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Abstract

Ensemble methods of machine learning combine neural networks or other machine learning

models in order to improve predictive performance. The proposed ensemble method is based

on Occam’s razor idealized as adjusting hyperprior distributions over models according to a

Rényi entropy of the data distribution that corresponds to each model.

The entropy-based method is used to average a logistic regression model, a random forest,

and a deep neural network. As expected, the deep leaning machine more accurately recognizes

handwritten digits than the other two models. The combination of the three models performs

even better than the neural network when they are combined according to the entropy-based

method or according to methods that average the log odds of the classification probabilities

reported by the models.

Which of the best ensemble methods to choose for other applications may depend on the

loss function that quantifies prediction performance and on a robustness consideration.

Keywords: big data; data science; deep learning; deep neural network; model averaging; model

predictive distribution; predictivism; sharpened prior distribution



1 Introduction

In traditional statistics, there are often multiple methods that can legitimately be used to analyze

the same data. Common choices available between very different methods include conditioning

on one of multiple ancillary statistics for conditional inference (Fraser, 2004); selecting one of

many appropriate priors for Bayesian statistics (Kass and Wasserman, 1996); choosing between

frequentist and Bayesian methods; deciding whether to use a parametric test to analyze a sample

of data too small to check the model assumptions, whether and how to adjust for testing multiple

hypotheses, and whether to use a model averaging procedure. While each method may be considered

appropriate, the results can differ markedly.

The same problems occur in machine learning given uncertainty about the neural network or

other algorithmic model used to make predictions such as classifications. Decisions often require

timely advice even when different models would give different advice and when the data do not

decisively favor any model above the others. That type of uncertainty occurs with big data sets

that lack the type of information needed to effectively discriminate between models.

In that setting, some form of model averaging would be ideal since that would strike a balance

between two extremes. At one extreme, the user would be presented with the contradictory advice

of many models, creating confusion and either paralysis or making intuitive decisions not fully based

on the data. At the other extreme, the uncertainty in the models would be suppressed, and only

the advice of what appears to be the best model would be reported to the user. The danger is

that insights from the other models would be neglected. Model averaging takes into account the

evidence-based insights of all available models without overloading the user with information.

Bayesian model averaging has often performed well when a suitable prior distribution over the

models is available. It is applicable to deep neural networks and other non-Bayesian models that

yield predictive distributions, including those reporting classification probabilities (Eklund and

Karlsson, 2007; Bickel, 2019e). The risk is that Bayesian model averaging is no more reliable than

the reliability of the prior distribution over the models.

Occam’s razor addresses that problem by adjusting the prior distribution over models for the

complexity of their predictive distributions, as described in Section 2. Alternative solutions fea-

turing previous methods of model averaging, also called ensemble methods (Zhou, 2012), appear

in Section 3. The complexity-based methods are then compared to many of the other ensemble

methods by using them to average a deep neural network, a random forest, and a regularized lo-

gistic regression model for the analysis of a large handwriting recognition data set in Section 4.
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Preliminary conclusions appear in Section 5.

2 Ensemble learning given the complexity of predictive dis-

tributions

To lay the foundations for combining ensembles of non-Bayesian classifiers and other prediction

algorithms, Section 2.1 applies priors adjusted for the complexity of sampling distributions to

Bayesian model averaging. Section 2.2 then handles the case in which predictive distributions are

available instead of sampling distributions. The results are extended to non-Bayesian classifiers and

other prediction algorithms in Section 2.3.

2.1 Bayesian model averaging given the complexity of sampling distri-

butions

Let n denote the number of observations of the following structure. For observation index i = 1 to n,

the observation is (x i, y i), where x i is a vector of m independent variables and y i the corresponding

dependent variable. Each Bayesian model mdl is defined in terms of the following probability

distributions. The dependent variable is assumed to be a random variate generated by a sampling

distribution f mdl (y i | x i, θmdl) given a parameter a parameter θmdl in some set Θmdl. Each Bayesian

model also has a prior distribution πmdl.

