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1.1
1.1.1

O. Vector and Tensor Analysis

Vector analysis
Infroduction

Any vector in a two dimensional plane can be defined by a linear combination of two linear
independent vectors. Independent vectors mean that they have different direction (not collinear),
while space vector need a combination of 3 independent vectors such that they do not share the
same plane (not coplanar). As shown schematically in Figure 1.1, vector v can be represented as
follows:

v=aa + Bb (2D case) (1.1)
v =o0a + Bb + yc (3D case) (1.2)

Note that bold small letters are used for vector while light letters are used for scalar values. Most

vectors are introduced in terms of a combination of three orthonormal basis vectors (a set of
three mutually orthogonal unit vectors). These basis vectors are defined as e, e, ,and e3, and x3
coordinates axes forming what is so called reference frame (coordinates system) I = e|,e;,e3 as
shown in Figure 1.2, such that vector v can be defined as follows:

3
v=vie;+ver+vie; = Zviei (1.3)
i=1
vy, v, and v3 are the components of vector v resolved in the reference frame I. Also the components
of vector v and basis vector e; resolved in coordinate system I can be written in the matrix notation
or column vector for i = 1,2, 3 as follows:

Vi 1 0 0
Mi=|w|,la=]|0], [ef=]|1], [&f=|0 (1.4)
V3 0 0 1

Superscript I indicates the frame of reference in which the components of vector v are resolved.
For convenience [V]I can be written in this form v/. Bear in mind that we can choose any suitable
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coordinates system in which vector v can be resolved as indicated in Figure 1.3, such that the
matrix components of vector v change with changing the coordinates system, while the vector itself
remains at its same position in space, e.g. vector v can be resolved in two different bases I and I'*
with different components given in the matrix notation as follows:

[V]I: v |, [v]l =V |,vi=V] fori=1,273 (L.5)
V3 V3

Also we use a right-hand set of orthogonal axes as shown schematically in Figure 1.4. From above,
we can conclude the vector properties as follows:
1. Commutative a+b=b+a
Distributive ~ a(a+b) = oia+ ob
Associative under addition (a+b) +c=a+ (b+c)

la| = a%+a%+a§
Unit vector along vector a (vector direction) @ = {a] a‘ , it is also called the vector direction as
shown in Figure 1.5.
6. Identical vectors (@ = b), if they share same length and direction illustrated in Figure 1.6.
Generally, vectors are considered free vector, if they are independent of a particular point of
application, such that if two free vectors share the same magnitude and direction, they are identical
as apparent in Figure 1.6, but in some cases, the location of application point is important for some
vectors like force vector. Changing its location induces an additional moment. In this case, the

vector is called localized vector.

Vector length (magnitude)

ok wn

Vector products

The first type of the vector product we are interested in to study is called Scalar (dot/ inner) product.
Scalar product of vector (a@) and vector (b) is defined by these two forms:

3
ab= Zaibi =a1b; +axby +azbs (1.6)

i=1
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a.b =|al||b|cos(0) (1.7)

The result of the dot product of two vector is a scalar value. Angle 0 represents the angle
bounded by the two vectors. Also, from expression above, the commutativity property achieves as
follows:

ab=b.a (1.8)

It has many applications like finding the projection of a some vector on another, angle between
two vectors, and the projection of an area on a plane.

» Example 1.1 For vectors a and b defined as a = (3,4,5) and b = (1,0, 1), calculate the
following:
1. The projection of vector (a) on vector (b).
2. Angle between the two vectors.
Projection of vector a on vector b is defined as the dot product of vector (a) and the unit
vector along vector (b) apparent in Figure 1.7.
b (1,0,1) (1,0,1)

b=—" = - 1.
bl V12412 V2 vl
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The projection will be:
7 (1705 1)
(@ab) = (3,4,5) 22 = (3% 1+0+5%1)/V2=4V2 (1.10)
V2
Angle between the two vectors can be obtained from:
ab=(1x3+1x5)=8=]a||b|cos(0) (1.11)
a.b = |a| |b|cos(0) (1.12)
la] = /32442452 =5V2 (1.13)
cos(0) = 8/(5vV2%V2) (1.14)
0 =36.86° (1.15)

g

* Proj of (@on )

Figure 1.7 Figure 1.8

= Example 1.2 Plane with unit vectorn; = (-2, 0, 1)/+/5 normal to it. Another plane with
area Ay = 100m? and normal direction ny = (—1, 1, 1)/+/3 , calculate the projection of this
area on plane (n;).

Generally area vector is defined as a vector with magnitude equal to its area and a unit vector
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normal to its plane, such that the area vector is given by:
Ay =mA; (1.16)

And, the projected area A, shown in Figure 1.8 is defined as:

A, = niAy =nymy larea) = (—2%—1 + 1x1)/ V15%100 = 77.5 m? (1.17)

= Example 1.3 Calculate the work done by constant force f = (1, 5, 2) on an object after
moving a vector distanced = (-2, 1, 1).

As schematically shown in Figure 1.9, the work done by force on an object moving distance
d is equal to distance length times the force component in distance direction, and consequently,
it follows:

work = fd= (1x=2 + 5%1 + 1x1) = 4 (1.18)

> d

Figure 1.9

Also the components of vector v in Figure 1.3 can be conceived as the projection of the vectors
on bases vector e;, such that vector v can be defined as follows:

3
v=vie;+wne,+vies = (v.ej)e  + (v.e3)e;+ (v.e3)e; = Z (v.ei)e; (1.19)

i=

Note also that if (a.b = 0), it means that either the magnitude of @ or b is zero or vector (a) is
normal to vector (b).

Another type of vectors product is called cross (skew/ outer/ vector) product. The cross product
of vector (a) and vector (b) is given by:

c =axb (1.20)

With a magnitude |¢| = |a| |b| sin 6 and a unit vector normal to vectors (a) and (b) formed by
turning a right hand screw to bring (a) to (b) as schematically shown in the Figure 1.10. The



12 Chapter 1. Vector and Tensor Analysis

expression used for calculating the cross product of vectors a, and b is obtained from:

a x b= (ayb3 —azby)e; + (azb; —a1b3) ey + (a1by —azby) e3

e e e; (1.21)
=det a, ay as
by by bj
n
C

o

Q

Figure 1.11

Figure 1.10

Where qa;, and b; are components of vectors a and b, respectively. Symbol “det” indicates
calculating the determinate of matrix. From above expression, cross product can achieve the
distributive property, but it is not commutative as follows:

ax (b+c)=axb+axc

. , (1.22)
axb= —bxa (commutative propery fails)

Note that last relation can be proven using right hand rule shown in Figure 1.10. As cross product
of vector b and vector a results a vector identical to vector (¢ = a®b) in magnitude, but opposite
in the direction. We also note that if cross product of two vectors a and b vanishes (a x b =0), it
means that either the magnitude of @ or b is zero or vectors a and b are parallel. Vector product
includes many applications like evaluating the moment induced by some force about a particular
point, area bounded by two vectors, velocity of an object attached to rigid body rotating about fixed
axis, plane projection, etc. These applications are illustrated below as follows:

= Example 1.4 — Moment M induced by force F about point O. As schematically shown
in Figure 1.11, If force F passing through a particular point with position vector r and located at
normal distance |d| from point O, the resulting moment M of force F about this point O will be
obtained from:

|M| = |F||d| = |F||r|sin® (1.23)
With direction normal to r and F so it follows that:

M=rxF (1.24)
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= Example 1.5 — Area bounded by two vectors. As stated before in 1.2, area vector is
defined as a vector with direction normal to its plane n and magnitude equal to the area. As
shown in Figure 1.12, the magnitude of rectangular area formed by two vectors a and b equals
to:

¢ = |a||b|sinB (1.25)
And consequently, area vector is obtained from:

c =axb (1.26)

Hatched area_

Figure 1.12

Figure 1.13

= Example 1.6 — Velocity of an object P attached to a rigid body rotating about fixed
axis n. As shown schematically in Figure 1.13, time rate of rotation of a rigid body rotating
about fixed axis is described by the angular velocity (@) which is equivalent to 27t times number
of cycles rotated in one second. It is also called spatial spin about axis n . This rotation makes
object P with position vector x to rotate in circle normal to axis n. The object P has a velocity X
tangent to this circle in direction normal to vectors x and n with a magnitude equal to the angular
velocity times the radius of the circle as follows:

x| = |@||r| = |o||x|sina (1.27)
So that, the velocity vector is obtained from:
X=0xx (1.28)

Where @ is spin vector in direction of n and vector dot () denotes the time rate of change of
vector.

o= |0hn (1.29)
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I Note that position vector x is a line passing through fixed point located on axis of rotation and
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Figure 1.14

= Example 1.7 — Perpendicular projection (plane projection). Assume we need to evalu-
ate the projection of vector a on a plane with unit vector n (axis normal to it) defined by vector
P as indicated in Figure 1.14. There are two ways to evaluate it. As shown in Figure 1.14a, we
can use an additional vector (b = a x n) with magnitude equal to the area bounded by vectors a
and unit vector n as follows:

|b| = |a||n|sin® = |a|sin@® (1.30)

