performed with plane wave cutoff of 500 eV
and the Brillouin zone is sampled with (12 × 12 × 1)
Monkhorst-Pack mesh of k-points.47 During geometry
optimization, the convergence criterion for forces is set
to 0.01 eV/Å.

To describe the magnetic properties of the zigzag
nanoribbons with the help of the modified TB parameters
we use a grand-canonical ensemble and switch on Hub-
bard interaction terms with different amplitudes, UMo,
US corresponding to the five Mo and three S orbitals,
respectively:

H =
∑
〈ij〉σ

tij ĉ
†
iσ ĉjσ + UMo

∑
i∈Mo

n̂i↑n̂i↓

+US

∑
i∈S

n̂i↑n̂i↓ −
∑
iσ

(εi − µ)n̂iσ.
(1)

Here tij encodes the hopping TB parameters, ciσ annihi-
lates a fermion at site i with spin σ, εi are the fine-tuned
on-site energy parameters, niσ is the particle-number op-
erator, and µ is the chemical potential. The summation
in the two Hubbard terms extends over the Mo or S sites
only. In the case of the long nanoribbons our system con-
sists of 800 atoms and nearly 3000 fermionic sites, at a
rate of one site per atomic orbital. Such a large system
can be solved only using some kind of approximation. We
apply the standard mean-field decoupling of the Hubbard
terms: ni↑ni↓ ≈ 〈ni↑〉ni↓ + ni↑〈ni↓〉 − 〈ni↑〉〈ni↓〉 which
gives us an effective single-particle Hamiltonian that can
be diagonalized either in k- or real space self-consistently.
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(a) (b) (c)

(d)

FIG. 2. Non spin-polarized band structure calculations of the zigzag MoS2 nanoribbon (n = 6). (a) DFT calculation, (b) TB
calculation using the modified TB parameters for the edge atoms. Mid-gap states originated from the edge atoms are marked
by different colors. States with blue and green colors correspond to the S edge, while red and yellow colors correspond to the
Mo edge. (c) TB calculations without edge parametrization. (d) Charge density plots around the Fermi-level calculated by
DFT. The isovalue is set to be 2 × 10−3 e/Å3.

The chemical potential is also determined in each itera-
tion step by requiring that the electron number per unit
cell should give the same number as in the nonmagnetic
case. The iteration is stopped if the difference between
the electron densities decreases below 10−6.

III. NUMERICAL RESULTS AND DISCUSSION

A. Band structure calculations of the nanoribbon

In Fig. 1 we can see the top and side view of the geom-
etry of MoS2 nanoribbon (n = 6) with zigzag edges. The
width parameter n is defined as the number of zigzag
lines across the nanoribbon as defined analogously for
the case of graphene nanoribbons. Without edge passi-
vation, zigzag nanoribbons have two types of edges, one
is S-terminated, while the opposite one is Mo-terminated.
However, both theoretical predictions and experimental
observations found the pure Mo edge energetically un-
favoured compared to edge passivated geometries.48,49

In order to model realistic nanoribbon geometries in our
calculations, we use the experimentally observed sulfur
dimers passivation at the Mo edge. After the relaxation
of the geometry, the S-S bond length of the dimer is found
to be 1.99 Å, significantly differ from the in-plane (3.18
Å) and out-of-plane (3.13 Å) S-S bond lengths.

The unit cell band structure calculations of the
nanoribbon (n = 6) without spin polarization are shown
in Fig. 2. From the DFT calculations (Fig. 2(a)) four
mid-gap states can be seen that are highlighted by differ-
ent colors. Three of them cross the Fermi level, implying
the existence of metallic states in agreement with pre-
vious results.48,50 These metallic states are almost com-
pletely localized on the S and Mo edge of the nanoribbon
(Fig. 2(d)). More precisely, the Kohn-Sham wave func-
tions reveal that the states marked by blue and green
colors correspond to the localized states of the S and Mo
atoms at the S edge, while the states with red and yellow
colors originate from S dimers and Mo atoms at the Mo
edge. From the charge density plot around the Fermi-
level (Fig. 2(d)) it is also visible that in the Mo edge side
the S dimers have px orbital character in contrast to the S
edge side, where the pz orbitals of the S atoms dominate,
forming one-dimensional metallic states along the edges.
By exploiting our modified TB parameters (Table I) in
the edge regions (Fig. 1 dotted area), we are able to re-
produce the shape and the number of the metallic states
with their proper orbital character (Fig. 2(b)). In con-
trast, the band structure results without our fine-tuning
for the edge atoms (Fig. 2(c)) show significantly different
edge states compared to the DFT results highlighting the
importance of the proper treatment of the edges within
the TB formalism. We have also examined the electronic
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- Mo atom S atom S dimer