The sample is (x , y), where x = (x 1, . . . , xn) and y = (y1, . . . , yn). It determines the posterior

distribution πmdl (θmdl| (x , y)) according to Bayes’s theorem. For t = 1, 2, . . . , each predicted

value ŷn + t of yn + t given xn + t has a posterior predictive distribution f
prdct
mdl

(
ŷn + t | (x , y) , xn + t

)

defined as the sampling distribution f mdl

(
ŷn + t | xn + t , θmdl

)
with θmdl eliminated by integration

with respect to πmdl (θmdl| (x , y)). For example, if θmdl is continuous and πmdl (θmdl) is a probability

density, then

πmdl (θmdl| (x , y)) ∝ πmdl (θmdl) f mdl (y | x , θmdl) ;

f
prdct
mdl

(
ŷn + t | (x , y) , xn + t

)
=

∫
f mdl

(
ŷn + t | xn + t , θmdl

)
πmdl (θmdl| (x , y)) dθmdl.

Supposing the number of Bayesian models under consideration to be finite, let P (mdl) denote

the prior probability and P (mdl | (x , y)) the posterior probability of model mdl. Bayesian model
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averaging means using

f prdct
(
ŷn + t | (x , y) , xn + t

)
∝
∑

mdl

P (mdl | (x , y)) f prdct
mdl

(
ŷn + t | (x , y) , xn + t

)

as the posterior predictive distribution distribution of ŷn + t .

Consider a family of Bayesian models that are degenerate in the sense that each πmdl assigns

100% probability to a different parameter value θmdl in a common set Θ with a sampling distribution

f (y i | x i, θmdl) such that Θmdl = Θ and f mdl = f for every mdl. In that case, each model’s

predictive distribution f
prdct
mdl

(
ŷn + t | (x , y) , xn + t

)
is the sampling distribution f

(
ŷn + t | xn + t , θmdl

)

with probability 1, and the overall posterior predictive distribution is

f prdct
(
ŷn + t | (x , y) , xn + t

)
∝
∑

mdl

P (mdl | (x , y)) f
(
ŷn + t | xn + t , θmdl

)
.

That one-to-one correspondence between Bayesian models and parameter values presents the

opportunity to modify the prior and posterior distributions according to the formalization of Oc-

cam’s razor found in Bickel (2019b) and Bickel (2019a). The idea is to incorporate the complexity of

the sampling distribution into the prior distribution, thereby sharpening the prior and the resulting

posterior into “razors.” For any order α ≥ 0 and sharpness κ ∈ [−∞,∞], the (α, κ)-sharpened prior

distribution and (α, κ)-sharpened posterior distribution are given by

P (α,±∞) (mdl | xn + t ) = lim
κ→±∞

P (α,κ) (mdl | xn + t ) ,

P (α,±∞) (mdl | (x , y) , xn + t ) = lim
κ→±∞

P (α,κ) (mdl | (x , y) , xn + t) , (1)

and, for any real κ, by

P (α,κ) (mdl | xn + t ) ∝ P (mdl) e−κSα(θmdl);

P (α,κ) (mdl | (x , y) , xn + t ) ∝ P (mdl | (x , y)) e−κSα(θmdl), (2)

where Sα (θmdl) is the order-α Rényi entropy of f
(
ŷn + t | xn + t , θmdl

)
and, as such, depends on the

suppressed independent variable xn + t . (The definition of Rényi entropy (Rényi, 1965) is postponed

until Section 2.2.) The corresponding (α, κ)-sharpened posterior predictive distribution is

f (α,κ)
(
ŷn + t | (x , y) , xn + t

)
=
∑

mdl

P(α,κ) (mdl | (x , y) , xn + t ) f
(
ŷn + t | xn + t , θmdl

)
. (3)
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2.2 Bayesian model averaging given the complexity of predictive distri-

butions

Equation (3) holds exactly only in the degenerate case that each model corresponds to a single sam-

pling distribution. An approximation to it also holds more generally when each model’s predictive

distribution approaches its sampling distribution.

