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1. Current situation
2. Step back (early work)

3. Challenges and future work




Introduction AN/

Everybody knows: Arctic sea ice has been strongly
declining over the last 3 to 4 decades
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Introduction oAV

Many studies have investigated the impact of such Arctic
sea ice decline on the Northern mid-latitude climate —
obviously we want to know what the Arctic sea ice decline
means for us

Already in the 1970s to the 1990s Arctic sea ice removal
experiments have been performed

While some response features have been well established
there is lively discussion and controversy over some
features owing to the strong internal variability of Arctic
and mid-latitude weather and climate
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Barcelona 2014
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EU project APPLICATE
based on these ideas

Year Of Polar Prediction (YOPP)
Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAIC) '@ @ \




Year of Polar Prediction (YOPP)
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Multidisciplinary drifting Observatory for the Study of Arctic
Climate (MOSAIC)
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APPLICATE.eu

Advanced prediction in
polar regions and beyond

APPLICATE

Advanced Prediction in Polar Regions and Beyond

* This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
727862.




APPLICATE.eu

Advanced prediction in
polar regions and beyond

Delivering enhanced predictions

Enhance models—The example of increased resolution
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APPLICATE eu’

St ra te V Advanced prediction in
7 polar regions and beyond

Understand Arctic-midlatitude linkages

» Coordinated multi-model approach (CMIP6-PAMIP)

» Employ atmosphere-only and coupled models

» Study linkages also from a short-term prediction perspective
» Repeat some of the experiments with enhanced models
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Washington, D.C. 2017
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3 US CLIVAR Recommendations

US CLIVAR Climate Variability and Predictability Program =S ° from the WorkShOP
£ (Cohen et al., 2018):
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® Coordinated model
experiments (using

! the full range of models:
conceptual to full earth
system)

Use paleo data

PAMIP within CMIP6



_PAMIP workshop Totnes (2019) QI
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articipns of t PAMIP workso " rroundmgs f ter, ‘ (oto: Jinr Uita, Niiata nvesity, Japn).
First PAMIP workshop held close to Exeter, UK to exchange
first results of the coordinated model experiments

Outcome: groups of scientists established who work on
multi-model analysis of specific aspects

Series of papers planned on this basis @_@J




Early report: Warshaw and Rapp (1972) ¢'ppny
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An Experiment on the Sensitivity -~ -
of A Global Circulatior’Model: -
Studies in Climate Dynamics
for Environmental Security 200
M. Warshaw and R. R. Rapp.
1000 |—
30“
A Report prepared for
ADVANCED RESEARCH PROJECTS AGENCY

SUMMARY

The growth of small errors in numerical models of the atmospheric
circulation destroys the detailed predictive capability of those models
within a few days. Despite the failure of the models to produce accu-
rate local predictions, it was hypothesized that a change in the equator-
to-pole temperature gradient would produce discernable effects in average
conditions. This Report presents the results of an experiment to test

this hypothesis.
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Fig. 8 -- East/west wind difforences
(n/sec); (1ce out) - (ice in).

Report based on findings
of a two-level global
circulation model
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Early papers: Newson (1973), Royer et al. (1990) 5 5/

850 hPa TEMPERATURE (difference)

02,

Fig. 1 Temperature differences, in °C near the model surface,
Fig. 10. Change in DJF mean temperature (K) at the 850 hPa level

between the computation with an ice-free arctic and the compu-
tation with ice at the mean climatological position. Hatched ) .
between “ice-out” and control. Negative values are shaded

areas indicate regions of cooling in the ice-free experiment.




Early papers: Royer et al., 1990 S VI

Sea ice removal experiment with low resolution T42
atmospheric global model
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Fig. 5. Change in zonally averaged DJF
_ 90N mean zonal wind (m/s) between “ice-out”
latitude and control
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Deser et al., 2010
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F1G. 12. Bimonthly geopotential height responses at 1000 and 500 hPa. The contour interval is 10 m, with positive (negative) values
in red (blue) and the zero contours omitted. Shading indicates values that exceed the 5% confidence level based on a two-sided
Student’s ¢ test.