Where 6 is the angle between vector a and unit vector n. As n is a unit vector (|n| = 1). From
above equation the magnitude of the area is identical to the length of the projected vector P and
we need to find its direction P to fully describe this vector. The direction of vector P is normal
to n and b obtained as follows:

nxb nx(axn) nx(axn)

- - (1.31)
[n < b| n] (] b|
As n is normal to vector b, |n x b| = |n| |b|, then vector P will be:
P=|P|P=nx(axn) (1.32)

Also another way is schematically shown in Figure 1.14.b. Defining an additional vector P
as a projection of vector a on a unit vector n which is equal to the dot product of vector a and n
with direction parallel to unit vector n as follows:

P, = (an)n (1.33)
So subtracting vector P; from vector a vector P yields the required vector P as follows:

P =a—(an)n (1.34)
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Both methods are identical in results, so that we can conclude from these two methods that:
bx(axc)=(b.c)a—(ab)c (1.35)
Last expression will be proven using index notation in subsection 1.1.3 Equation 1.66. n

Scalar triple product Scalar triple product of vectors a, b, and ¢ is defined as (a xb).c. As
illustrated in Figure 1.15, the cross product of vectors a and b defined by (a x b), provides the area
A of the rectangular bounded by vectors a and b with direction n normal to them

n
Ve oo
// e
A
-7 L7 \\A(area)
7 - 7
R
Figure 1.15
(axb)=An (1.36)

And consequently, the scalar triple product of the (a x b) .c is obtained from:
(@axb).c=A (n.c) (1.37)

But (n.c) defines the projection of vector ¢ on direction nwhich is identical to the height 4 of the
parallelogram formed by three vector a, b and ¢. And consequently, the Scalar triple product of
vectors a, b, and ¢ yields the volume V of parallelogram as follows:

(axb)c=A (nc)=Ah=V (1.38)

Where h and A are the height of parallelogram, and the magnitude of the area bounded by vectors a
and b, respectively.

If (a xb).c =0, it means that a, b and ¢ share the same plane (coplanar vectors). As the
parallelogram volume is constant, the scalar triple product follows the following relations:

(@axb)y.c=(bxc).a=(cxa).b

(axb).c=—(axc).b (1.39)

Vector triple product (a x b) x ¢

As schematically shown in Figure 1.16, after getting first (a x b) as a vector normal to vectors
a and b, vector (a x b) x ¢ will be normal to (a x b) and ¢ yielding a vector laying on the plane
containing vectors a and b. This product is evaluated as follows:

(axb)xc=(a.c)b—(b.c)a (1.40)

The above expression will be proven in details using index notation in the next section. It is
easy to prove schematically that the vector triple product is not associative (a X b) x ¢ # (a xc) xb
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axb

y

(a x b)xc
Figure 1.16

Index notation

The components of vector v in Equation 1.3 can be written using index notation by omitting the
summation sign as follows:

v =ve, i=1273 (1.41)

The repeated index (i) in v; and e; is called a summation or dummy index, so that the above
expression can be expanded as follows:

3
vie; = Z vie; = vie] +vex +vses (1.42)

i=1
In the same manner, dot product can be represented as follows:
a.b = a;b; = a1by + arby + azb; (1.43)

Another type of index we would like to address is free index. This index appears once in each term
of the equation and translates this equation into three equations, so for:

a=oab+Pc (1.44)
It can be written in index notation as follows:
a; = ab;+ Bc; (1.45)

Index i appears once in each term of the equation nd is considered free index which translate the
above equation into three independent equations as follows:

a) = Otbl —I—ﬁcl
a) = Olbz—l—ﬁCg (1.46)
az = aby+ B3

Some equations include a combination of free indices and dummy indices, for example:

a;=Ajjc (1.47)
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For dummy index (), it yields that:
ai =Ajc1+ Apcy+ Apcs (1.48)

While, for free index (i), it can be translated to three equations as follows:

a; =Ajc1+ Apc+ Apses (1.49)
ay =Asic1+ Axncr + Asscs (1.50)
az = Azjc1+ Azcr + Azzcs (1.51)

There are some rules to follow in using index notation:
1. Any index cannot appear more than twice.
2. The free index appears once in each term of the equation and dummy index appears twice in
only one term of the equation

= Example 1.8 Explain the validation of the following equations:
(a) a; = b,-cjdjej

The expression is wrong as index j is repeated three times in one term.
(b) fj = a,-b,-cj+ o mj
It is right as index j is used in each term of the equation as a free index, and dummy
index i is used only in one term and it cn be translated to three equation (free index
j=1,2,3) as follows:
fi= abici + am
f2= abica+ amy
f3= abics+ ot m3
Where a;b; = a1by + axby + azbs for the dummy index ;.
() a;= (Xb,"i‘BCj
It is wrong as free indices i and j are not used in all terms of the equation.
(d) fj = a,-bl-cj + o d,-e,-mj
it is a wrong expression as dummy index i is repeated in more than one term.

3. Dummy index can be replaced by other index not used in the rest of the equation, e.g. a;b;c;
and aibic; are identical, while the following expression is not:

a,-b,-cj + dkekmj 75 al.bicj + d,-e,-mj (1.52)

The reason is that replacing dummy index k with index i used in other term in the equation is
not allowed her.

4. We also have the freedom to flip between two scalar elements in one term of the equation as
follows:

fj = Cl,’b[Cj = Cl,'Cjb,' (153)
While flipping between vector elements is incorrect for most cases as follows:
axb= ae; X bjej = aibje,- Xej= aibje,- Xe;j 75 aibje,- xXe;j ;ébxa (1.54)

as (ei xXe; 758,' X ej), while bja,- = aibj
We shall introduce an operator called Kroneckor delta §;; defined as

)1 fori=j
0ij = { 0 Forid ] (1.55)
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It contains nine elements and it can be represented in index notation as a dot product of two bases

vector e; and e; as follows:
6,']' =e;.¢€j

Where e; represents three orthonormal bases, e.g.:
81.81282.82283.83:1

81.82282.83283.81:0

(1.56)

Also differentiating the components of some vector resolved in a particular basis of reference with

each other yields this operator:

ax,-

:51”

xivj =

Foriand j=1,2,3, as x; represents independent components of vector x e.g.:

oM _dx _ox _,
dx;  Oxp dx3
N _dn_dn_,
dx, Oxz dx;

Kroneckor delta can be used to contracts or flips indices as follows:
5,' jV = Vi
Which can be proven by expanding the above expression with dummy index as follows:

vi= 0vi + Opva + 833

The free index i can translate the above equation into three equations as stated before to:

vi = 811vi+012va + 813v3 = v;

Vo= &vi+0nva+ 83z =1
v3= 831V + 0nva + 833v3 =3

That is why it also termed as a substitution operator.
= Example 1.9
aiajﬁij = a;a; = ajaj

0;; 0 = O
Aijb,; = Aii

In the same manner, dot product of two vectors a and b can be rewritten as follows:

ab= (a,-ei) . (bjej) = a,-bj (el-.ej) = a,-.bj6,-j = aib,’ = a]bl +a2b2 —|—a3b3

(1.57)

(1.58)
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Another operator we would like to introduce is called Permutation symbol €;j; which is given by:

for €23, €31, &12
gix=14 —1 for €3, €132, €1 (1.59)
0 fori=jorj=kori=k

It is sometimes convenient to write the cross product of two vectors using permutation symbol as
follows:

e; X e;=&jiey (1.60)

Where e; and e; are orthogonal bases. The above expression can be verified through the following
examples:

s Example 1.10
e| X e = g, = Eniel + €122€2 + €23e3 = e3

e; X e =& e = €181 +Ener+€113e3 =0
e; X e] =& xe = €111+ E112e2 + €133 =0

e)X el = ey = &11€1 + &128 + E213€3 = —e3

In the same manner, the vector product a of two vectors b and ¢ can be evaluated from:

a=bx C;, apey — (b,-ei X cjej) = b,-cj(ei X ej) = gijkbicjek (1.61)
From which we can obtain
a:bxc<—>ak: 8ijkbicj (1.62)
From above we can conclude some rules as follows:
Eijk = &Eij= Ejki (1.63a)
Eijk = —Eikj (1.63b)
&ijkEimn = 6jm5kn_6jn6km (1.63¢)

Also we can rewrite vector triple product in index notation as follows
(a xb) xc= (gjaibjer) X cqen
= gjkabjc, (ex x e,) (1.64)
= §jraibjcy Enmem
Using the above rules in equations Equation 1.63c yields:
& jk€knm = €kij€knm = OinOjm—0imOjn (1.65)

And substitute back in equation Equation 1.64 and remembering that the scalar elements can be
flipped with each other results in:

(a X b) Xc= aibjcn (ainajm_6im6jn)em
= (aicibm _bncnam)em (1.66)
(@axb)xc=(ac)b—(b.c)a
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As &k, a;, and b; are scalar quantities, they can be flipped while vectors e; and e, can not.
The above expression is implemented in the previous sections without proof. Following the same
above procedures, it can be easy to verify the following expression:

(@axb).(cxd)=(a.c)(bd)—(ad)(b.c) (1.67)

1.1.4 Matrix notation
Matrix A with coefficient element A;; (i and j = 1,2, 3) can be written as follow:

Al A A
[A] =[Aij] = | A Axn An (1.68)
Az Az Az

The diagonal elements include A11,A2;, and As3, while the remaining elements are called
off-diagonal elements. Diagonal matrix is defined as a matrix with off-diagonal elements of zero
value. Trace of matrix A (Trace (A)) is known as the sum of its diagonal elements A1; + Ay + A3z
termed in index notation as (A;;) which can be defined using substitution operator &;; as follows:

Trace(A) :Aij5ij :A,’l‘ (169)

Identity matrix 1 is a diagonal matrix with diagonal elements of unit value given by:

1
= |o
0

oS = O

0
0 (1.70)
1

Another operation we want to introduce is the product of two matrices A and B termed as (A.B).
Sometimes, dot product may be dropped for convenience. It can also be defined in index notation
(AikBy;) such that the element of the resulting matrix laying in i"" row and j* column results form
the dot product of i row of matrix A and j* column of matrix B.

