Robustness and drivers of the Northern Hemisphere extratropical atmospheric circulation response to a CO₂-induced warming in CNRM-CM6-1

EMS 2019 Copenhagen, September 11th

Thomas Oudar, Julien Cattiaux, Hervé Douville, Olivier Geoffroy David Saint-Martin and Romain Roehrig

CNRM/CNRS

• Several studies have identified a **poleward shift** of the eddy-driven jet (*Kushner et al. 2001; Yin 2005; Vallis et al. 2015*).

- Several studies have identified a **poleward shift** of the eddy-driven jet (*Kushner et al. 2001; Yin 2005; Vallis et al. 2015*).
- This shift is robust in the Southern Hemisphere but strong regional features and seasonal variability are observed in the Northern Hemisphere (Simpson et al. 2014; Barnes and Polvani 2015).

Large spread for the zonal wind, jet speed or jet position in JFM (black)

- Several studies have identified a **poleward shift** of the eddy-driven jet (*Kushner et al. 2001; Yin 2005; Vallis et al. 2015*).
- This shift is **robust** in the Southern Hemisphere but strong **regional features** and **seasonal variability** are observed in the Northern Hemisphere (*Simpson et al. 2014; Barnes and Polvani 2015*).
- Potential drivers are: Arctic Amplification,
 Tropical high troposphere warming,
 stratospheric vortex strength (Peings et al. 2018;
 Zappa and Shepperd 2017).

Peings et al. 2018

2066-2095 minus 1976-2005

Zappa and Shepperd 2017

2070-2100 minus 1960-1990

UTW: Upper-troposphere Tropical Warming

AA: Arctic Amplification

PST: Polar Stratospheric Temperature

Objectives

 Response of wintertime Northern Hemisphere midlatitude atmospheric circulation to an abrupt quadrupling of the CO₂ concentration.

 Evaluation of CNRM-CM6-1: representation and sensitivity of the atmospheric circulation.

 Dissociate the role of direct radiative forcing from indirect effects (SST increase, Arctic sea ice loss, change in the SST pattern).

Experiments

	Experiment name	SST forcing	Sea ice forcing	CO2 forcing	Length
<u> </u>	piControl	(coupled)	(coupled)	pre-industrial	1500
	abrupt-4xCO2	(coupled)	(coupled)	quadrupled	1500
	piSST	piControl	piControl	pre-industrial	390
5	a4SSTice-4xCO2	abrupt-4xCO2	abrupt-4xCO2	quadrupled	390
	piSST-4xCO2	piControl	piControl	quadrupled	30
	piSST-pxK	piControl + Δ	piControl	pre-industrial	30
	a4SST	abrupt-4xCO2	piControl	pre-industrial	30
	a4SSTice	abrupt-4xCO2	abrupt-4xCO2	pre-industrial	30

Differences showed in this study are computed over years 111-140

Experiments

Total coupled = Total amip ?

 Total amip = direct CO2 + sea ice loss + SST pattern + Uniform SST warming

Evaluation of CNRM-CM6-1

Biases of U850

- The jet is too zonal in both CNRM-CM models.
- Slight decrease of the bias between CNRM-CM5 and CNRM-CM6-1

Distribution of the jet position

ONDJFM maximum wind position distribution

Evaluation of CNRM-CM6-1: Summary

- The bias in U850 has been decreased
- However, the jet is too zonal in both versions (AGCM and AOGCM).
- There is a better representation of blockings in CNRM-CM6-1 compared to CNRM-CM5.
- There is a **better representation of the seasonal cycle of stratospheric vortex** (increased number of vertical levels in the stratosphere).

Assessment of the mid-latitude response in coupled and AGCM experiments

Zonal-mean temperature

- Stronger sensitivity of CNRM-CM6-1.
- Good reproducibility of Amip.

Zonal-mean zonal wind

- Stronger sensitivity of CNRM-CM6-1.
- Good reproducibility of Amip.

850 hPa Zonal wind

- Strong regional differences between CNRM-CM5 and CNRM-CM6-1.
- Good reproducibility of Amip, but differences in the Central Atlantic.

Jet position response

ONDJFM maximum wind position distribution

- Poleward shift in the Pacific.
- Squeezing of the variability in the Atlantic (especially at the east).