Started to think about more
real-world set-ups instead of
complete removal of Arctic
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Semmler et al., 2012 QA N/

Fig. 9

Difference in 1st percentiles of
daily mean 2 m temperature (°C)
in winter 1960-2000 over the
Arctic and the Northern mid-
latitudes a ice-reduced minus
reference experimentand b
ice-free minus reference
experiment. ¢, d same as a, b but
for 50th percentiles

SIST < Tireeze — 10°C — SIST = SIST + 10°C, SIC = SIC
SIST > Treeze — 10°C — SST = Max (Tieeze, SIST), SIC =0

with T freeze being the freezing temperature of sea water (-1.7 °C).

Started to think about more
real-world set-ups instead of
complete removal of Arctic
sea ice
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Atmospheric nudging / relaxation a AN/

Jung et al. 2014
Idea:

Control experiments: free global atmospheric forecasts
(medium-range to seasonal)

Sensitivity experiments: relax / nudge the atmosphere to
observed state in a certain area (for example the Arctic
and for comparative purposes mid-latitudes or tropics)

Large ensembles can be performed

Could be also done for coupled models




Atmospheric nudging / relaxation a AN/
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Figure 1. (a—c) Relative reduction (in %) of the root-mean-square error of 500 hPa geopotential height forecasts during
wintertime through Arctic relaxation (north of 70°N, solid circle) for day 1-5 in Figure 1a, day 6-10 in Figure 1b, and day
11-30 in Figure 1c forecasts. (d) Difference in the relative reduction of forecast error for day 11-30 between experiments
with tropical and Arctic relaxation. Negative values in Figure 1d indicate that Arctic relaxation is more efficient than
tropical relaxation in reducing Z500 forecast error. The dashed circles indicate the midlatitudes as defined in this study

Up to now: atmosphere-
only experiments; next
-50 slides: coupled experiments

Jung et al., 2014
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Importance of coupling
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Figure 1. Annual zonal mean (a, ¢, e) temperature (°C) and (b, d, f) zonal wind (m ) responses to Arctic sea ice loss in the in AICE_NOM (Figures 1a and 1b),
AICE_SOM (Figures 1c and 1d), and AICE_FOM (Figures 1e and 1f) model configurations (color shading: color bars at the bottom of each column; note the
nonlinear color scales). Stippling indicates where the response is statlstlcally significant at the 95% confidence level. Contours indicate the twentieth century

climatology (contour interval of 10°C for temperature and 5ms ! for zonal wind with the zero contour thickened).




Recent paper: Screen et al. (2018) AN/
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Regional 4*C0O2 approach o AN/

Stucker et al., 2018 / Semmler et al., 2019 (in review)
Idea:

Control experiments: free coupled simulations with
constant baseline CO2 concentrations

Sensitivity experiments: branching off from control
experiments and suddenly increase CO2 to 4*CO2 in a
certain area (for example the Arctic and for comparative
purposes mid-latitudes or tropics)




Heat uptake and transport S AN/
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Fig. 3 | Heat uptake and transport by the ocean and atmosphere. Zonal mean climate response for TROP-CPL (red), MLAT-CPL (orange), POLAR-CPL
(magenta) and GLOBAL-CPL (black). Shading indicates the ensemble range. The sum for the regional experiments is displayed in cyan. a, Absorbed net
surface heat flux by the ocean. b,c, Northward heat transport response in the atmosphere (b) and ocean (c).
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Waviness of the jet stream e N/

Sinuosity Northern Hemisphere
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S| = length of isohypse / length of 50°N latitude circle
The chosen isohypse is the area average of Z500 over 30 to 70°N
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Waviness of the jEt stream @AN/

Francis 2017
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FIGURE 4 | Schematic illustrating ‘It Takes Two to Tango’ concept. Shading depicts surface temperature anomalies during November 2013
(relative to 1979-1996). (a) A possible jet stream configuration (gray curve) with ridges over the western Pacific and over the central United
States, along with a trough in the eastern Pacific. (b) Another possible jet stream configuration with a ridge in the eastern Pacific, where
anomalous heating owing to above-normal Chukchi sea surface temperatures augments the intensity of the ridge (black dashed line). Temperature
data are from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis-Interim, plotted using the Koninklijk Nederlands

Meteorologisch Instituut (KNMI) Climate Explorer (http://climexp.knmi.nl/).




Waviness of the jet stream @*N\ll

However, PAMIP results with AWI-CM (and other models?)
do not show increased waviness

Sinuosity Index Northern Hemisphere PAMIP T127
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Waviness of the jEt stream @AN/

Neither the regional 4*CO2 experiments

Sinuosity Index Northern Hemisphere regional 4*C0O2 T63
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Eastern continental
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increased waviness
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but with robust
weakening of the
: _— westerly flow.