Mo edge -2.03, 1.42, 1.42, 0.28,-8.28, -12.24 -0.55, -5.28,-8.24

-4.03, 0.51

S edge -2.03, 4.30, -0.80, -1.90, 0.18, -6.50 -

-12.03, -2.60

TABLE I. Modified tight-binding on-site energy parameters
for the edge atoms (marked by the dotted black lines in Fig. 1)
in units of eV. Values corresponds to the five orbitals (dxy,
dyz, dxz, dx2−y2 , d3z2−r2) for Mo atoms, and three orbitals
(px, py, pz) for S atoms, respectively. On-site energies and
the hopping terms for the inner atoms of the nanoribbons are
given in Ref. [33].

interaction between the two edges of the nanoribbon. We
perform the same calculations on a double size (n = 12)
nanoribbon (Fig. 3), where the mid-gap states show ex-
actly the same behavior. Our results have verified that
the edges states can be treated independently even in the
case of the narrower (n = 6) nanoribbon. In other words,
the electronic states at the S edge and Mo edge do not
interact with each other for nanoribbons having n ≥ 6,
which implies that our TB parametrization of the edges
is able to describe wider ribbons electronic properties as
well.

(a) (b)

FIG. 3. Non spin-polarized band structure calculations of
the zigzag MoS2 nanoribbon (n = 12). (a) DFT calculation
(b) TB calculation using the modified TB parameters for the
edge atoms. Mid-gap states (marked by different colors) are
the same compared to narrower (n = 6) nanoribbon implying
negligible electronic interaction between the Mo and S edges.

As a next step, we apply the Hubbard-model, Eq. (1),
by using our modified TB parameters to obtain the mag-
netic properties of the nanoribbons. The Hubbard in-
teraction terms for the S and Mo atoms are defined by
comparing the results with spin polarized DFT calcu-
lations. Figure 4 presents the results of the two cal-
culations, where US = 1.7 eV and UMo = 0.6 eV val-
ues are applied in the Hubbard calculations. According
to both methods localized magnetic moments appear on
the S edge, which result from the spin splitting of the
flat band of the edge S atoms (marked by blue color in
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FIG. 4. Spin-polarized band structure calculations of the
zigzag MoS2 nanoribbon (n = 6) by using (a) DFT and (b)
Hubbard-model with US = 1.7 eV and UMo = 0.6 eV param-
eters. Red and black curves correspond to the up and down
spins, respectively. The Fermi level is at zero energy. Magne-
tization appears from the splitting of the band of the S atom
resulting localized magnetic moments along the S edge.

Fig. 2 (a)-(b)). In more detailed, the higher value of
density of states and the finite Coulomb repulsion lead-
ing to Stoner instability and splits the partially occupied
S atom band into a totally filled spin-down (↓) and an al-
most empty spin-up (↑) band. By using the appropriate
U values, the large 0.52 eV splitting of the band and the
local magnetic moments M = 1/2(n↑ − n↓)geµB ≈ 0.35
µB on the S atoms at the S edge (both in the upper
and bottom layer) are predicted from the Hubbard cal-
culations in excellent agreement with the DFT results
(M = 0.32 µB). We note that the metallic state from
the S atom, which plays the major role in the magnetiza-
tion, is completely missing in the non-parametrized TB
results (Fig. 2(c)). From our spin-polarized calculations
only the S edge exhibits magnetic properties, in contrast
to the previous DFT calculation with unpassivated Mo
edge.11 The vanishing magnetic values at the Mo edge in
our nanoribbon geometry are due to the S dimers passi-
vation. Therefore, in the following sections we focus on
the magnetic properties of the S edge.

B. Spin domain wall

As we demonstrated in the previous section, with the
help of proper TB parametrization at the edges both the
electronic and magnetic properties of a zigzag nanorib-
bon can be obtained. Using the results of the unit cell cal-
culations, we extend the system size and investigate the
magnetic properties of a 40 unit cell long (Lx = 12.8 nm)
nanoribbon within the framework of the Hubbard model.
First we study collinear domain walls at the S edge by
rotating the half of the spins in the supercell geometry.
Fig. 5 illustrates the distribution of the spin density for
the ferromagnetic ground state (Fig. 5(a)) and the ex-
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FIG. 5. Spin density plot of the zigzag MoS2 nanoribbon. (a) Top view of the ferromagnetic ground state and (b) the collinear
domain wall excitation at the S edge. Blue and red circles correspond to spin-up and spin-down electrons, respectively. (c)
Magnetic moments at the edge on the S atoms in the presence of the domain wall. For comparison red dotted line shows the
ground state magnetic values.