» Example 1.11 Let us assume matrix C is given by product of two matrix A and B defined as:

123 1 2 0
Al=|0 12|, [B=|5 6 0
40 1 0 -3 1

If we need to evaluate, e.g. element Cj,, it will be equal to the dot product of the first row of
matrix A and the second column of matrix B as follows:

Cio =ABia = (A11,A12,A13).(B12,B2,B3) (1.71)
=A11Bp+A12B»n +A13B3 =1%2+2%6+3%x—-3=5 (1.72)
In the same manner, matrix C will be:

11 5 3
C] = 5 0 2
4 51
While multiplying a matrix A with a vector ¢ yields a vector as follows:

b=A.c or b=Ac dotproduct symbol is dropped for convenience (1.73)
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And it can be written in index notation as follows:

the i’ element of the resulting vector results form the dot product of i row of matrix A and vector
c.

= Example 1.12 Let us assume vector b is given by product of matrix A and vector ¢ as follows:

123 1
Al=|0 1 2 c]=| 2
4 0 1 0
(1,2,3).(1,2,0) 5
b=Ac= | (0,1,2).(1,2,0) | =| 2
(4,0,1).(1,2,0) 4

Also the above expression indicates that matrix A defines a linear mapping of vector c into vector
a.

Note 1.1 From above, we can conclude the following properties of matrices:
1. Matrices do not commute under multiplication:

A.B+#B.A (1.75)
2. Associative property achieves as follows:
A.(B+C)=A.B+A.C (1.76)

3. Multiplication with scalar means that each element of the matrix is multiplied by this
scalar given by:

B:(XA—)Bij:OCAij (1.77)
[

The transpose of matrix A is termed as A7 which is obtained by swapping rows of the matrix A
with its columns and defined in index notation as follows:

Al =Aji (1.78)
The transpose operation flipped the indices of the above matrix.

s Example 1.13 If we have matrix A equal to:
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Its transpose will be:

A matrix A is considered a symmetric matrix, if it achieves the following condition
A=AT (1.79)
while skew-symmetric matrix follows this condition:

A=—-AT (1.80)

= Example 1.14 For example, matrix A and B given by:

1 2 3 0 -2 -3
Al=12 1 4|,Bj=|2 0 -4
3 41 3 4 0
These matrices are considered symmetric and skew-symmetric matrix, respectively. "

We notice that skew-symmetric matrix includes zero value for diagonal elements and three
different element with general form as follows:

0 —Ww3 wy
A] = w3 0 —w (1.81)
—W>2 Wi 0

T . . .
Note that vector w = [ w1l Wy Wj3 } is called the axial vector of the above skew-symmetric
matrix A termed as:

w = axial (A) (1.82)
While skew- symmetric matrix A can be written using tilde sign over the axial vector as follows:

A=w (1.83)

w=—w (1.84)
Matrix A is defined as a normal matrix, if it follows the following expression:

AAT = AT A (1.85)
While matrix A is considered orthogonal matrix, if it follows this equation:

AAT = ATA=1 (1.86)

Where 1 is identity matrix.
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The transpose of matrix multiplication is obtained by reversing the order of multiplication with
transpose operation for each element, e.g.:

(A.B)" =B AT
T (1.87)
(AB".C) = C"BA"
We can also notice that A”.A and A.A” are symmetric matrix as:
(ATA) =A" A (1.88)

Any matrix can be decomposed into two parts; symmetric part and skew- symmetric part given by

A=S+W
S =sym(A) = (A+A") /2 (1.89)
W = skew(A) = (A—AT) /2

The inverse of matrix A is defined as A~!, such that A.A~! = 1. The transpose of inverse of
matrix is equivalent to the inverse of its transpose as follows:

A" =aT (1.90)
The determinate of matrix A is termed as |A| or det(A) and defined as follows:

|A| = g jrariazjazy (1.91)

= Example 1.15

2
5 2 (1.92)
4 —

=2(6x1+2x3) — 2 (5x1 —2x4) — (—5x3 — 4x6) = 69 (1.93)

With expression written above, the following results can be concluded:

A| _( ) A2 ))Am
det (A.B) = det (A) det (B) (1.94)
det (A7) = det (A)

Where A represent the i’ column of matrix A. For any nonzero vector v (|v| # 0), a positive
definite matrix A is defined as:

viAY >0 (1.95)

Which is important property for stiffness matrix of stable structures. While, for any nonzero vector
v (Jv| # 0), semi-positive definite is defined as follows:

viAv >0 (1.96)
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Another operation called Double dot product of two matrices A and B, termed by (A : B) is defined
as the trace of the dot product of one matrix and transpose of the other as follows:

A:B=Trace ((AB"),,) = Trace(AinBh,) = AinB jnd;; = AinBin (1.97)

Indices i and m are dummy indices as they are repeated twice which leads to the following expression
forA:B

A:B=A B +A;2B1o+A13B13
+A21B21 +AnBy +AxBo3 (1.98)
+A31B31 +A3B3 +A33B33

From above we can conclude the commutative property of the double dot product as follows:

A:B=B:A (1.99)

= Example 1.16 Let’s us evaluate double dot product A : B of two matrices A and B defined as
follows:

123 2 -2 0
A= |01 2 Bl=|5 6
40 1 7 -3 1

A:B=1x2 +2x—-2+3x0+0x5+1x6+2x0+4x7+0x—-3+ 1x1=33

Or we can evaluate

1 2 3 2 5 17
A:B="Trace (A.BT):Trace 01 2 -2 6 -3
4 0 1 0 0 1
-2 17 4
= Trace -2 6 -1 =-24+6+29=33
8 20 29

For any symmetric matrix A and skew symmetric matrix B, the relation below holds:
A:B=0 (1.100)
And consequently, for any matrix B and symmetric matrix A we get:
A:B=A:sym(B)+A:skew(B)=A:sym(B) (1.101)
Dot product of two vectors a and b can be defined using matrix operations as follows:

(a.b) = aib; = [a]" [b] (1.102)
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= Example 1.17 Let us calculate the dot product of two vectors a and b defined by:

2 1
[a] =1 1 |, [b]=]5
-3 2
1
labl=[a"bl=[2 1 3]|5|=21+1x5+(-3x2)=1
2

While the cross product (a x b) takes this two forms:

e e ej3
axb=det ap ar as (1.103)
by by bj

Which can be evaluated using skew-symmetric matrix @ multiplied with vector b shown as follows:

0 —a3 an b] (a2b3 — agbz)
[a X b] = [6b] = as 0 —dai b2 = (a3b1 —a1b3) (1.104)
—ay aj 0 b3 (a1b2 — azbl)

In the same manner, we can prove the following:

ab — —ba (1.105)

Note 1.2 We would like to mention some useful relations as follows:
Using Equation 1.66, we get

abc = a x (bxc)=(a.c)b—(ab)c=a’cb—a’bc (1.106)
Terms a’ ¢ or a.c is considered as a scalar quantity, so it can be flipped with vector b as follows:

abc =ba’c—a"bc = [ba” — (a"b)1]c (1.107)
And consequently, it follows:

ab=ba" — (a’b)1 (1.108)

Where 1 are identity matrix.
Another expression we would like to introduce is:

abc = (axb) xc = —c x (ax b) = —cab = cha (1.109)

The last expression results from the fact that (ﬁb — Za> . Using expression in Equation 1.108

results in:

ab=ab—-ba=ba’" —ab’ (1.110)
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For unit vector n, we can conclude the following:

e e £

1.111
=0 ( )

1.2 Tensor analysis

1.2.1

Introduction

Any physical quantity can be expressed using tensors. For examples, scalar value like temperature,
length, etc. is considered as zeroth order tensor. Vector (v) contains three elements and is represented
by first order tensor (3! = 3), whereas second order tensor generally called tensor or dyad with nine
elements (3% = 9) like stress tensor o; ; and strain tensor &;;. There are higher order tensors like
fourth order tensor C;j; with 81 elements which used in the constitutive relation between stress and
strain Cij = Cijki€i-

L L L
| | |
| | |
] €1®61 1 €]®€2 1 e[®e3
1 = 1 — 1 T
1 1 1 o
B - P R P B
/’ /’ //
4
e, ®e
€2®€1 2 2 e3®el
[ [ [
I I -
1 1 1
| | |
| | |
| | |
R - P . P .
e P P
1 1 1
| | |
| | |
| | |
T I I
€ 1 1
/’J-______ /’J-______ /’J-______
e3®61 63®62 €3® €3
€
€3
Figure 1.17