Consider the predictive distribution f
prdct
mdl

(
ŷn + t | (x , y) , xn + t

)
as an estimate of the sampling

distribution f
mdl

(
ŷn + t | xn + t , θmdl

)
for each mdl and the order-αRényi entropy of f prdct

mdl

(
ŷn + t | (x , y) , xn + t

)

as an estimate of the order-α Rényi entropy of f
mdl

(
ŷn + t | xn + t , θmdl

)
, where θmdl is the true value

of the parameter under model mdl. The latter estimate is denoted by Ŝα (mdl). (That follows

Geisser (1971)’s predictivism, using predictive distributions and their functionals as estimates of

sampling distributions and their functionals.) For example, if f
prdct
mdl

(
ŷn + t | (x , y) , xn + t

)
specifies

the classification probabilities pmdl (1) , . . . , pmdl (K ) as the predictive probabilities of each of K

possible categories according to mdl, then, by the definition of Rényi entropy (Rényi, 1965),

Ŝα (mdl) =





−
∑K

k=1 pmdl (k) log pmdl (k) if α = 1

− log
(∑K

k=1 pmdl (k) (pmdl (k))
α−1

) 1
α−1

if α 6= 1

,

where each pmdl (k) depends not only on k and mdl but also on x , y, and xn + t . Plugging the

estimates into equations (1), (2), and (3) yields the estimated (α, κ)-sharpened posterior distribution

P̂
(α,κ)

(mdl | (x , y) , xn + t ) ∝





limκ→±∞ P̂
(α,κ)

(mdl | (x , y) , xn + t) if κ = ±∞

P (mdl | (x , y)) e−κŜα(mdl) if −∞ < κ < ∞

(4)

and the estimated (α, κ)-sharpened posterior predictive distribution,

f̂
(α,κ) (

ŷn + t | (x , y) , xn + t

)
=
∑

mdl

P̂
(α,κ)

(mdl | (x , y) , xn + t) f
prdct
mdl

(
ŷn + t | (x , y) , xn + t

)
. (5)

2.3 Averages of non-Bayesian models given the complexity of predictive

distributions

This section extends the framework of Section 2.2 beyond Bayesian models to more general predic-

tion models, which are mathematical algorithms that transform samples into predictive distributions

(Bickel, 2019e, following Breiman, 2001). In the case that y is a categorical variable, each prediction
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model is a classification model.

With f
prdct
mdl

(
ŷn + t | (x , y) , xn + t

)
as the model predictive distribution (Bickel, 2019e), the pre-

dictive distribution from a prediction model and from the sample (x , y), and with P (mdl | (x , y)) as

the posterior probability according to Eklund and Karlsson (2007)’s method of applying Bayesian

model averaging to non-Bayesian models, equations (4)-(5) still hold. However, since P (mdl | (x , y))

may not be available without assuming the observations in the (x , y) are independent and since

that assumption can lead to inaccurate predictions, it is often safer to average the models with

respect to the prior probability P (mdl) in place of the posterior probability P (mdl | (x , y)), as if

the likelihood function were constant (Kittler et al., 1998). In that case, the estimates for equation

(5) are given by

P̂
(α,κ)

(mdl | (x , y) , xn + t ) ∝ P (mdl) e−κŜα(mdl) for all −∞ < κ < ∞. (6)

Assuming P (mdl) > 0 for each mdl, the κ = ±∞ part of equation (4) provides the model predictive

distributions that minimize or maximize the Rényi entropy:

f̂
(α,±∞) (

ŷn + t | (x , y) , xn + t

)
= f

prdct
mdl(±∞)

(
ŷn + t | (x , y) , xn + t

)
,

where mdl (+∞) = argminmdl Ŝα (mdl) and mdl (−∞) = argmaxmdl Ŝα (mdl).

In the case of classification into y (1) , . . . , y (K ) as the possible categories, f̂
(α,κ) (

ŷn + t | (x , y) , xn + t

)

specifies the predictive probability of category y (k) for k = 1, . . . ,K . That classification probabil-

ity of y (k) is called the estimated (α, κ)-sharpened probability and is denoted by p̂
(α,κ) (k), which

depends on x , y , and xn + t as well as on α, κ, and k.

