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Abstract—This paper proposes a new optimization technique that 
uses Particle Swarm Optimization (PSO) in residential grid-

connected photovoltaic systems. The optimization technique 

targets the sizing of the battery storage system. With the 

liberation of power systems, the residential grid-connected 

photovoltaic system can supply power to the grid during peak 

hours or charge the battery during non-peak hours for later 

domestic use or for selling back to the grid during peak hours. 
However, this can only be achieved when the battery energy 

system in the residential photovoltaic system is optimized. The 

developed PSO algorithm aims at optimizing the battery capacity 

that will lower the operation cost of the system. The 

computational efficiency of the developed algorithm is 

demonstrated using real PV data from Strathmore University. A 
comparative study of a PV system with and without battery 

energy storage is carried out and the simulation results 

demonstrate that PV system with battery is more efficient when 
optimized with PSO.  

Keywords-grid-connected PV; electricity surplus; sizing; battery 

energy storage; electricity prices; net metering; PSO 

I. INTRODUCTION 

Nowadays electricity access plays a vital role and 
governments and private sector are investing in the electricity 
domain to ensure sustainable development. Climate change and 
the relaxation of the electric energy market boosted the 
development of renewable energy integration in electric grids 
[1]. In many developing countries the reliable access to 
electricity is still a big challenge. Grids are sometimes marked 
by limited supply and prevailing disruptions. Due to this, some 
electricity users who especially own classical grid-connected 
PV systems do not derive a benefit from their installations 
considering the intermittent nature of the solar panel [2]. The 
hours of high PV production do not necessarily coincide with 
peak load demand hours. Since customers usually experience 
frequent undesirable power cuts, it is possible that this issue 
will grow in the future. It is very important to look at 
alternative ways of minimizing the operational cost of a grid-
tied PV system. One of the alternatives is integrating optimally 
sized energy storages into a grid-connected PV system. 

There have been various contributions towards cost 
minimization and energy storage optimization where different 
approaches have been investigated. Authors in [3, 4] used 
Dynamic Programing (DP), whereas in [5, 6] the optimization 
was performed by means of Markov Decision processes and 
Fuzzy Clustering Method. Authors in [7], presented an 
economic analysis of a PV system under a net-metering 
scheme. Due to the randomness of Renewable Energy Sources 
(RES) and the serial characteristic of the decision problem in 
the analysis, a metaheuristic approach is preferred. Whilst 
analytical methods usually endure some problems like slow 
convergence and dimensionality, metaheuristic-based 
optimizations are much more effective in handling large-scale 
nonlinear optimization problems. In [8], a genetic algorithm 
was developed to optimally size lead acid batteries that run 
under dynamic pricing strategies in both independent and 
aggregated ways. Authors in [9] introduced a PSO-based 
algorithm for optimally sizing constituents of a hybrid 
renewable system, aiming to maximize the energy production 
to cover the load at lowest cost and enhanced reliability. An 
improved firefly algorithm was proposed in [10] to optimally 
locate and size the battery energy storage system for mitigating 

the voltage rise in PVDG integrated distribution network. 
Authors in [11] proposed a two layer optimization procedure 
using PSO to optimize the battery size of a grid-tied PV 
system. Authors in [12] conducted a comparative study 
between DP and PSO for solving unit commitment problems. 
Authors in [13] proposed a mechanism for minimizing the 
operation cost of a grid-tied system by optimizing the operation 
schedule of different energy sources in a residential complex 
energy system. The optimization was based on the Invasive 
Weed Optimization technique (IWO) and the impact of selling 
and buying to/from the utility grid was considered. 