Dyad or 2"? order tensor is defined by 2 vectors standing side by side and acting as a one unit.
For example e;®e represents a 2" order tensor as shown in Figure 1.17 where e; is the basis i of
the reference frame, such that any spatial tensor can be resolved in this reference frame as follows:

T =Tjee; (1.112)
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Note that bold capital letter are used for tensors of second tensor. Tensor T also contains nine
components by expanding the dummy indices i and j as follows:

T =Tye ®e; +TiaeRe;+Tze Qes
+T21e2Re) + TrnerRe; +TrerRes (1.113)
+T31e30e; + Tie3Qe; +TazezRes
T';; includes the nine components of second order tensor (T') resolved in frame of reference I, while
e;®e; is defined as a dyadic product of two orthogonal bases (dyadic pair). Dyadic product e;®e

can be understood as a vector product of vectors e; and e; with matrix representation e;e jT, such
that:

1 010
[e@e] =eie;” =| 0 |[0 1 0]=|0 00
0 000
000
[ex®e3]=( 0 0 1
000

Each component T';; is associated with dyadic pairs e;®e; and second order tensor can be written
in matrix form as follows:

T Ty T3
[T] = | Ty Ty Ty (1.114)
T3y T3 T3

Or using matrix composed of three vectors columns as follows:
[T]=[T, T, T3] (1.115)

Where T; is called tensor vectors defined by:

T T, T3
[Ti]=|Ta |, [T2]=| T |, [T3]=| T
T3 T3 T3

And consequently, second order tensor can follow this definition:

T=T Re+TrRe, +T3Re3 (1.116)

T =T;®e; (L.117)
Where

T;=T,e; (1.118)

The transpose of tensor T can be understood as a mapping of coordinates basis into tensor vectors
T, for (i=1,2,3).
Identity tensor can be defined as:

1= 8je,®e; (1.119)
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This expression can be verified easily through expanding the tensor in matrix form to be:

[6ijei®e;] = 011 [e1®e1] + 012 [e1®er] + 13 [e1 Qes]
+ & [82®81] + 6o [e2®e2] + 63 [e2®e3]
+ 81 [e3®e1] + 63 [e3®e2] + 633 [e3®e3]
[e32e3] (1.120)

Note 1.3 We also need to remark some of dyadic product operation in these following relations:
1. uv#vuasulv#vu’

2. wov) =vou
3. u@(v+w) =u@v+uw

4. uev)w=(vw)u

As (u®@v).w =u'w =v'wu = (v.w)u due to the fact that vIw is scalar and can be

flipped with any element.

In this equation,tensor # ® v maps any vector to another in direction parallel to vector u.
5. Using the same procedures, we can prove that:

(u®v).A=v®(ATu) where A is a second order tensor.

As ev)A=uev) A=) A=wlA=v (uTA) = v(ATu)T =v®(ATu)

The trace of dyadic product is defined as:
Trace(u ®v) = u.v Double dot product of two tensors A and B can be obtained from:

A:B=A;B;; =trace(A" B) (1.121)
And consequently, double dot product satisfies the following relation:

(ei®e)) : (ex®e;) = (e.ex)(ej.e;) = 6ylj (1.122)
Such that A : B can be rewritten in index notation as follows:

A:B=Aj(ei®e;): By (ex®e;) = A;jB0idji = AjjBij
ab” :cd” = (a.c)(b.d) (1.123)

We also need to introduce the Inner or dot product of two tensor A, B termed as A.B. Likewise
matrix multiplication, it can be defined as:

(e,~®ej) . (ek®el) = 5kj (el-®e1) (1.124)
such that
A.B = A,'j (ei®ej) By (8k®81)
= A,",'Bkl (ei®e‘,~) . (ek®e1)
:A,-jBkl6kj (e,-®e1)
= A,'ijl e,-®el

(1.125)
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It follows that:

(@a®b).(c®d)=ab"cd" = (b"c)ad" = (b.c) (a®d) (1.126)
For dot product of tensor and vector, it can follow:

e;.(exRe;) = dye; (1.127)
Which can be proven in matrix form as follows:

e. (e2®e3) = 6ne; =e3

0 0 00O
[010] 1 [001] :[010] 001 :[001]
0 0 00O
e3.(exR®e3) = 83263 =0
0 00
[001] 1 [001] :[001] 0 01 :[000]
0 00
And consequently, the relation b = A.c means in index notation that:
bj:Aijcj (1.128)
It can follow different expression as follows:
b=Ac=cA” (1.129)
Which can be proven using matrix or index notation as follows:
Al‘jCj:Cinj:CjAjiT (1.130)

Likewise matrix multiplication, tensor multiplication does not follow the associative property:
AB+#BA (1.131)
The cross product of vector a and tensor B can follows this relation:
a x B = g;ia;B e ey (1.132)

So the above cross product is performed between vector a and each column of tensor B indepen-

dently resulting a second order tensor, such that i’ column of tensor of the resulting tensor is the

cross product of vector a with i column of tensor B.
For second order tensors B, P and vectors a, ¢, useful relations can be proven as follows:

c.(axB) =cpen.(axB), e e
= cp(a X B),; Omnek
=cp(axB), ek
= cmiBnjEijiei (1.133)

= a;iBjmcmé€;jrer

=ax(B.c)

c.(axB) =ax(B.c)
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P: (a X B) = Pmk(a X B)mk = Pmkal-ijs,-jk = al-ijPmks,-jk = a.(ijPmkEjkle[) (1.134)

For which vector {A}/ represent the j" column of tensor A such that its elements will be {A}/, = A;;.
From above expression it follows that

P:axB=a.({B}" x {P}") (1.135)

Where {B}" x {P}" = Y3,_, {B}" x {P}"

Eigen value analysis

For a matrix A, a particular set of scalars A and a set of vectors u can satisfy the following equation:

Au=2Au (1.136)

The set of A and u is called Eigen values and Eigen vectors, respectively. Rewriting the above
equation as follows:

(A—A1)au=0 (1.137)

The above equation contains trivial solution # = 0 and Non-trivial solution det(A —A1) = 0. Non-
trivial solution forms characteristic equation A3 —LA?*+ LA — L =0 where I, I, I3 are the
invariants of matrix A.

I) = trace(A)

Izzdet([ 42 D +det([ i dn D +det([ aidn D (1.138)
aszp asz asy  ass ajip dax

IgZdet(A)

Where g;; are elements of matrix A. Characteristic equation yields three roots for A. One solution is
always real where other two roots may be both real or may be complex and conjugate to each other.
For each A, we can solve homogeneous linear system of equations (A — A1).u = 0 for Eigen vector
u. The set of A can form Eigen pairs; (A1, u1), (A2, uz), and (A3, u3). If matrix A is symmetric,
Eigen value analysis yields three real Eigen values, while symmetric and positive definite matrix
results in three real positive Eigen values.

= Example 1.18 If A is defined as
7 1

A= 2
—1

B W

4
1
Then

I =trace(A) =11

iean([2 1)) ([ 2 ) ([ 3]) s

I =det(A) =—114
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Characteristic equation

AP —11A%+10A +114 =0

Al = —2.5546, A, =7.9199, A3 =5.6347
Or solving the following equation

det(A—A1)=0

[7-A 2 -1
det(A — A1) = det 2 3-A 4 )
1 4 1-2

Solving for Eigen vectors for A; = —2.5546

7 2 -1 1 00 u
0=(A—Al).u= 2 3 4 |+25546(0 1 0 up
| -1 4 1 0 0 1 us

9.55 2 —1 uj 9.55u1 4+ 2uy — u3 0

= 2 555 4 uy | = | 2.0u; +555u,+4u; | = | 0

—1 4 3.55 us —uy +4uy + 3.55u;3 0

Assuming u; = 1 and solving any two equations we get up = —2.97, uz = 3.62
Normalizing vector [u] = [u; uy u3]’ =[1 —2.97 3.62]" to be a unit vector yielding:

u' = ‘[“M]’ —[0209 —062 0756 |

Using the same above procedures, we get
For 2, =7.9199, we get, u®> = [ 0.45 0.626 0.637 ]T

For A3 = 5.6347, we get, ' =[ —0.868 —0.474 —0.148 |"

Assuming matrix P = [ ut urodd ] , we can reach matrix P with three vector columns,
each column is represented by u' as follows:

0.209 -0.45 -0.868
P=| —-062 0.626 —-0.474
0.756 0.637 —0.148

Note that P is an orthogonal matrix with (P"P =1)
Note also that for symmetric matrix A with Eigen vectors u, the following expression yields
a diagonal matrix:

PTAP = PT[Au' Au? A’] = PT[ul, Lu®, Az
A0 0 A0 0 M0 0

=P"[u W ]| 0 X% O |=PP| O % O |=]|0 % O
0 0 A 0 0 A 0 0 23
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Orthogonality of Eigen vectors for symmetric matrix A

If we have two pairs (A1, u;), (A2, uy) associated with the Eigen value analysis of symmetric matrix
A, orthogonality of Eigen vectors can be proven as follows:

A.u,-:ﬁ,,-u,-A.uj:ljuj (1139)

Pre-multiplying both above equation by u jT, u;", respectively and subtracting both equation.

u;"Au;=Au;"u, (1.140)
u Auj =2 ju;" u; (1.141)
Ai—2A))u"u; =0 (1.142)

As for any symmetric matrix A and any two vectors u;, u;, the following identity can be achieved:
ujTAu,- = uiTAuj (1.143)

Equation 1.142 leads to A; = A ; or generally u;u ;=0 (u; is normal to u;), so the Eigen vectors
associated with different Eigen values are orthogonal to each other. Also this identity is proved in
the previous example.