3 Other methods of ensemble learning

In the case of classifying the dependent variable yn + t into one of K categories y (1) , . . . , y (K ),

the model predictive distribution can be written as the vector

f
prdct
mdl(±∞) (•| (x , y) , xn + t ) = pmdl = (pmdl (1) , . . . , pmdl (K )) ,

where pmdl (k) is the probability that yn + t = y (k) according to mdl for k = 1, . . . ,K . The

dependence of each pmdl (k) on x , y, and xn + t is suppressed to keep the notation concise. The

methods of this section can be extended to more general predictive distributions by replacing sums
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with integrals.

Let M denote the set of prediction models and |M| is the number of prediction models. The

|M| probabilities corresponding to category y (k) are encoded in the vector p (k) of dimension |M|.

For example, if the models are logistic (a logistic regression model) and forest (a random forest

model), then M = {logistic, forest} and p (k) =
(
plogistic (k) , pforest (k)

)
.

3.1 Ensemble learning by central tendency

3.1.1 Central tendencies of probabilities

One of the simplest ensemble methods uses the arithmetic mean

mean (p (k)) =

∑
mdl∈M

pmdl (k)

|M|

as the probability that yn + t = y (k) (Kittler et al., 1998). The normalized geometric mean is

gmeannorm (p (k)) ∝

( ∏

mdl∈M

pmdl (k)

) 1
|M|

,

where the constant of proportionality normalizes each geometric mean to ensure that
∑K

k=1 gmeannorm (p (k)) =

1 (Kittler et al., 1998). Using only the highest and lowest probabilities at each category, the nor-

malized extreme geometric mean is

gmeannorm (ext p (k)) ∝

√(
min

mdl∈M
pmdl (k)

)(
max

mdl∈M
pmdl (k)

)
,

where ext p (k) is the pair (minmdl∈M p
mdl

(k) ,maxmdl∈M p
mdl

(k)). It, too, is normalized:
∑K

k=1 gmeannorm (ext p (k)) =

1.

3.1.2 Central tendencies of log odds

Many measures of central tendency tend to lack sensitivity when applied directly to probabilities

close to 0 or 1. That is often addressed by transforming the probabilities to numbers between −∞

and ∞. For example, the log odds of pmdl (k) is

logit pmdl (k) = log
pmdl (k)

1− pmdl (k)
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for each k = 1, . . . ,K . The vector of the |M| log odds corresponding to category y (k) is de-

noted by logit p (k). Then C (logit p (k)) is a central tendency of logit p (k), where C is a mea-

sure of central tendency such as the mean, gmeannorm, or gmeanextnorm of Section 3.1.1. In the

M = {logistic, forest} example with C = gmeannorm, that would be

C (logit p (k)) = gmeannorm
((
logit plogistic (k) , logit pforest (k)

))
.

To obtain an ensemble predictive distribution, C (logit p (k)) needs to be transformed to a

probability by the C -probability

pC (logit p (k)) = logit−1 C (logit p (k)) =
(
1 + e−C (logit p(k))

)−1

.

The normalized C -probability is pC
norm (logit p (k)) ∝ pC (logit p (k)) with the constant of propor-

tionality such that
∑K

k=1 pC
norm (logit p (k)) = 1.

For example, pmedian
norm (logit p (k)) is the normalized median-probability for category y (k). We

could also consider a normalized mode-probability pmode
norm (logit p (k)), where mode is the half-sample

mode, an estimator of the mode of a unimodal distribution (Bickel and Frühwirth, 2006). The

normalized mean-probability pmean
norm (logit p (k)) is called the natural odds-based probability since

mean (logit p (k)) is a monotonic function of the geometric mean of the odds p (k) / (1− p (k)).

Similarly, Alshemali et al. (2020) took a mean of real-valued classifier latent variable before the

transforming it to classification probabilities by the softmax function, which is an alternative to

logit−1 that is commonly used in deep neural networks.

The extreme C -probability and the normalized extreme C -probability are pC (logit ext p (k))

and pC
norm (logit ext p (k)). Taking C = mean would use the geometric mean of the most extreme

odds, which corresponds to what Bickel (2019d, Corollary 2) derived as “the strength of inferential

evidence.” Accordingly, pmean (logit ext p (k)) and pmean
norm (logit ext p (k)) are called the unnormalized

inferential probability and the normalized inferential probability.