In this paper, storage optimization and cost minimization 
are based on PSO. A grid-connected PV system with battery is 
presented with a configuration that allows the PV system 
owner to either sell or buy energy from the grid depending on 
the system’s output. The paper focuses on sizing the battery 
energy storage for a typical customer already owning a 5kW 
PV system in order to reduce daily electricity bills. 
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II. SYSTEM MODELING AND PROBLEM FORMULATION 

Mathematical models of various components that are parts 
of this grid-connected PV system were developed in order to 
establish an optimal energy flow within the system. This 
energy flow approach is considered for the modeling process of 
the system’s components for a time step (δt) of one hour. The 
function of battery storage in a grid-tied PV system varies 
according to its configuration. Some configurations use the 
direct charging method by charging the battery with PV panels 
DC voltage. In this paper, a different topology is set up in 
which the battery, the PV, the Load and the grid are connected 
to the same AC bus as in Figure 1. The battery is connected to 
the AC bus through an inverter/charge. The PV DC output is 
also fed to the AC bus via a three-phase DC/AC converter, 
which is modeled using a 3-level insulated gate bipolar 
transistor (IGBT) bridge. B400_2 is a three-phase V-I 
measurement block serving as the common AC bus 
interconnecting the sources and the load. The grid is modeled 
as an AC source and functions as a swing bus to balance the 
power demands of the household or absorb PV power. Power 
(positive sequence) block is used to monitor the active power 
exchange between the grid and PV system and serves for net-
metering. An arbitrary household load of 3kW has been 
assumed in order to show how it is connected to the rest of the 
system. 

 
Fig. 1.  Simulink model of the grid-connected PV system with battery 

An average hourly PV energy production along with the 
average hourly load consumption for the considered residence 
has been calculated and plotted in Figure 2. The load energy 
used for simulation in this paper has a daily average of 
12.15kWh whereas the PV energy output has a daily average of 
21.443kWh. This means that only 56.6% of PV energy is 
consumed by the load and the rest must be sold to the grid. 

 

 
Fig. 2.  Average hourly load and PV output throughout 2016 

A. Component Modeling and Data Acquisition 

1) PV Array Model 

The performance of the solar panels is highly governed by 
ambient temperature and solar irradiation. The optimal 
selection of a PV module with respect to the anticipated 
functional ambient conditions enhances the module’s 
performance and therefore increases energy production. For 
this work, a 5kWp PV array already installed on the top of a 
garage at Strathmore University was considered. 

 

 
Fig. 3.  Montly PV output power throughout 2016 

The PV output is modeled as a linear power with respect to 
solar radiation [9, 13]:  

�����, �� 	 
� � 
 � ��� (1) 
where 
� is the solar radiation at time interval �, 
 is the PV 
panel area and ��� is the PV efficiency. 
The raw output data of the 5kWp PV array were collected 

from Strathmore University, Nairobi, Kenya. The collected 
data were recorded hourly over the whole year of 2016 (Figure 
3). The module efficiency was taken as 14.91%. 

2) Battery Storage 

Capacity fading is normally estimated through real life 
experimentation by subjecting the battery to different 
charge/discharge rates, which can be hard and slow. An 
alternative way is the mathematical model which was 
developed based on Arrhenius equation in [14]: 

����� 	 
exp�������� �� (2) 

where �����  is Capacity loss, 
 is pre-exponential factor, ��  is 
the processed energy,   and !are the universal gas constant 
and temperature.  

In a practical scenario the battery charge and discharge 
rates change according to the grid and PV behavior, resulting in 
an increase of capacity fade with respect to increase in 
charge/discharge rate, "#�	 and temperature. The Arrhenius 
equation of battery capacity fading has been adapted to take 
into account the charge and discharge rates of the battery. The 
proposed model depends on nominal capacity �%, charge rate �&' , discharge rate �&( , energy processed for charging �) , 
energy processed for discharging �* , the gas constant, and 
temperature. 
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�����) 	 +
 exp ,−� × �&' × �) × �% × ! ./ + 
12 exp��(×345×�6×'7�×� �8  (3) 

This model has a particular advantage of being able to 
determine the capacity fade of the battery subjected to different 
charge-discharge rates. The various parameters of (3) can be 
found from the capacity loss data given by the battery 
manufacturers. The battery investment is taken as 200$/kWh 
[15] and the battery inverter cost has been estimated at 
6006$/kW [16]. 