Spectral decomposition

Let us assume a known tensor T operating on another unknown tensor L using the following
expression:

T = Operator(L) = O(L) (1.144)
Assuming a one-to-one mapping, the inverse of this operation yields:
L=0"'(T) (1.145)

Evaluation of the unknown tensor L requires following these procedures. First step is to transform
tensor T into its principal coordinates, by finding its Eigen values and Eigen vectors, such that
using the matrix notation, it can be written as follows:

A0 0
T=A| 0 A 0 |AT (1.146)
0 0 A

Which A, A; are the Eigen vectors matrix and Eigen values of matrix T. Tensor L can be evaluated
by reverse the operation on the principle values of the tensor T such that tensor L will be defined as
follows:

0~'(4y) 0
L=A 0 0~ (A) 0 AT (1.147)
0 0 071(2,)

m Example 1.19 Assume a known matrix C following this expression:

1.2 03 —02
03 13 04 |=C=PB
—02 04 14

And we need to evaluate matrix B

C=A|A]AT
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Calculating Eigen values, and Eigen vector of matrix C
Ai = (0.69, 1.45, 1.76)

~0.58 081 —0.12
A]=| 063 035 —07
~0.52 —048 —0.71

0! A (U?)
—-0.58 0.81 —0.12 0.69 0 0 —0.58 0.63 -0.52
0.63 035 0.7 0 1.45 0 0.81 035 —-048
-0.52 —-0.48 —0.71 0 0 1.76 -0.12 -0.7 -0.71

1.08 0.14 —-0.1
=1 0.14 1.12 0.18
—-0.1 0.18 1.16

1.3 Vector calculus

Any function like temperature 7 (x,), velocity of fluid occupying some space v(x,t), or stress
tensor distributed over a body & (x,7) that, at any specific time ¢, varies with position x we need to
understand its properties x, is called a field function. Every position occupied with a particle has
its own properties which probably change with time. Vector calculus studies variation of this field
with position and time.
Differenting with time

Velocity field v(x,¢) is defined as the rate of change particles position with time at some position x
at time ¢ as follows:

Z’: Cs;’e,- - %el + %eg—i— %q xie; (1.148)
Where x is the position vector and ¢ indicates the time of recording the velocity. Similarly,
acceleration can be evaluated as the time rate of change of velocity of particle yielding:

dv d 2x,

==t (1.149)

From differentiation properties, we can conclude that:

d d d

o (ab) = (@) b+a (b) (1.150)
d d d
d d d
Sa@b) =S (@eb+a® < (b) (1.152)

Differentiating with coordinates
Differentiation with coordinates is done using Nabla operator V given by:

V=_"e¢ 1.153
8xie ( )
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‘While the matrix form is defined as:

[V]Z[ o 2 a2 (1.154)

dxi dxy  dx;

Gradient of scalar field ® with a continuous partial derivative is obtained from the following
expression:

P P P

Vo=—e +—e+—-—e;3 (1.155)
Bx 1 8x2 aX3
‘Which can be written in the matrix form as follows:
Vo= | 92 92 g2 }T (1.156)
. T TTT
; R
S0 N
R
e
W
% N\
1] \\&\:.‘&l
5 -4

Figure 1.18: Scalar field function f (x1,x2) = x) 2 4+0.25x2

= Example 1.20 Calculate the gradient of field function f (xj,x;) = x1%2 4+ 0.25x,% shown in
Figure 1.18 at points p; (x1,x2) = (0,2)

kol 2x
o 2 — axl — L
Gradient of the function af ] [ 0.5x, ]

At point p;. It means that functions % =0, g—é = 1 and gradient will be (0,1), so moving
to an adjacent point by only increasing x; by an infinitesimal amount, while x; is same, does not

change the function (5—){] = ) . As in Figure 1.19, the increment in position x as indicated in
the drawn arrow is in direction tangent to the contour lines which indicates no change in the
function value, so only change in function can appear if we move in any direction except this

tangent direction. Also maximum increase in function can be reached when moving normal
to the contour line or in direction of the gradient <g—£, %) = (0, 1), while the value of the

gradient |A f| = 1 reflects the amount of increase in function with changing position (xj,x3).
Another derivative we would like to introduce is directional derivative of a scalar field in
some direction n which is defined as V®.n. For example, the directional derivative of the upper
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AR
T

=2 =1 0 1

Figure 1.19: contour lines of the function projected on x; x, plane

function f in directionn = (1, 0) at point P; equals to Vf.n = (1,0).(0,1) = 0 which means
no change for the function in this direction, while if we evaluated it in the same direction of the
gradientn = (0, 1), directional derivative yields Vf.n = (0,1).(0,1) = 1 which provides the
maximum change. Any other direction results smaller change or negative change, due to the
fact that dot product of any two vectors is maximum if they share the same direction. "

Gradient of vector v is the dyadic product of Nabla operator and vector field v which transforms
the vector to a second order tensor. Generally gradient of a field increases the order of the field
by one (gradient of a scalar is vector and the gradient of vector is second order tensor). This field
should have a continuous partial derivative.

0 ov;
Vv:V®v:a—Xie,~®vjej:a—x‘l’_e,~®ej (1.157)
With matrix from
&Vj
[Vv]ij:[v®v]ij:[V]i®[v]j: ox (1.158)
1
vy Iv  dv
LB oo
%
W]=| & 52 32 (1.159)
dv;  Iw  dv3
dxz Odxz  Ox3

Gradient of 2™ order tensor A forms 3’ order tensor defined as follows:

dA;
VA:V®A:Tjkei®ej®ek (1.160)
Xi
Divergence of a field tensor is the dot product of Nabla operator with the field tensor. For a
vector field v and tensor field A with a continuous partial derivative, divergence of these fields is
given by:
dv; dv; Jdvi dvy Jdva  dwns

_ Wigg= Wi V1 _ OV V2, Ov3 1.161
xie € ox; 7 dxi  ox +8x2+8x3 ( )
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0 dA i dA ji dAj
VA= a—me,».AjkeJ@ek = a—x]iei.ej@)ek = a—xfi&jek = a—x’iek (1.162)
V.vis a scalar value while V.A is a vector field represented in matrix form as follows:
A :
[V.A]j = [V]j.[A]ij = axl,-J (1.163)

Rotation or curl of vector includes the cross product of the Nabla operator and the vector as
follows:

J dvi dv
Vxv= a—xjejkaek = ijejxek = T;;ﬁijkei (1.164)

Curl of vector tells us about the spatial rate of rotation (@) with magnitude defined as:
1
o= |V x| (1.165)
where v is the velocity vector field across the body studied.

m Example 1.21 Let us have a plate rotating about an axis x3 with rate . The position of
material points of the plate is changing as a function of time ¢ according to the following:

x1 = Xjcos (wr) — Xpsin (wr)

xp = X;sin () + Xpcos (wr)

X3 = X3
dx —Xsin(wr) — oX,cos (wr) —0x
v=—= | wXcos(wt) — wX;sin(wt) =| ox
dt 0 0

V xv=(0,0,20)

The spin have magnitude:
L v = 11(0,0,20) = 0
2 - 2 2 -

With direction (0,0, 1) and parallel to the axis of rotation. While V xv gives direction the axis
of the rotations. =

Laplacian of a scalar field function is the divergence of gradient of a function with a continuous
second partial derivative termed as:

22®d  9*d 9%d

V.VD =V = 1.166
0x,2 + 0x52 + 0x32 ( )
Laplacian of a vector field function is defined as:
%v;
Vy=vy= Y (1.167)

e .
3)6,‘8)6,‘ J
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Nofe 1.4 There are some useful expression we would like to address.
For scalar fields ® and ¥ and vectors a and b, we note the following:

2 2
Vx (V) = ( 0 ) X <acp ) = a—q)s,-jkek: AT (1.168)

—e; —e; ——— & irer
ax,- ! axj J 8x,-8xj ijaxi i
As coordinate axes are linear independent so 22 P Using that € = —€&;j; SO;
p 8)6,‘3)6]' - 3xj8x,- : g ijk — Jjik v

2

V x (VCIJ) = —meﬁkek
jOXi

(1.169)

As index notation can be flipped with each other so flipping index i with index j yields:

2

VX (VP) = ————¢;; 1.170
X ( ) axiaxj gjkek ( )
Summing Equation 1.170 and Equation 1.168 leads to:
Vx(V®)=0 (1.171)
Also we can deduce the following relation
d P ¥
V. (Ve XV¥)=(—-—€).| =—e;jx =—
( X ) (8x,-e’) <8xjej % 8xkek>
_ 9 (92T (e xen) 1.172
COx \Ox;ox ) k (1.172)
[ 0*® ¥ 0P I’V —_
~ \ dx;dx jOxe  Oxj dxidxg ik =
So we get
V.(V®xV¥) =0 (1.173)