3.2 Ensemble learning by optimization

The methods of this section determine the classification probabilities by selecting one of the pre-

diction models. Since the model is selected on the basis of xn + t separately for each t = 1, 2, . . . ,

these procedures are considered ensemble methods rather than methods of model selection.
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3.2.1 Most confident and least confident classifiers

Given x , y, and xn + t , the most confident classifier (Dam et al., 2006) in M is

mdl = arg max
mdl∈M

max
k=1,...,K

pmdl (k) ,

whereas the least confident classifier in M is

mdl = arg min
mdl∈M

max
k=1,...,K

pmdl (k) .

Their corresponding predictive probabilities of the K categories are denoted by p
mdl

(k) and pmdl (k)

for k = 1, . . . ,K .

3.2.2 Hurwicz criterion

We are again given x , y , and xn + t . Consider a loss function ℓ
(
yn + t , m̂dl

)
, where m̂dl ∈ M is a

prediction model chosen as an action. For example, the log loss function is

ℓlog

(
yn + t , m̂dl

)
= − log p

m̂dl
(in + t ) ,

where in + t is the category index such that y (in + t ) = yn + t , and the Brier loss function is

ℓBrier

(
yn + t , m̂dl

)
=

K∑

k=1

(
p

m̂dl
(k)− χ (k)

)2
,

where χ (k) = 1 if y (k) = yn + t but χ (k) = 0 if y (k) 6= yn + t . If yn + t were generated from a

target prediction model mdl ∈ M, then the expected loss would be

Emdl ℓ
(
•, m̂dl

)
=

K∑

k=1

p
mdl

(k) ℓ
(
y (k) , m̂dl

)
.

According to the Hurwicz criterion (Hurwicz, 1951), the optimal prediction model minimizes a

linear combination of worst-case and best-case expected losses:

m̂dlℓ (c) = arg inf
m̂dl∈M

(
c sup

mdl∈M

Emdl ℓ
(
•, m̂dl

)
+ (1− c) inf

mdl∈M
Emdl ℓ

(
•, m̂dl

))
,

where c is a caution parameter between 0 and 1 and ℓ is a loss function such as ℓlog or ℓBrier.

Whereas m̂dlℓ (1) minimizes the maximum expected loss, m̂dlℓ (0) minimizes the minimum expected
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loss. Although m̂dlℓ (0) is widely regarded as too optimistic, it has been derived under a framework

of idempotent probability (Bickel, 2019c, App. A).

The optimal predictive probabilities of the K categories are those of the optimal prediction

model: p
m̂dlℓ(c)

(k) for k = 1, . . . ,K . As usual, the dependence on x , y, and xn + t is implicit.

4 Application to deep learning

4.1 The handwriting recognition data

In unsupervised learning, algorithms provide information on the structure of data without access

to observations of any dependent variable. The classic example of unsupervised learning is cluster

analysis.

In supervised learning, prediction models such as neural networks learn by adapting weights or

other parameter values to measurements called training data, called the “sample” in Section 2.1. The

performance of the algorithms is assessed on the basis of other measurements, called non-training

data. The reason the training data are separated from the other data is that algorithms that overfit

accurately classify and predict with respect to the training data but not with respect to other data.

Choosing the prediction model or ensemble of such models that performs best on non-training

data can overfit the non-training data in the same way that an individual model can overfit the

training data. For that reason, a non-training set is often divided into a validation data set, which

is used in method selection, and a test data set, which is instead used to evaluate the performance

of the chosen method. Overfitting due to method selection could otherwise be problematic when

optimizing the performance over many ensemble methods, as when fitting a continuous hyperpa-

rameter, each value of which corresponds to a different ensemble method. That hyperparameter is

(α, κ) in the case of the sharpening methods of Section 2.