Seasonality and significance of the jet position response

- Robust poleward shift in the Pacific across the seasons.
- No shift in the Atlantic for NDJFM and JFM: strong internal variability.
- The poleward shift is robust in OND for both Atlantic and Pacific (consistent with Barnes in Polvani 2015).

Seasonality and significance of the jet position response

- Robust poleward shift in the Pacific across the seasons.
- No shift in the Atlantic for NDJFM and JFM: strong internal variability.
- The poleward shift is robust in OND for both Atlantic and Pacific (consistent with Barnes in Polvani 2015).

30 years period (red=significant) 1960-1989 (red=significant)

Full period: 1500 years

Seasonality and significance of the jet position response

- Robust poleward shift in the Pacific across the seasons.
- No shift in the Atlantic for NDJFM and JFM: strong internal variability.
- The poleward shift is robust in OND for both Atlantic and Pacific (consistent with Barnes in Polvani 2015).

Robustness of the jet position response

- Significance is reached much faster in OND than in ONDJFM and JFM: A dozen of years are needed.
- Internal variability is important in the Atlantic compared to the Pacific in which robustness is found for almost each seasons.

Breakdown of the AGCM response

850 hPa zonal wind breakdown

Conclusions

- CNRM-CM6-1 performs better (weaker biases, better representation of blockings, etc.) and has a stronger sensitivity than CNRM-CM5.
- Robust poleward shift in the Pacific and squeezing of the variability in the Atlantic.
- The uniform SST warming is the dominant factor to explain the poleward shift.

Perspectives

Looking at other CMIP6 models.

SSP585 2080-2099 minus HIST 1995-2014

Perspectives

 Analyze storm-tracks, blockings and sinuosity responses in CMIP6 models.

Experiments

Experiment name	SST forcing	Sea ice forcing	CO2 forcing	LW CRE	Length
piControl	(coupled)	(coupled)	pre-industrial	X	1500
abrupt-4xCO2	(coupled)	(coupled)	quadrupled	Х	1500
piSST	piControl	piControl	pre-industrial	Х	390
piSST-4xCO2	piControl	piControl	quadrupled	X	30
piSST-pxK	piControl + Δ	piControl	pre-industrial	X	30
a4SST	abrupt-4xCO2	piControl	pre-industrial	X	30
a4SSTice	abrupt-4xCO2	abrupt-4xCO2	pre-industrial	Х	30
amip	obs.	obs.	obs.	Х	36
amip-p4K	obs. +4K	obs.	obs.	X	36
amip-lwoff	obs.	obs.	obs.		36
amip-p4K-lwoff	obs. +4K	obs.	obs.		36

Differences showed in this study are computed over years 111-140

YEMIP P

- Several studies have identified a **poleward shift** of the eddy-driven jet (*Kushner et al. 2001; Yin 2005; Vallis et al. 2015*).
- This shift is **robust** in the Southern Hemisphere but strong **regional features** and **seasonal variability** are observed in the Northern Hemisphere (*Simpson et al. 2014; Barnes and Polvani 2015*).
- Potential drivers are: Arctic Amplification,
 Tropical high troposphere warming,
 stratospheric vortex strength (Peings et al. 2018;
 Zappa and Shepperd 2017).
- Role of clouds? Is the poleward shift enhanced by the cloud radiative heating as suggested by previous studies? (Ceppi and Hartmann 2015; Voigt and Shaw 2016; Li et al. 2019).

Role of clouds?

U850

f Cloud radiative feedback 0.17

Zonal-mean zonal wind

2D blocking index (Scherrer et al. 2007)

Northern Annular Mode (NAM)

- The NAM is the first mode of variability in the Northern Hemisphere.
- NAM computed as the first EOF of Sea level
 Pressure in DJFM

Polar stratospheric vortex

CNRM-CM5

Annual cylcle for stratospheric vortex CNRM-CM5 NRM-CM5 12 3 0 -3 Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Month

CNRM-CM6-1

Seasonal cycle of the zonal wind at 50 hPa (between 70°N and 80°N)

Biases of U

DJFM mean biases of CNRM-CM in UA (m/s)

1D blocking index (Tibaldi-Molteni)

Improvement of the representation of blockings in CNRM-CM6-1

North Atlantic Oscillation

Near-surface temperature

Zonal-mean temperature

Zonal-mean zonal wind

Eady growth rate

Jet position response in AGCM

NDJFM maximum wind position distribution

Other seasons