In deriving the above expression, we used Equation 1.171 and the following identities:

e;.(e; X ex) = &;. (Ejim €,,) = Ejim Oim = Ejia = Eiji (1.174)
0’d

=0 1.175
8x,-8xjgjk ( )
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Another one we would like to introduce:

V x(Vxa) = (%ei) X (%ej X akek>
i J

(9, o [,
N 8x,-el 8xj kaem

= o a g e Xe
- ax,-axj ijk€i m
T Oxiox; e (1.176)
d%a
= Tuax,; (Ondia = udur) e
B azak B d%a, .
-\ dxdx, Ixidxi) "
a aak 2
=—— -V
dxy ( 8xk> én ¢
=V (V.a)—V%a
so we get:
V x (Vxa) =V (V.a)—V?a (1.177)
Another one:
d
V. (a X b) = gei. (ajakejklel)
da; day
= ox; ak +aj=— ox; Ejrie;-e;
2 day (1.178)
= I, ak+aja Ejklail
da; d
V.(axb) =g (ai]a +a; aak) =b.(Vxa)—a.(V xb)
So we get
V.(axb)=b.(Vxa)—a.(V xb) (1.179)
We used the following expression in deriving the above equation:
Ejuei-e; = Eju 0 = Ejr; = Ejk (1.180)
In the same manner:
Vx(axb)=(V.b)a+b.Va—[(V.a)b+a.Vb] (1.181)

ax(Vxb)=a.[Va" —Va| (1.182)
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For the length of vector x defined as:

x| = V/|xx| = /| xi-xi (1.183)

The gradient of the length comes from:

d
V(|x|) = EPRIAY |xi.xi|

J

(Vi)

dx;
_ 1 2 ox (1.184)
2 \/lxixi] 0x; ’
=—L s,

\/ ’X,‘.Xi’

Xj X
= J e; =

\/ ]x,-.xl-] ! |x|

1.3.1 Divergence or Gauss theorem

This theorem is used to solve mechanical and variational calculus problems, especially when
integral is hard to evaluate in some forms and can be switched to other forms easier to handle.
Divergence of a tensor A with a continuous partial derivative over some domain V (generally the
body volume) can be converted into integral over the body boundary dV with an outward unit
vector n normal to the boundary as in Figure 1.20. The general divergence theorem is defined as:

n
Boundary oV ~
\
Body V
Figure 1.20
/V@AdV:/ n©AdS (1.185)
14 v
Where © is a general operator which can be dot, cross, or dyadic product as follows:
/VA dV:/ nAdS (1.186)
14 v

/VXA dV:/ nxA dS (1.187)
v v
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/V®AdV:/ n®AdS (1.188)
14 v

From above, we can evaluate the integral over body volume using the properties of the outer
parameter (surface) without need to dig into the body volume.

For a two dimensional analysis, integral over area a can be switched to integration over the area
perimeter P as follows:

/V@Ada:/ n©AdP (1.189)
v 0A

We will illustrate The following two examples to understand the divergence theorem as follows.

A
]
.| N

n; J n;

ot

Figure 1.21

= Example 1.22 — Rectangular area. If we need to evaluate the area of the shown rectangular
in Figure 1.21. Area of the rectangular A is defined as follows:

:/dA:/ldA:/V.bdA (1.190)
A A A

Where b is any vector such that V.b = 1, e.g. assume b = x;e;. Using divergence theorem, area
integral can be converted to line integral as follows:

_ /V.bdA _ /n.de (1.191)
A S

Where n is the normal to the surface and S signifies the boundary of rectangular. We can divide
the boundary of rectangular into four boundaries and the line integral can be defined over each
boundary as follows:

Boundary 1 [n] = (1,0) = [¢(n.b|,,—3)dS =3 [(dS=3%2=06
Boundary 2 [n] = (0,1) fs(n.b|— z)dS 0
(1.192)
Boundary3 [n]=(—=1,0)  [¢(n.b|;,—0)dS
Boundary 4 [n] =(0,—1) [ (n.b|;,—o) S
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So the total integral is the sum over the four boundaries resulting the area:

A:/n.de:6 (1.193)
§

ezA

j —
J v=x;1+2
>
2
Figure 1.22

= Example 1.23 — Discharge of a rectangular body with a unit width. If we have a fluid
with velocity field v = (4x; +2,0), and it is required to find the discharge through rectangular
shape shown in Figure 1.22 with unit width. Discharge Q is measured through the dot product
of the velocity and the normal to the surface n as follows:

Q:widthx/

n.vdS:/V.vdA:/4dA:4*2*1:8 (1.194)
A A A

Note 1.5 Useful relation

. d o _8A,~j ) ”a\/j_ .
V. (AV) = ai_xl (Al]vj) = Tx[_.v] +Al]aixl~ = (V.A) V+A:Vy (1195)
/ n.(Av) dS:/V.(A.v) dV:/((VA) VA Vv)dV (1.196)
v 4 v
But
n.(Av)=nAv=vAn=v.(A.n) (1.197)

We can deduce from above expressions and Equation 1.196 the following:

/V(Vv:A)dV:/avv.(nA)dS—/Vv. (V.A) v (1.198)

The above derivation is called integration by part.
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The term V. (v X A) can be defined as follows:

V.(vxA) = xen. (v,-Ajm&‘,-jkek ®em)
n
. i (1.199)
= gAjm + ViW 6ijksnkem
n n
But
dv; dv;
TxtAjmgijnenanm = #Ajmsijnen
n m
_ gvmxAm (1.200)
X
=VWW"x A"

Where vector A" represents the m'" column of matrix A with components A" = Ay,,, Where
B" x P" = an:l B™ x P™ as m is a dummy index. Also the second term in Equation 1.199
can be reduced to:

JA jm 8An
Viﬁgijkénkem = viwjajmajngijksnkamkek
= (v % V.A) 88 ;, kO (1.201)
=vx(VA)

So V. (v xA) in Equation 1.199 after using the divergence theorem will be:

/ n.(va)dS:/V.(va) dv
v 14 (1.202)
:/(vx(V.A)+vaxAm)dV
14

But
/(vx (V.A))aV :/ n. (v x A) dS—/vx (V.A)dV (1.203)
\%4 I°A% \%
and
n.(vxA)=vx(A.n) (1.204)
which yields:
/(vx (V.A))aV :/ v (A.n) dS—/vx (V.A)dV (1.205)
\%4 PA% \%

The above expression can also be called integration by part. "
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2.1
2.1.1

(2. Finite Rotation and its Applications

Rotation in plane (rotation about origin)

Body rotation with fixed coordinate system

Lets us assume a body undergoing a counterclockwise rotation with angle 6 in two dimensional
plane about origin and referred to a fixed coordinate system with basis (triad) #. If we assume that
the solid line and dashed line are used for the body before and after rotation as shown in Figure 2.1
and the rotation 6 is positive for rotating counter-clockwise (or using right-hand rule by upward
pointing thumb normal to the paper plane in e3 direction), such that any vector attached to the body
with position vector (X;,X>) is transformed after rotation to (x;,x;) given by:

x1 = Xjcos 6 — X»sin O

) 2.1
xp = X;sin 0 + Xpcos 0
And it can be written in matrix form as follows:
x; | | cos@ —sinB X
[xz ] o [ sin@ cos@ ] [Xz ] 22)
x]” = [RI’[x]° 2.3)

[R]? is called the rotation matrix resolved in basis 2. If [x]® and [X]are position vector after
and before the rotation resolved in the same basis %, the negative sign in —sin(0) in the above
expressions comes from the fact that components of vector X in e direction is reduced with positive
rotation.

The tensorial form of the transformation will be:

x=RX 2.4)

Bear in mind that the coordinate system still the same after rotation. Also we need to note that the
upper form implies that observer has the freedom to choose other coordinate system with other



2.1.2

46 Chapter 2. Finite Rotation and its Applications
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Figure 2.1 Figure 2.2

basis, e.g. e; such that the rotation R can be resolved in both bases; e; and &; as follows:

X= X;e;j— )\Ciél’ (25)
X= X,-e,: Xl'é,' (26)
R=R,-je,-®ej=R,-jéi®éj (2-7)

Where x;, and X; are components of the vector after and before rotation and rotation matrix resolved
in coordinate system with basis e;, while x;, and X; are the components of the same vectors resolved
in different basis e; as shown in Figure 2.2, fori = 1, 2, 3. R;;, and R; ;j represents the components
of rotation tensor resolved in different bases and they are generally different to the same spatial
tensor R, but it can be proven that R; i, and R;; are identical in two dimensional plane rotation as it
depends only on the rotation angle 6.

Body fixed in space referred to a rotated coordinate system.