3) Grid 

Electricity is expected to either be sold to the grid or 
purchased from it. For simplicity, we assume that the selling-
purchasing prices are equal at instant time � and we denote 
them as		�39:);��, ��. Consequently, there is an electric power 
interchange between the utility grid and the PV system denoted 
by Pgrid(t) such that: Pgrid(t)<0 when electricity is sold to the 
utility grid and Pgrid(t)>0 when electricity is bought from the 
grid. The system contains costs and benefits where costs 
account for the purchase of electricity from the grid and 
benefits account for selling electricity to the grid. The electric 
power exchange Pgrid(t) in combination with the PV output 
power Ppv(t) have to satisfy the power balance requirements as 
follow: 

�<9:*��� + ��������� = ����*��� + �=>����  

�<9:*��� = ����*��� − ��������� + �=>����  (4) 

where �=>���� is the charging/discharging rate of the battery on 
the AC bus, and ����*��� is the load power. 
4) Residential Load 

In a residential building, load appliances could have a fixed 
or a relatively flexible schedule, separating loads categories 
(lights and TVs from refrigerators and air conditioners). 
However, the details of load priorities are not analyzed in this 
work as a residential load profile has been collected from 
MAISY database and adapted to the Kenyan context. An 
hourly load profile for a residential building has been collected 
and plotted in Figure 4. 

 
Fig. 4.  Residential montly load profile throughout 2016 

B. Problem Formulation and Cost Calculation 

The formulated problem is to minimize the sum of the 
different costs such as the cost of imported power, the cost of 
battery degradation, and the annualized inverter cost as 
expressed in (5): 

?�@	A = B∑ ∑ �&'D��, �� + �'&��, ��EFGH%*GH I + 
�:J� (5) 

where �&'D is the cost of battery capacity loss, 	�'&  is the 
energy cost and benefit, 		
�:J�  is the annualized battery 
inverter cost and �, � are day and time respectively.  
The PV system is considered as previously installed and its 

energy is already available to the sample customer. Equation 
(5) emphasizes on the impact of battery capacity loss and 
electricity sell/purchase to/from grid on the overall running 
cost. It captures the effect of only the battery DC/AC inverter 
through 
�:J� (annualized inverter cost). In order to compare 
the running costs for grid-tied PV with battery storage and grid-
tied PV without battery storage, PV investment cost, PV 
DC/AC inverter cost, installation, and replacement cost are not 
considered. The reason is that those four variables are common 
for both cases. 

TABLE I.  INPUT PARAMETERS 

Parameter Value Unit 

PV capacity 5 kW 

PV efficiency �3K  14.91 % 

Battery investment cost 200 $/kWh 

State of charge ("#�L:J,L�M) 30 and 90 % 

Aging coefficient (N) 3 × 10�R n/a 

Nominal charging rate 10 hrs 

Self-discharging factor (S) 0.0000347 n/a 

PV inverter efficiency �:J� 97 % 

Bat. inverter efficiency �=�F  94 % 

Sampling time interval (TF) 1 hr 

Annual real interest rate (�) 4 % 

Battery charge/discharge eff.	�)E/�*:�)E  90 % 

Electricity charges 
0.1583 off-peak 
0.3560 on-peak 

$ 

 

The cost of the battery capacity fade for a given hour of the 
system operation is expressed as [6]: 

�&'D��, �� = &VW�*,F�×&XYZ[\]^_`\]H�abcdXY   (6) 

where 2'D��, �� is the battery capacity loss on day � at time �, 2:J�;�F�)��F  is the battery investment cost and "#eL:J  is the 
battery minimum state of health. 

The battery has the following dynamic equation [17]: 

*�4�*,F�*F = �&��, �� (7) 

where �&  is the battery energy and �&��, ��>0 during battery 
charging state, �&��, ��<0 during battery discharging state, and �&��, ��=0 during battery inactive state.  
In order to take into account the battery aging effect, a 

battery usable capacity is considered after each sampling time 
and denoted as	����. Obviously, at initial time �f  the usable 
battery capacity is same as the battery nominal capacity	�J . 
Then ��	�f� = �J. The above defined usable battery capacity is 
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updated at every sampling interval by subtracting a cumulative 
battery capacity loss �&������, ��  from the battery nominal 
capacity as shown in (8): 

���, �� = �J − �&������, �� �&������f� = 0 (8) 

Therefore, the battery capacity loss on day � at time � can 
be expressed as: 

2'D��, �� = �&������, �� − �&������, � − T�� (9) 
The model of the battery aging is [18]: 