Alone the decreased
westerly flow seems
to be sufficient to
cause this slight

- cooling
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Stratosphere — troposphere coupling 55/

Kretschmer et al., 2016
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Figure 9. Causal pathways between different Arctic actors extracted from observations.
Blue arrows indicate a negative causal influence, red arrows a positive causal influence,
and the number next to the arrows indicates the lag in months. The regional actors,
Barents-Kara sea ice concentration (BK-SIC), Ural region sea level pressure (Ural-SLP),
Siberian sea level pressure (Sib-SLP), and East Asia snow cover (EA-snow), are presented
according to their approximate geographical location. The hemispheric actors (Arctic
Oscillation (AO), upward wave propagation (v-flux), and polar vortex (PoV)), are presented

according to their approximate latitude and pressure levels. (Figure from Kretschmer et
al. 2016). '@ @ \




Stratosphere — troposphere coupling  «'ppny

De et al., 2019

High-top models from CMIP5 pre-industrial simulations show
robust response to Barents-Sea / Kara-Sea ice variability
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Fig.2 Monthly evolution of zonal mean zonal wind (in m/s per 1
standard deviation of BKS SIC loss) averaged between 50°-70°N
from November to April, associated with BKS SIC variability in
November and December in a high-top models and b low-top models
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Stratosphere — troposphere coupling  «'ppny

ECHAMG6 ERA-Interim

ECHAMG6-SWIFT

8
3
15

0.7
038

0.08
0
-0.09

-0.19
038
075
3
%

K]

K]
]
3
15
075
038
009
0
009
019
038
075

K]

Time-height cross
sections of
climatological
mean temperature
differences (K)
from 65°N to 90°N
(LICE minus HICE)

Romanowsky
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Implementation
of interactive
stratospheric
ozone chemistry
helps to
realistically
simulate
stratospheric
response to
Arctic sea ice
loss and
downward
propagation
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Atmosphere driving the ice S AN/

a b |

THF: SIA: THF: SIA:
-5.4W m™ +0.14x 10°km?  +52Wm™ +0.13 x 108 km?

THF: SIA: THF: SIA:
+3.1Wm? -0.12x10°km?>  -55Wm™ -0.14 x 108 km?

Fig. 1| Schematic representation of sea ice driving and being driven by the atmosphere. a-d, An illustration of sea ice and THF during winters when the
sea ice is driving the atmosphere (a,c) and when the atmosphere is driving the sea ice (b,d). White rectangles represent sea ice, with the dotted
outline indicating the anomalous high or low ice cover. Curved arrows represent the surface THF anomaly, and horizontal arrows represent warm (red) and

(December-February) are shown.

cold (blue) air advection. Composite values for the THF and SIA anomalies averaged over the CBS region for ERA-Interim during winter




Atmosphere driving the ice S AN/

Midlatitude cooling in
winter is not caused by Arctic sea ice loss. Rather, it is a side
effect of regional circulation changes that precede and then
simultaneously drive Arctic sea ice loss and midlatitude cooling.

Regression coefficient (°C)
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Fig. 4 | Temperature and circulation links with BKS ice. a-c, Winter SLP (contours; 0.25hPa intervals) and SAT (colour scale) regressed on the standardized
index for ERA-Interim (a), HadGEM2 (b) and EC-Earth (¢). The sign is reversed so that the maps represent the field associated with a 1s.d.




Atmosphere driving the ice S AN/

Regression coefficient (°C)

Ice driving atmosphere
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Atmosphere driving ice

Use Arctic
observations!
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Fig. 4 | Temperature and circulation links with BKS ice. a-c, Winter SLP (contours; 0.25hPa intervals) and SAT (colour scale) regressed on the standardized
index for ERA-Interim (a), HadGEM2 (b) and EC-Earth (c). The sign is reversed so that the maps represent the field associated with a 1s.d.
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Questions SN/

Some robust features from model simulations (weakening of
westerlies, increase of Z500 over the Arctic ...), but:

Observed increase in frequency of cold extremes in winter
(e.g. Vihma et al., 2019) and hot extremes in summer in mid-
latitudes (e.g. Coumou et al., 2018)

Nothing to do with Arctic sea ice decline?
Part of decadal to multi-decadal variability?
Caused by circulation changes outside the Arctic?

Are we missing important processes in models /
reanalyses?
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