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Abstract— This paper proposes a task-space impedance con-
troller using the dual quaternion logarithm, combining the
translation and rotation impedance in a single mathemati-
cal structure. The controller is composed of an outer loop
impedance controller to impose a desired apparent impedance
to the robot and an inner motion control loop to ensure tra-
jectory tracking of the end-effector pose. Experiments showing
the effectiveness of the controller were run on a KUKA LWR4+
robot with a force/torque sensor in the end-effector.

I. INTRODUCTION

The research on physical human-robot interaction (pHRI)
has been growing in the last years, in which robots take
advantage of their strength and precision capability to assist
humans in performing tasks in different environments [1].
For a safe pHRI, it is crucial to ensure a suitable compliant
robot behavior, which can be imposed by controlling its
apparent impedance [2].

Considering the execution of six degree of freedom (DOF)
tasks, both end-effector position and orientation must be
handled. In classic approaches, these parts are uncoupled
in the control law and the orientation is usually based on
minimal representations, such as the Euler angles, which
have representation singularities [2]. Caccavale et al. propose
to use a unit quaternion for the orientation displacement,
but they use two different control laws for the position and
orientation [2]. Furthermore, their formulation presents one
unstable equilibrium point. That work was later extended to
propose a coupled controller [3]. However, although they use
unit quaternions to represent the orientation displacement in
the impedance law, they still use rotation matrices to perform
transformations, making use of different representations in
the same framework.

We propose a new coupled six-DOF impedance controller
based on the dual quaternion (DQ) logarithm of the task-
space displacement, which is simple but effective, as shown
by experiments on a real 7-DOF manipulator robot.

II. MATHEMATICAL BACKGROUND

Considering a unit DQ representing a six-dimensional pose
x = r + (1/2)εpr, where p = xı̂ + ŷ + zk̂ is the three-
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dimensional position, and r = cos (φ/2) + n sin (φ/2) is
the rotation of the angle φ around the rotation axis n =
nx ı̂+ ny ̂+ nz k̂, its logarithm is logx = (φn+ εp)/2 [4].

Letting y = logx, there exists a matrix Q8 (x) ∈ R8×6

such that the following relation is true [5]

vec8 (ẋ) = Q8 (x) vec6
(
ẏ
)
, (1)

where the operators vec8 and vec6 map the (pure) DQ in a
vector, that is, vec8 : H → R8, and vec6 : Hp → R6.

A DQ error x̃ can be defined as the spacial difference
in Spin(3)nR3 [6], that is, x̃ , x∗xd, where x and xd
are respectively the current and the desired pose such that
x = xd implies x̃ = 1.

The logarithm ỹ , log x̃ can be used to translate the error
to the origin as x̃→ 1 implies ỹ → 0.

The force f log ∈ R6 related to the logarithm is given by

f log , Glog (x)
T
vec8 (ς) , (2)

where ς ∈ Hp is the wrench and Glog (x) , G (x)Q8 (x)
is the generalized Jacobian matrix related to the logarithm,
with G (x) ∈ R8×8 being the generalized Jacobian matrix
[4].

III. CONTROL STRATEGY

Given a desired pose xd of an end-effector that interacts
with the environment, we consider another (reference) frame
specified by xr such that a desired apparent impedance
can be imposed on the pose displacements between the two
frames [2].

Considering the displacement between xd and xr, the
impedance equation is given by

Md
¨̃yrd +Bd

˙̃yrd +Kdỹrd = −frlog, (3)

where Md, Bd, Kd ∈ R6×6 are the apparent desired
inertia, damping, and stiffness matrices, with Md and Kd

positive definite matrices, ỹrd , vec6 (log x̃rd), with x̃rd ,
x∗
rxd, and frlog = Glog (x̃rd)

T
vec8 (ς

r) is the external
wrench transformed to be consistent with the logarithm
mapping and referenced to xr. Hence, the impedance control
law is given by

¨̃yrd = M−1
d

(
−Bd

˙̃yrd −Kdỹrd − f log

)
. (4)

From ¨̃yrd, we use (1) and its derivative to find the displace-
ment x̃rd and its first and second derivatives and then xr and
its derivatives are retrieved through the definition of x̃rd.

The closed loop system is composed of the impedance law
(4) in a outer loop, and a motion controller in an inner loop
to control the end-effector pose according to the reference
pose xr, as illustrated in Fig. 1.
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Fig. 1: Scheme illustrating the control law composed of an outer loop with
an impedance law and an inner loop with a motion controller.

Fig. 2: Behavior of the KUKA LWR4+ when a human pushes its end-
effector.

IV. EXPERIMENTS AND DISCUSSIONS

Experiments were run on a KUKA LWR4+ robot manip-
ulator with a force/torque sensor located at its end-effector,
with a sample time of 5ms. The desired impedance matrices
were Md = 1.5I , Bd = 300I , and Kd = 1000I , where
I ∈ R6×6 is the identity matrix. A second-order kinematic
controller was used in the inner loop to track the pose xr.

The desired end-effector pose was its initial one, so in
the absence of external wrenches it should remain at this
initial pose. However, when an external wrench is applied
to it (in this case by pushing/pulling the end-effector in
different directions), the robot should move complacently,
according to the desired imposed impedance. Fig. 2 presents
some snapshots of the robot movement when a person pushes
its end-effector. The end-effector goes back and after the
person releases it, it returns close to its initial pose. The
initial KUKA’s configuration is also shown transparently in
the image.

Fig. 3a shows the wrench coefficients read from the
force/torque sensor, and the transformed wrench frlog, while
Fig. 3b shows the coefficients of the logarithm of the poses
xd, xr, and x. We can see by Fig. 3 that when there is
a force, the reference pose xr is different from the desired
pose xd, and the end-effector x follows xr.

V. CONCLUSION

The proposed impedance controller consists of a coupled
control law for six-DOF tasks by using the DQ logarithm
mapping. In the presence of external forces/torques acting
on the end-effector, the resultant reference pose is different
from the desired one, which ensures a compliant behavior
because of the desired apparent impedance imposed to the
robot. In the absence of external wrenches, the desired and
reference poses are the same and an inner motion control
loop ensures the trajectory tracking of the robot end-effector,
according to the reference pose.
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Fig. 3: (a) Coefficients of the external wrench exerted on the robot’s end-
effector for the value read from the sensor ς , and the modified fr

log. (b)
Logarithm coefficients of xd, xr , and x.

Future works include the improvement of the proposed
control law in order to have impedance matrices with a clear
physical meaning, and also a meaningful relation between
the desired stiffness and the task geometry.
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