*'4g`\\�*,F�*F = h −i× �&��, ��,						�j	�&��, �� < 00										l�ℎnop�qn																																 (10) 

Using the conventional efficiency of the battery �& and the 
sampling interval	T�, the above relation becomes: 
�&������, �� = r�&������, � − T���s×34�*,F�×tFu4 		�j�2 < 0	

�&������, � − T��						l�ℎnop�qn 	 (11) 
where i is the battery aging coefficient. 
This expression simply indicates that for the battery-aging 

model, capacity loss is encountered only in the discharge 
process. Thus, we can see that in (9), 2'D��, ��	is equal to zero 
when the battery is charging. Therefore, the calculation of cost 
of battery capacity loss in (6) entirely depends on the state of 
the battery, which is either charging or discharging. The battery 
state of charge is updated after each sampling period as: 

"#���, �� = "#���, � − T���1 − S�+ �)E 34�*,F�'�*,F�×K T�	 (12a) 

"#���, �� = "#���, � − T���1 − S�+ �*:�)E 34�*,F�'�*,F�×KT� (12b) 

Equation (12a) is for battery charging and (12b) for 
discharging.	���, �� is the usable battery capacity. 
Since the system allows purchasing and selling electricity 

from and to the utility grid, its operation contains both cots and 
benefits for the system owner that are combined and denoted 
together as �'& . Costs account for energy bought from and 
benefits account for energy sold to the utility grid. Equation 
(13) describes the mathematical expression of the cost of the 
energy exchanged: 

�'&��, �� = �39:);��, �� × �<9:*��, ��T� (13) 

Considering the two different scenarios that result from the 
reading on the net-meter, the above equation can be extended 
to account for the net power readings. It can be expressed as: 

1

2

( , ) {[ ( , ) ( , )

                  [ ( , ) ( , )]}

CB price Net

price Net

E d t E d t P d t

E d t P d t tδ

= × +

×
  (14) 

where �%;FH��, �� > 0 corresponds to the cost of buying power 
from the grid and �%;Fw��, �� < 0  corresponds to expected 
benefits for selling excess power to the grid. 

� = B∑ ∑ ��9:);��, �� × �<9:*:L��9FEFGH%*GH ��, ��I (15) 

2 = �∑ ∑ ��9:);��, �� × �<9:*;M��9FEFGH%*GH ��, ��� (16) 

where �<9:*:L��9F
 is the imported power from the grid and �<9:*;M��9F

 

is the power exported to the grid. 

The capital recovery factor and the annualized battery cost 
can be calculated by (17) and (18) respectively: 

2S��nox		�Sy��Sz	 n{l|nox	AS{�lo	�� A� = :�H}:�7
�H}:�7�H (17) 

where � is the annual interest rate and ~ is the battery lifetime, 
and 

S@@�Sz�Nn�	�S��nox	{lq� = 2:J�;�F�)��F × � A (18) 

For easier calculations it is assumed that the prices for sales 
and purchases are identical. The system is subjected to a 
number of operational constraints: 

�&L:J ≤ �&��, ��  
0 ≤ �&��, �� ≤ ���, ��  

"#�L:J ≤ "#���� ≤ "#�L�M  

"#e��� ≥ "#eL:J (19) 

The total annual operation cost is therefore calculated as: 

365 24

1 1
. .cos ( ( ))

                 

BCL CBd t

inv

An op t C E dt

AC

= =
= +

+

∑ ∑   (20) 

The lifetime of the battery is calculated in (21): 

Battery	lifespan	�~� = 'Y×K'4g`\\^�[��  (21) 

where �&������;�9  is the annual additive battery capacity loss. 
III. PARTICLE SWARM OPTIMIZATION ALGORITHM 