cited state including collinear domain walls (Fig. 5(b)).
The spin densities of the S atoms at the S edge (both in
the upper and bottom layer) show that the domain wall is
practically localized within one unit cell (0.3 nm) and the
magnetization displays weak oscillations around the tran-
sition place (Fig. 5(c)). Surprisingly, we found that the
collinear domain wall creation energy is only Edw = +6.5
meV, which is more than one magnitude lower compared
to case of zigzag graphene nanoribbons, Edw = +114
meV.42 The strong localization and the low energy of
the domain wall together indicate weak magnetic cou-
pling along the S edge. In order to estimate the magnetic
coupling, we calculate the quadratic energy-wave vector
dispersion relation, E(q) = Dq2 with the spin wave ex-
change stiffness constant, D. From the different q vector
calculations, the spin stiffness constant is found to be
D = 161 meVÅ2, which is around a half compared to
zigzag graphene nanoribbons, D = 320 meVÅ2.42

An explanation of the weak coupling in the system
compared to zigzag graphene nanoribbons is related to
the different geometries and electronic properties of the
two materials. About the geometry, the zigzag S edge
atoms distance is 3.18 Å, larger than in the case of
graphene nanoribbons’ C atoms distance (2.46 Å), which
is able to reduce the interaction between the edge atoms
in MoS2. The nearest neighbor atoms, which can also
mediate magnetic coupling between the edge atoms, are
C atoms in graphene, while Mo atoms for MoS2. The

magnetic coupling through the middle layer Mo atom can
differ from the coupling through the in-plane C atom in
graphene. Besides the differences in the edge geometries,
there are also discrepancies between the electronic prop-
erties. The edge states in zigzag graphene nanoribbons
show almost flat bands in contrast to MoS2, where the
S atom bands have a small, but finite energy dispersion
(Fig. 2). The higher density of states due to the flat
bands can significantly strengthen the electron-electron
interaction effects and thus the magnetic coupling in the
case of graphene nanoribbons. We also verified the weak
coupling by performing DFT calculations in a double unit
cell geometry of zigzag MoS2 nanoribbon. The states
with ferromagnetic (↑↑) and antiferromagnetic (↑↓) spin
ordering at the edges show only 14 meV difference in
energy. It is worth noting that the small energy values
between the ferromagnetic and antiferromagnetic states
were reported in zigzag WS2 nanoribbons,51 which also
emphasizes the similar magnetic mechanisms in layered
structures of MoS2 and WS2.

C. Zigzag nanoribbon with disorder

Defects and disorder can significantly modify the in-
trinsic properties of the materials. In the case of zigzag
MoS2 nanoribbons, transport calculations have revealed
strongly suppressed conductance in the presence of edge
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(a)

(b)

(c)

FIG. 6. Spin density plot in the presence of disorder. (a)-(c) Top view of the magnetic ground states of the zigzag nanoribbons
by using Gaussian potentials with V0 = +100 meV and different width parameters c = 1, 3, 5 in Ångström. Black circles denote
the positions of the randomly distributed potentials. The radius of the circles corresponds to the size of the potentials. Blue
and red circles correspond to spin-up and spin-down electrons, respectively.

disorder.40,41,52 Motivated by the observed weak mag-
netic coupling at the S edge, we investigate the robust-
ness of the magnetization against short- and long-range
disorder.

In order to model disorder in the system we apply
Gaussian potentials to the on-site energy parameters on
each site:

V (r) =

N∑
i=1

V0e
−|r−ri|2/2c2 , (2)

where ri are the positions of the disorder, V0 and c are
Gaussian parameters corresponding to the strength and
the range of the disorder, respectively. In the case of
specific defects, such as vacancies or adatoms, the on-site
and the hopping parameters of the TB model should be
modified to describe the defect properties. However, by
using the combination of our edge parametrization and
Gaussian potentials, we are able to examine both short-
and long-range disorder in the system without further
modifications of the TB parameters. This disorder po-
tential can be also regarded as an inhomogeneous charge
distribution of the substrate.53

We use randomly distributed potentials in the sys-
tem (N = 8), which contains disorder along the edges
and also the inner part of the nanoribbon (marked by
the center of the black circles in Fig. 6). Gaussian po-
tentials with V0 = +100 meV are considered accord-
ing to often observed n-doped behavior of MoS2 sam-
ples on substrates.54,55 Fig. 6 shows the calculated mag-

netic ground state of the system for c = 1, 3, 5 values in
Ångström, which corresponds to disorder localized from
one atom to extended defects above nanometer size.

