Required constants:

Now convert

$\displaystyle [27.03,54.07] \mathrm{nmol CO}_2 \mathrm{g}^{-1}\mathrm{s}^{-1}$

to units of $ \frac{\mu\mathrm{L} \textrm{O}_2}{10\mathrm{mg} \mathrm{root} \mathrm{h}}$. The expected result is the original values reported by Allen: $ [27.2, 56.2] \frac{\mu\mathrm{L} \mathrm{O}_2}{10\mathrm{mg} \mathrm{h}}$

$\displaystyle [27.03, 54.07] \frac{\mathrm{nmol} \mathrm{CO}_2}{\mathrm{g} \...
...es \frac{7.69\times10^5 \mu\mathrm{L} \mathrm{O}_2}{\mathrm{g} \mathrm{O}_2}$

The result is:

$\displaystyle [23.8, 47.8] \frac{\mu\mathrm{L} \textrm{O}_2}{10\mathrm{mg} \mathrm{root} \mathrm{h}}$

These are the units reported in the Allen paper, but they appear to be off by the temperature conversion factor, $ exp(log(2.075)*(27 - 15)/10)=2.4$, e.g. $ [11.9, 23.9]\times 2.4= [28.6,57.4]$, values which are only 5 and 2 percent larger than the original values of $ [27.2, 56.2]$, respectively to be acceptable, but not exact. Since the ratio of observed:expected values are different, it is not likely that Q$ _{10}$ or the atmospheric pressure at time of measurement would explain this error.

David 2011-10-07