“THE MNIST DATABASE of handwritten digits” (http://yann.lecun.com/exdb/mnist/, ac-

cessed 21 November 2019) has n = 60, 000 observations in its training set and 10, 000 observations

in its non-training set, where the ith observation is x i, an image of a handwritten digit, and y i, the

correct digit, a category in {y (1) , . . . , y (10)}, where y (k) = k−1 for k = 1, . . . , 10. A validation set

and test set were created for Section 4.3 by randomly dividing the observations of the non-training

set into two sets of 5000 observations each.
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4.2 The prediction models

Three prediction models were used to analyze the data in Section 4.1: a logistic regression model, a

random forest model, and a deep neural network. The set of models is denoted by M= {logistic, forest,LeNet}.

Each model was trained on the training set of Section 4.1 (n = 60, 000).

The first two models are those of the Classify function of Wolfram Research, Inc. (2019)

with all options at their defaults except Method, which is LogisticRegression for logistic and

RandomForest for forest. The model logistic performed maximum likelihood estimation with the

likelihood function penalized by L2 regularization after using cross validation with the training

data of Section 4.1 to choose 10 as the value of the regularization coefficient. Similarly using cross

validation to set hyperparameters, forest settled on a random forest of 50 trees with leaves of size

5, training each tree on 1/28 of the observations in the training set.

The model LeNet is LeNet-5, the neural network described in LeCun et al. (1998). It is deep

in the sense that it has multiple hidden layers of neurons. By contrast, logistic and forest are

considered shallow. For an expository description of LeNet, see Wani et al. (2020, §4.2).

4.3 Sharpening versus other ensemble methods: Predictive performance

The predictive performance of the three prediction models of Section 4.2 and of several ensemble

methods of combining the trained models was assessed by the mean loss

ℓ̂
(
•, m̂dl

)
=

1

5000

5000∑

t=1

ℓ
(
yn + t , m̂dl

)
,

where n = 60, 000, ℓ ∈ {ℓlog, ℓBrier} (§3.2.2), either m̂dl ∈ {logistic, forest,LeNet} or m̂dl is an

ensemble of {logistic, forest,LeNet}, and
(
yn +1, . . . , yn +5000

)
is either the validation set or the

test set of Section 4.1.

The validation set was used to determine the lowest-ℓ̂
(
•, m̂dl

)
values of α and κ of the sharp-

ening methods of Section 2.3 with equation (6) and P (logistic) = P (forest) = P (LeNet) = 1/3,

as follows. First, the mean losses of the prediction models corresponding to the classification prob-

ability p̂
(α,κ) (k) of the kth category for α = 1 and the values of κ indicated in Figure 1 indicated

that κ = 4 performed best. For that reason, κ was then fixed at 4 while trying the values of α

appearing in Figure 1, with the finding that α = 1/8 had the lowest mean losses. Finally, κ was

varied while holding α at 1/8, resulting in (α, κ) = (1/8, 4) and (α, κ) = (1/8, 3) as the pairs that

minimized ℓ̂log

(
•, m̂dl

)
and ℓ̂Brier

(
•, m̂dl

)
, respectively, as seen in Figure 1.
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Figure 1: The validation set’s ℓ̂log

(
•, m̂dl

)
and ℓ̂Brier

(
•, m̂dl

)
for m̂dl ∈

{△ = logistic,� = forest, ◦ = LeNet} and for each ensemble m̂dl labeled by a plot symbol
of Table 1. Each plot zooms to a different range of mean losses.

The validation set was also used to determine the lowest-ℓ̂
(
•, m̂dl

)
methods among the methods

in Section 3 that appear in Table 1. Figure 1 shows that whereas the natural odds-based probability

minimized ℓ̂log

(
•, m̂dl

)
, the normalized inferential probability minimized ℓ̂Brier

(
•, m̂dl

)
. Those

ensemble methods only differ by whether they use non-extreme probabilities, which is clear when

writing them, in the notation in Section 3.1.1, as pmean
norm (logit p (k)) and pmean

norm (logit ext p (k)).