Consider a body resolved in two coordinate system % and %*. As schematically shown in
Figure 2.3 coordinate system * with dashed axes is obtained from applying a counterclockwise
rotation by angle 6 about origin O on coordinate system %4. Keep in mind that the body itself is
fixed, while coordinate system undergoes rotation. If we have a vector attached to a body, it can be
resolved in the both coordinate systems following these relations:

x1" =x1c08 0 +x,sin O
1* 1 . 2 2.8)
X" = —x18in 0 + xcos O

Where x;, x;* are components of the vector resolved in coordinate system with basis % and
basis #*, respectively as shown in Figure 2.4 fori =1, 2, 3.

x1* 1 [ cos® sin6 X1
[xz* ] N [ —sin@ cos6 ] [xz ] (2.9)
W = (0155 )" or 6)* =[0I, 5" (2.10)

(015 ,.,[Q15 . are the transformation matrix from basis % to basis Z*; as indicated in the
subscript of [Q]; resolved in basis % and basis %*, respectively (the superscript indicates the
basis [Q] is resolved in). They are identical in two dimensional plane transformation. Subscript
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x i
2 *
)CZ* A \ 2 A
X1
x x [ ZT4x
. X ! .
VK ! % €
v i ") ®%
> N
J ¢ - g
0 B X r 4 >
o B €
Figure 2.3 Figure 2.4

(B — B*)can be dropped for convenience. [Q]® also called direction cosine matrix with elements
expressed as:

Qij =cos(e*,ej;) =e".e; 2.11)

We emphasis again that the vector itself do not rotate and it is still the same spatial vector but de-
scribed in a new coordinate system. We can also easily verify that rotation matrix and transformation
matrix are orthogonal matrix carrying these relations:

det (R) =det(Q) =1 (2.12)
RRT=R"R=10rR '=R" (2.13)
00" =0'0=10rQ7'=0Q" (2.14)

we can generalize the transformation rule for higher order tensors. For example, second order
tensor can be formed from a dyadic product of two arbitrary vectors # and v and can be resolved in
basis # as follows:

AP = e = (ulp") 7 = ) () @19

The components of this dyadic in another basis %* could be determined as follows:

P = e =w? (v7) =10 W (12 ) = 10w (57 (12”)’

(2.16)

A" = [0][a)]”[@)" 2.17)
'With index notation as follows:

A?j = QimanAmn (2.18)

For example, assume a second order stress tensor ¢ at point P in two dimensional case as
shown in Figure 2.5 and resolved in basis #Z as follows:

| 011 On2
[o] = [ Gla G ] (2.19)
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LO' 12

\( Figure 2.6

0-22

Figure 2.5

Resolving in other basis %’ will follow this transformation relation:

[o] =[0][o][Q]" (2.20)
Or in index notation
0'ij = QinQjnCij (2.21)
o'i o'in| | cos® sinb o1l On cosO sin@ 2.22)
6'1n 6 | | —sin® cosH 12 O» —sin® cos@O :

Which results in:

0’11 = 01108 0% + 028in 6% + 2071, sin O cos O
6'2) = 0115in 0% + G2yc08 02 — 2615 5in O cos O (2.23)
0’12 = (02— 011) sinO cos O + o1, (cos 62 — sin 62)

The same results can be obtained using Moht’s circle or studying the equilibrium of a differential

triangular element with thickness ¢ and dimensions shown in Figure 2.6 by summing the force
along x' coordinate as follows:.

o' 11% 1%t = 01108 0 % (cOs O *1) + Op8in O  (sin @ * 1) + G125in @ * (cos O 1) + G12c0s O * (sin O 1)
(2.24)

Which leads to the same results of Equation 2.23.
For 4" order tensor like the one used in constitutive relations can be resolved in two bases "
and %' as follows:

24

| Oxx
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Omn = Cnop €op (2.25)

oij= Cliju€u (2.26)
The transformation rule will be:

QinQjnGmn = C'ijii CroQipEop (2.27)

O = Clijit Qim’ Qjn” QroQipop = OmiQnjQroQipC'ijuiE,, (2.28)

C'ijtt = QimQ jnQok QpiCrunop (2.29)

Also a two important role can be noticed. First, rotation matrix is transpose to transformation
matrix for the same rotation angle, and second, rotation matrix for rotation angle 6 is equivalent to
transformation matrix for a rotation angle —0 as follows:

(0] = R’ (2.30)
[0(6)] = [R(—6)] (2.31)
A A
X5 X
P = P
7[\1/3 -7[(3 p
o ; B >x1 O B X
(@)
A A
X7 X
*
X2
*
3 X1
P Py
=
/3 /3
(0] > B ™ 0] B ™
(b)
Figure 2.7

= Example 2.1 A vector P in Figure 2.7a is originally oriented along direction (cos (%) ,sin (%) )
in coordinate system 2. If the vector is subjected to a rotation by an angle —/3, the new vector
P’ components in the same coordinate system % are (1,0). While, in Figure 2.7b, another case
involves rotating the coordinate system by angle /3 to form new coordinate system %*, but



50 Chapter 2. Finite Rotation and its Applications

Figure 2.8

vector P stay still in its original position. The vector P resolved in the new coordinate system
. - T . . .

#* will be [P]B = [ 1 0 } which results in the same components formed in the first case.

Leading us to conclude that

P = [R(-3)] " (2.32)
P =e(3)] P (233)
Both equations lead to same result which implies that [Q(6)] = [R(—6)] .

2.1.3 Rotation of the coordinate system and body together with same angle

In some cases, the coordinate system chosen may be attached to the body and rotates with it. This
case is used when the body exhibits a large rotation while its internal deformations are infinitesimal.
Observing these infinitesimal deformations required choosing a coordinate system attached to
the body. This rotating or attached frame of reference is called co-rotated frame. As shown in
Figure 2.8, a body with attached coordinate system to it is rotated counter clockwise by angle 6.
By intuition, the new vector components resolved in the new coordinate system is identical to old
vector components resolved in old coordinate system before rotation.

x® =[x (2.34)

We also need to note this useful rule for rotation. Rotation preserves scalar quantities like vector
length, projection of one vector on another, dot product of two vectors, and angle between two
vectors. As shown in the Figure 2.9, angle between vectors a and b does not change after rotation
by angle ¢.

I = Example 2.2 A scalar quantity like work W is defined as the dot product of the force F and
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displacement d as follows:
W=Fd=F'd=(Q"F) Q"d=F'0Q"d =F'd=F.d (2.35)

So we conclude that the dot product of any two vector referred to two different coordinate
systems are identical. "

2.1.4 Compound rotation in two dimensions

XA

Figure 2.9

As shown in Figure 2.10a, if rotation R (6;) is followed by rotation R (65), so the first rotation
transforms vector X to vector x' and the second one rotates the vector x' to vector x as follows:

x=R(6,)x (2.37)

So the final vector x will be:

x=R(6:)R(6))X =R(9)X (2.38)
Where the equivalent rotation R(6) of two compound rotations R (6;) and R (6,) follows this
relation:

R(6) =R(6,)R(61) (2.39)

In two dimensional plane rotation, the equivalent rotation angle will be:
6=0+6, (2.40)

Also the sequence of rotation does not affect the final result as shown in Figure 2.10b, thus we can
reach the same rotated vector if we started with angle of rotation 6, followed by rotation with angle
0.

R(6:)R(61) =R(61)R(6,) (241)
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XZA

X X1
(@) (b)
Figure 2.10

Rotation in three dimensions

Rotation in three dimensional space is defined by the angle and the axis of rotation. The rotation
in two dimensional plane can be considered as a special case of rotation in which x3 is the axis of
rotation. Using Equation 2.2 and the fact that the position of any point laying on the axis of rotation
(x3) remain fixed after rotation, the point with initial coordinate X rotates to a new position x from
this relation:

X [ cos® —sin® 07 [ X;
x | = | sin@ cos@ O X (2.42)
X3 0 0 1 X3

Similarly rotation about x; axis follows this equation:

X1 1 0 0 Xl
x | =] 0 cos® —sinb X (2.43)
X3 0 sin® cosH X3

‘While rotation about x, axis comes from:

X [ cos® O sin6 ][ X;
Xy | = o 1 0 X (2.44)
X3 | —sinf® 0 cosO | | X3

Rotation about any axis with unit vector n

The rotation tensor can be paramterized using its intrinsic paramterization defined by R (orthogonal
tensor with nine parameters and an element of Lie group called SO(3), e.i. RTR = 1,det(R) = 1)
but group SO(3) is non-linear space (manifold) and there will be some nonlinear issues when using
it, so we can simplify the problenm using a vector-like parameterization so-called rotation vector.
As in Figure 2.11a, assume a vector X rotated to a vector x (shown with dashed line) via a rotation
of angle 8 about axis with direction n through a circle normal to the axis of the rotation. The vector
X makes angle o with axis of rotation. If we investigate the change in vector X via this circle as
shown in Figure 2.11b, the vector after rotation increases in two directions e** and e* by length |4
and |a|, respectively, as follows:

|r| = |X]|sin (2.45)
Ib| = |r|sin@ (2.46)
la| = |r| (1 —cos ) (2.47)
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The direction of unit vectors e* and e**

nxX nxX _nxX

. _ _ 2.48
© Tlnxx| X[sina || (2.48)
o nxe* _ .n><e :nxe*:nx(nxX) (2.49)
Inxe*| sin(m/2) |r|
The final vector x will be:
x=X+|b|e* + |a| ™ (2.50)
=X+sin0(nxX)+(1—cosB)(nx(nxX)) (2.51)
=x+sin 0 AX + (1 — cos 0) AifX (2.52)
= (14sin@ i+ (1 —cos 0)7ifi ) X = RX (2.53)
So the rotation tensor R is defined as:
R=1+sin6n+(1—cosO)nn (2.54)

We need to note that the last term of the above equation 7i#i is symmetric, while the middle term
fi is skew-symmetric. The last term is symmetric because

e T
Skew (nn) = 'mz('m)

mn)" =a'n’ = (—n)(—n)=nn (2.56)