In Fig. 6(a), we can recognize the ferromagnetic ground
state at the S edge for the case of the strongly localized
perturbation potentials (c = 1 Å). We found that the
disorder localized in the middle of the nanoribbon does
not affect the magnetic properties, while the disorder on
the S atoms at the S edge causes slightly increased mag-
netic moments from the M = 0.35 µB defect-free value
to M = 0.41 µB . The growth of the magnetic moments
of the S atoms, where the potentials are centered, can be
understood from Fig. 4b. The positive potential causes
positive shift of the bands in energy, therefore the par-
tially filled spin-up band of the S atoms at the edge be-
comes less occupied. The spin-down band is far from
the Fermi-level, therefore it remains totally occupied in
the presence of the potential resulting higher magnetic
moments for the S atoms. Overall, we can say that shift-
ing the bands of the S atoms due to positive or negative
potential leads to increased or decreased magnetic mo-
ments at the edges compared to the defect-free system.
In contrast to the previous c = 1 Å result, the potential
with c = 3 Å parameter extending more than 3 atom dis-
tances, cause significant changes on the magnetic ground
state (Fig. 6(b)). Most importantly, in regions, where the
potentials are applied, the orientation of the magnetic
moments has been changed (M = −0.47 µB). The lower
energy of the observed state compared to the ferromag-
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netic state implies that potentials act in a more complex
way than in the previous c = 1 Å case. The potentials
modify both the Mo and S atoms bands in the potential
region resulting in the formation of domain walls along
the edges. Similar changes of the magnetic moments can
be seen at the Mo edge, where the S dimers have signifi-
cantly smaller magnetic moments (M = ±0.05 µB). Fur-
ther increasing of the radius of the individual Gaussian
potentials (c = 5 Å) leads to overlapping regions in the
potential at the edges (Fig. 6c). The magnetic calcula-
tions reveal that in the case of the overlapping region the
ferromagnetic ground state is restored at the S edge. In
contrast, domain walls appear in non-overlapping region
in the S edge. The relation between the potential and
magnetic texture is visible in Fig. 7. This result implies
that besides the width, the profile of the potential plays
also an important role on the magnetic ground state of
the system.
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FIG. 7. Potential profile and magnetic moments along the
S edge. Black and blue curves correspond to the potential
(c = 5 Å) and magnetic values on the S atoms at the S
edge. The magnetic moments are following the potential pro-
file. Ferromagnetic orientation of the spins occurs, where the
Gaussian potentials have overlapping region, while domain
walls appear in the non-overlapping region.

In conclusion, our calculations including disorder high-
light significant changes on magnetic ground state in
zigzag MoS2 nanoribbons. For short range disorder the
values of the magnetic moments have been changed, but
the ferromagnetic arrangement is still conserved. By in-
creasing the disorder range not only the values, but also
the direction of the moments is modified yielding spin do-
main walls, which are also sensitive to the profile of the
potential. The energy differences of the ground states
and excited states in the different disorder are in the or-
der of tens meV in the system. This behavior can be qual-
itatively understood if we assume that the edge magnetic
moments can be described by a one-dimensional Ising
model, as it was shown for graphene with zigzag edges.42

In this case, the effects of the disorder resemble to what
the random fields cause in the Ising model, where also for-

mation of domain walls in the system was predicted.56–58

In those systems, the creation of the domain wall is de-
termined by an interplay of the domain wall energy and
the properties of the applied field. It seems that in our
case the properties of the disorder potential play a similar
role. The possibility to modify the spin-texture by po-
tential disorder can be useful for spintronic applications.
By applying periodic or non-periodic potentials at the
edge, the magnetic moments can be tuned realizing vari-
ous magnetic ground states. Furthermore, even dynami-
cal control of the edge magnetic moments can be achieved
with local probe techniques (eg. conducting AFM tip),
where the tip induced potential flips the edge moments at
the location of the tip. By moving the tip along the edge,
one could move the induced reversed magnetic domain.

IV. CONCLUSIONS

Magnetic properties of 2D materials continue to pose
a great interest both from fundamental and application
point of view. In this paper, we reported magnetic cal-
culations for MoS2 nanoribbons with zigzag edges based
on the Hubbard model. We demonstrated that proper
TB parametrization of the edge atoms is crucial in or-
der to describe the magnetic properties of the nanorib-
bons. Using our fine-tuned TB parameters and Hub-
bard interaction strength, we have investigated a several
nanometer long ribbon and calculated the spin domain-
wall energy. The observed low domain-wall energy indi-
cates weak magnetic coupling between the S atoms at
the edge in contrast to zigzag graphene nanoribbons.
By using randomly distributed Gaussian potentials we
have also revealed the effect of the disorder on the mag-
netic properties. We have shown that the magnetic
ground state strongly depends on the potential parame-
ters, where even disorder with few atomic distances can
change the orientation of the edge spins. While these
findings reveal the importance of reducing the disorder
in MoS2 nanoribbons (for example by encapsulating the
ribbons with hexagonal boron nitride), this feature can
be also exploited to manipulate the spin-texture by an ap-
plied potential field. Our approach presented here opens
the way for investigating electron-electron effects in large
scale MoS2 and other TMD materials, which is essential
for spintronic applications.
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