Particle swarm optimization is used to solve this 
optimization problem. The algorithm initializes the particles to 
search the best solution in the entire search space from the 
objective function [19]. In this study, the swarm is initialized 
as � = 1: @�ly  where @�ly  is the swarm size, taken as 30 
particles. The particles refer to different random battery sizes 
from 100 to 3000Ah. The number of iterations is set to a 
maximum of 20 and initialized as � = 1:?S��� where ?S��� 
is the maximum number of iterations. The inertia maximum 
and minimum weight is set to 0.9 and 0.2 respectively. The 
acceleration coefficients are assumed as 2. Each particle is set 
to an initial zero velocity and for every particle (random battery 
size) the objective function is executed to compare the costs. 
Each particle compares the target value with the best particle’s 
value, if the target value is lower, sets this value, and records 
the location of the corresponding particle [20]. Velocities and 
positions are updated after each iteration [21]. Each battery 
capacity has a position and each position has a velocity. The 
velocity of the �-th is updated by: 
|�,J;�� = p|�,��*� + {HoHB��,�=;�F� − ���I + {wow (22) 

where |�,J;��
 is the new velocity of the k-th particle at the j-th 

iteration, w is the inertia weight, |�,��*�
 is the old velocity of the 

k-th particle at the j-th iteration, {H and {w are the acceleration 
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constants, oH  and ow  are two random numbers in 
[0, 1]. The position of the the �-th is updated using (23): 

��,J;�� 	 ��,��*��H 0 |�,J;��
 (23) 

where ��,lz��-1
 is the old position of the k-th particle at the 

previous iteration. 

In this study, the position X is the size and the velocity is 
the corresponding running cost. The objective function is to 
minimize the total operating cost F. The personal best of each 
battery is its size and the resulting operating cost. Therefore, 
for every iteration, there is a corresponding battery size which, 
when integrated in this grid-connected PV system results in a 
minimum operating cost which is the global best. 

 

 
Fig. 5.  Flow chart of the proposed PSO algorithm 

IV. RESULTS AND DISCUSSION 

In this simulation, the optimization algorithm computes the 
optimized battery size, the corresponding operation cost of the 
system, the additive battery degradation or capacity loss, and 
the battery lifespan. These different values are generated and 
compared with respect to two scenarios: A grid-connected 
system with and without battery energy storage. In both cases, 
we have distinguished import and export energies as �<9:* > 0	 
and �<9:* k 0 respectively. Similarly, the battery charged and 
discharged energies are distinguished as �&�{ v 0  and 
�&�{ k 0  respectively. This is because the net-metering 
system needs to calculate the net power. 

A. Grid-connected with Battery Energy Storage 

In this PSO-based optimization, a set of adequate numerical 
quantities for the PSO parameters were chosen to get the 
algorithm quicker and faster. The population size was set to 30, 
the maximum number of iterations was set to 20, c1 and c2 were 
set to 2 and wdamp to 0.99. 

After initializing the parameters, the PSO algorithm was 
utilized to compute the optimum battery size with respect to 
cost as depicted in Figure 6. The dots represent the fitness 
values (total cost for a given battery capacity) and each of them 
represents a potential solution. According to Figure 6(a), we 
can realize that a few points are close to the optimal battery 
size and could be mistaken as the best solution. This has been 
avoided by magnifying the bottom part of the figure and 
narrowing the search space to 1000-1600Ah to highlight the 
final solution or the optimal battery size as 1200Ah in Figure 
6(b). This optimal size is equivalent to 14.4kWh with a 
corresponding total annual cost or an annual income of 449.42$ 
to the PV system owner paid by the utility. The negative sign 
simply indicates that the exported energy to the grid was higher 
than the imported energy from the grid resulting in a benefit to 
the system owner. The capital cost of the 14.4kWh battery is 
calculated as 2880$ at a rate of 200$/kWh. The battery lifespan 
is calculated by (21) as 13.5 years and the battery recovery 
factor is found as 0.100143 by (17). The annualized battery 
cost or real battery capacity loss cost is then estimated as 
288.4$ using the expression in (18).  