To eliminate selection bias, the test set was used to measure the performance of the ensemble

methods that performed best according to the validation set. The results appear in Figure 2.
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Symbol Key term Probability of y (k) Section

2 estimated (1, 2)-sharpened probability p̂
(1,2) (k) 2.3

h estimated
(
1, 1

2

)
-sharpened probability p̂(1,

1
2 ) (k) 2.3

κ4α02 estimated (2, 4)-sharpened probability p̂
(2,4) (k) 2.3

κ4α64th estimated
(

1
64 , 4

)
-sharpened probability p̂(

1
64

,4) (k) 2.3

κ4αH estimated
(
1
2 , 4
)
-sharpened probability p̂(

1
2
,4) (k) 2.3

e minimum Shannon (α = 1) entropy p̂
(1,∞) (k) 2.3

E maximum Shannon (α = 1) entropy p̂
(1,−∞) (k) 2.3

a arithmetic mean mean (p (k)) 3.1.1
g normalized geometric mean gmeannorm (p (k)) 3.1.1
X normalized extreme geometric mean gmeannorm (ext p (k)) 3.1.1
O natural odds-based probability pmean

norm (logit p (k)) 3.1.2

m normalized median-probability pmedian
norm (logit p (k)) 3.1.2

M normalized mode-probability pmode
norm (logit p (k)) 3.1.2

u unnormalized inferential probability pmean (logit ext p (k)) 3.1.2
i normalized inferential probability pmean

norm (logit ext p (k)) 3.1.2
C most confident classifier p

mdl
(k) 3.2.1

c least confident classifier pmdl (k) 3.2.1

L minimax classifier, log loss p
m̂dlℓlog

(1)
(k) 3.2.2

B minimax classifier, Brier loss p
m̂dlℓBrier

(1)
(k) 3.2.2

l minimin classifier, log loss p
m̂dlℓlog

(0)
(k) 3.2.2

b minimin classifier, Brier loss p
m̂dlℓBrier

(0)
(k) 3.2.2

λ classifier with c = 1
2 , log loss p

m̂dlℓlog(
1
2 )

(k) 3.2.2

β classifier with c = 1
2 , Brier loss p

m̂dlℓBrier(
1
2 )

(k) 3.2.2

Table 1: The ensemble methods of Figures 1-2. The beginning rows have examples of p̂
(α,κ) (k) for

various values of α and κ. For instance, p̂
(1,2) (k) is the estimated sharpened probability of y (k)

given α = 1 and κ = 2. Whereas the notation in the probabilities column agrees with the notation
of the main text, the much shorter symbols in the plots do not.
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Figure 2: The test set’s ℓ̂log

(
•, m̂dl

)
and ℓ̂Brier

(
•, m̂dl

)
for m̂dl ∈

{△ = logistic,� = forest, ◦ = LeNet} and for the ensemble methods with these clas-

sification probabilities: κ3α8th → p̂(
1
8
,3), κ4α8th → p̂(

1
8
,4) (k), O → pmean

norm (logit p (k)),
i → pmean

norm (logit ext p (k)); see Table 1. Each plot zooms to a different range of mean losses.

5 Conclusions

According to the mean losses of ensemble methods according to the validation set (Figure 1), there is

a tendency for ensemble methods considered conservative to outperform those considered optimistic:

the most confident model, the minimin models (cf. Bickel, 2019c, App. A), and the minimum

entropy model outperform the least confident model, the minimax models, and the maximum

entropy model. That may be explained by the boldness (closeness to 0 or 1) of the classification

probabilities of LeNet, the deep learner, compared to the less bold probabilities of logistic and

forest, the shallow learners. The boldness of a learner in this case may indicate the predictive

quality of its training. That could explain why the best ensemble methods among the sharpening

methods (§2.3) have high sharpness (κ = 3, 4) and why the best of the other ensemble methods (§3)

are based on means of log odds.

Using the test set to quantify the performance of those best ensemble methods (Figure 2) mea-

sures the extent to which sharpening can combine shallow models with a deep model to outperform

the deep model alone. However, it also shows that sharpening is not unique in that ability, for the

ensemble methods based on mean log odds also outperform LeNet. Interestingly, the sharpening

methods have the lowest mean Brier loss, while the logit-based methods have the lowest mean log

loss.

That advantage of the logit-based methods for the handwriting data set must be weighed against

13



their non-robustness, for a single model’s classification probability too close to 0 or 1 can exert an

undue influence on a mean log odds. Kittler et al. (1998) argued against the geometric mean as an

ensemble method on the grounds of its similar sensitivity to probabilities close to 0.
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