 

 
Fig. 6.  Optimal battery capacity with respect to cost 

Figure 7 shows the optimal energy flow within the system 
when a 14.4kWh battery storage is installed. The plots are for 
one sample day of the year (53rd) and we can realize that the 
load demand entirely depends on the grid during off-peak hours 
(00:00 to 7:00). PV power starts to be available after 7:00 and 
the peak production of 4.047kW is recorded at 13:00. The load 
takes only 0.799376kW out of 4.047kW and the excess 
3.2476kW is fed to the grid to make profit. 
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Fig. 7.  Optimal energy flow schedule for one day 

Figure 8 illustrates how the energy varies in the battery and 
how the algorithm handles the constraint of "#� boundaries. 
According to this figure, battery discharges its energy to the 
utility grid from 8:00 until its state of charge reaches its 
minimum. The battery is kept inactive for one hour (13:00 to 
14:00) then starts charging from PV until 16:00. The battery 
releases its energy to the utility grid again until its minimum "#�. From 18:00 to 22:00, the load is mostly relying on the 
grid and the battery is kept inactive. Finally, during off-peak 
hours (22:00 forwards), the battery charges from the utility 
grid. We realize that the algorithm only discharges the battery 
at points where it is advantageous.  

 
Fig. 8.  SOC variation of the battery during one regular day 

In Figure 9, it can be seen that during the sampled day the 
additive battery capacity loss of this grid-connected PV-battery 
system increases during discharging time due to the aging 
effect described in (11). The additive battery capacity loss is 
0.167318kWh at the start of the day and ends at 0.170278kWh 
totaling a daily additive battery capacity loss of 0.00296kWh or 
2.96Wh. The Figure shows that the battery degradation 
increases only during discharge state from 8:00 to 13:00 and 
from 16:00 to 18:00. Figure 10 reflects the convergence of the 
proposed PSO algorithm to find the optimal solution for four 
independent runs with respect to costs. As depicted in this 
Figure, optimal battery size is reached after about 10 iterations 
and the optimum solution converges to the same global best for 
the four runs. If the load demand is increased by 10% for each 
of the 8760 hours, the results show that the optimal battery 
capacity remains the same but the battery lifetime decreases by 
3.7%. A change of 21% in the annual income is also recorded. 

If the load is decreased by the same percentage, the same 
proportions apply in favor of the owner. On the other hand, if 
the energy consumption is kept constant and the hourly power 
profile is decreased by 5%, the results show that the optimal 
battery capacity changes from 1200Ah to 1100Ah and the 
annual income of the PV system owner decreases by 24%. 

 
Fig. 9.  Additive battery capacity loss during one day 

 
Fig. 10.  Convergence of the PSO for four independent runs 

B. Grid-connected without Battery Energy Storage 

If the system has no energy storage, the utility grid acts as 
both energy storage and energy source. During peak 
production, the energy surplus is injected to the utility grid. The 
system starts feeding energy to the grid immediately after the 
production exceeds load demand. During nights, cloudy days, 
or power cuts, the utility grid performs as an energy source to 
cover the load.  

 
Fig. 11.  Energy flow for a typical day of the year 
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In Figure 11, it can be seen that during the hours when the 
PV was unavailable, the load entirely relied on the grid. PV 
starts generating from 7:00, however, its energy is not enough 
to fully supply the load before 9:00. During this period, the grid 
continues to supply energy. Between 9:00 and 17:00, PV 
energy exceeds the load demand and the excess is injected to 
the grid. According to the Figure, out of 4.047kW of peak 
production recorded at 13:00, only 0.79937kW were consumed 
by the load and the excessive 3.2476kW were sold to the grid. 
From 19:00 and onwards the load is entirely covered by the 
grid. The optimization algorithm returned an annual benefit of 
210.4384$ in favor of the system owner since only annual 
electricity cost and benefits are the costs involved in this type 
of configuration. 

V. CONCLUSION 

The current paper presented a PSO method for optimally 
sizing the energy storage of a grid-connected residential PV 
system. While satisfying a set of operation and optimization 
constraints, the goal was two-fold: to lower the amount of 
power import from the grid and to minimize the cost of battery 
degradation caused by the aging effect. The goals were 
achieved through optimally scheduling the battery operation. 
Simulations were carried out for a system with battery storage 
and a system without battery storage. The results showed that 
electricity charges from utility and battery degradation costs 
highly influence the optimal battery capacity determination in a 
grid-tied PV system. Results demonstrated that upon efficiently 
and optimally scheduling the battery operation, electricity bills 
can be significantly minimized. The system without battery 
returns lower benefits and its entire dependency on the utility 
grid during nights and cloudy days makes it less desirable.  
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