—0 (2.55)

This above Equation 2.54 is called Rodrigues’ rotation formula. Another form we would like to
introduce is exponential form of the rotation tensor as follows:
Using Taylor series
62 6°

cos@:1—§+..., sin9=6—§—|—... (2.57)
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Figure 2.12

Also the skew-symmetric matrix with unit vector n as an axial vector follows this relation

nnn=—n (2.58)

We can conclude that:

~2  ~3
~ 0 0 ~
Where @ = 06n is the rotational vector and 6 is the magnitude of rotation, so the rotation R

depends on three free independent parameters. There are other choices for parameterization like
Euler angles, rotational pseudovector, quaternion, conformal rotation vector, Euler parameters,
etc. Assume a rigid body rotation and we have two orthonormal frame; material (inertia) frame
(& ={E/}) and body-attached (moving) frame (.7 = {t;}) as shown in Figure 2.12 such that a
rotation operator R maps the material frame into the moving frame as follows:

t; =RE; (2.60)

We need to note that the material frame remains constant in the space at any time while the moving
frame is attached to the body and change with time #;(¢), such that the moving frame is identical to
the material frame at initial configuration (r = 0). The rigid body rotation R can be interpreted as a
rotation about axis n with angle 6. Resolving the above equation in material frame results in:

[0 = R [EN) 261)
With

(B ={1,0,01", [E2)" ={0,1,0}", [Es]* ={0,0,1} (2.62)
So vector [t;]¢ represent the i column of matrix [R]¢ .

Recovering the axis and angle of rotation from rotation tensor

As stated before, the skew symmetric part of rotation tensor R is defined as:

1 .
skew (R) = 5(R—RT) = sin@n (2.63)
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The magnitude of the skew-symmetric part will be:
sin @ = | axial (skew (R)) | (2.64)
Axial vector sin On of the skew-symmetric part define the direction of the rotation vector:

p = @ial (skew (R)) (2.65)
sin@

The range of angle 6 is |0 — 7[. Note that the axis of rotation could be —n with corresponding angle
|m —2x[. For example, rotating about axis n = (0,0, 1) with angle pi/3 is equivalent to rotating
about axis —n = (0,0, —1) with angle equal to 2w — /3 = 57/3.

For relatively small rotations, we can neglect terms with order higher than second.

~2
R:1+6+gT (2.66)

For infinitesimal small rotations, neglecting higher order terms than first results in:

R=1+0 (2.67)

The infinitesimal rotation can be proven from Equation 4.575 as follows. Assume a vector v in
a plane x; —x, directed with angle 6 from x; axis. If the vector is subjected to an infinitesimal
rotation A8, it is transformed to vector v/, such that if:

v =|v|(cos 6,sin0) (2.68)

The resulting vector will be:

X>

X
Figure 2.13 Figure 2.14
vV =v+Av=v|(cos(0+A0) ,sin(6+AB) ) (2.69)
v’:v—I—AGMn:([(l) (1)]+[A06 _§6 ])v (2.70)

Where the direction n = (—sin 8, cos 6) as n is orthogonal to vector v and axis of rotation.
In the same manner, we can conclude the general form for infinitesimal rotation about any arbitrary
axis with rotational vector @ = (0, 6,, 03) as follows: First, we can deduce the vector n as follows:

_6xv  O6xv Oxv
1@ xv| |v|sin® ~ |v|6

@.71)
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As for an infinitesimal angle 6, sin 6 ~ 0, and using Equation 2.70

vl

—v+OxV= (1+5> veoc (2.72)

The general form of rotation tensor for an infinitesimal rotation @ = (0, 6,, 63):

R

B 1 00 0 —-63 6
=14+46=]0 1 0 |+ 0; 0 —0 (2.73)
0 0 1 -6, 6, 0

Generally any infinitesimal rotation A@ is also called spin.

Note 2.1 There are some useful properties we would like to introduce:

1.

oS

2 =

All the properties of rotation in three dimensional case is identical to those of the two
dimensional case rotation except for dealing with compound rotations (see the next
section).

Axis of rotation is not affected by rotation and remains fixed.

For the plane normal to the axis of rotation, any vector lying on this plane remains in the
same plane after rotation.

Dot product of two vectors is preserved under rotation.

If we have two vectors x| and x, subjected to the same rotation R and the resulting vectors
are x| and x).

X, =R(0)x;, x,=R(0)x, (2.74)

The cross product of these two vectors before rotation (x1, x,) and after rotation (x’l, x’z)
are related as follows:

x) xx,=(R(0)x1) x (R(0)x;) =R(0) (x| xx)¢ (2.75)

If a coordinate system with basis Z1 is subjected to a rotation R to form basis %2, the
rotation tensor resolved in both bases are identical. As, rotation formula in Equation 2.54
depends on the angle rotated and the axis of rotation as follows:

R”? =R”(0,[n)%) (2.76)

As the axis of rotation n remains fixed after rotation as shown in Figure 2.14, so its
components on both bases are identical [n]”' = [n]%* and using Equation 2.54 results in:

R = [R|” @2.77)

AThis expression can be proven by intition or from this relation (Fa) x (Fb) = det(F)F~" (a x b), where F is a
linear mapping to vectors a and b

2.1.8 Non-commutiative property of rotation

In Figure 2.15, a rectangular plate is subjected to rotation about e; axis with angle /2 then
followed by a rotation about e, axis with angle 7 /2 to finally reach to some configuration. While
if we flipped the order of rotation starting with rotation about axis e, followed by rotation about
axis e using the same angles, we reach to another configuration, so we conclude that the sequence
of rotations affects the final result of the compound rotation unlike the case of two dimensional

rotation

in subsection 2.1.4.
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If rotation matrices R (01), and R (0,), respectively, rotate a vector vy to vector v; and vector v; to
vector v, as follows:

Vi :R(Gl)vo (2.78)
V2=R(92)V1 :R(GZ)R(Ol)vo (2.79)

So the compound rotation tensor is:
R(6) =R(02)R(6) (2.80)

The resulting rotation 8 does not represent the algebraic vector sum of the two angles or (0 # 0 +
0,) as confirmed from Figure 2.14. The above expression can be illustrated via Figure 2.21, in which
basis 4 is transformed through rotation tensor R(0) to basis Z* then rotated through (A@) to reach
finally to basis 27" . This two subsequent rotations can be replaced with one equivalent rotation
0 + AB where (AO # A¢). Also the not commutative property of [R (02)R(01) # R(0:)R(0,)]
argues the above discussion.

2.1.9 Compound Rotation

Consider a rotation operator R mapping from orthonormal frame E; into another frame #;, then an
incremental rotation is added which carries the rotation frame ¢; to b;. There are two ways to apply
thus rotation defined as follows:
e Through spatial rotation:
In this case, the incremental rotation ¢ is applied to moving frame ¢; as shown in Figure 2.16a
and the compound rotation is defined as:

b; =R()RE, (2.81)
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e Through material rotation:
The incremental rotation ® is applied to the material frame E; shown in Figure 2.16b and the
resulting rotation is:

b; = RR(P)E, (2.82)
The updated compound rotation tensor is defined in the following two forms:
R.; = R($)R = RR(®) (2.83)

Where ¢ (® ) is the rotational vector corresponding to the incremental spatial (material) rotation.
From above equation, they are related through the following:

R(®) =R"R())R—®=R"¢ < ¢ =R® (2.84)

The above equation can be interpreted through considering the rotation vector as a real vector
attached to a rigid body like the moving frame ¢; and subjected to rotation R. As the angle between
any two vectors subjected to the same rotation is preserved, we can imagine that rotating of frame
E; through rotation R followed by rotation ¢ is equivalent to a rotation of the same frame with
rotational vector @ followed by rotation R.
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= Example 2.3 Assume a rigid body shown in Figure 2.17 subjected rotational vector resolved
in basis E as [0]F = {g,O, O}T, then followed by an incremental rotation resolved in the same

basis as [¢]F = {0, 7, O}T, resulting a body with attached frame 4 with bases resolved in frame
of reference E as follows:

= [R(9)]” “ =R([¢]”) R’ [E/)” (2.85)

Also identical results can be reached from rotating about rotational vector [®]% = [RT ¢]F =
{0, 0,—% } " followed by rotation about 8. Also, see the examples described in subsection 2.1.12.

2.1.10 Finite rotation followed by an infinitesimal rotation
This case is very common in nonlinear finite element analysis, as the solution is divided into small
steps, each step includes number of increments with relatively small rotation. Updating rotations
requires adding incremental rotations to the last converged step which is generally finite, such that
if a vector subjected to a finite rotation 0 followed by an infinitesimal or linearized incremental
spatial rotation A¢ as shown in Figure 2.18, the compound rotation will be:

R(6+18) =R(AP)R(8) (2.86)

As the final rotation # @ + /A@ but equal to @ + A@
A¢, AO are called non-additive and additive rotation vectors, respectively. From above
expression:

AR=R(0+A0)—R(8) =R(A$)R(0) —R(8) = (R(L$) —1)R(8) (2.87)
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While for an infinitesimal rotation A@, rotation tensor will be R(A¢) ~ 1+ /A\a and the above
expression yields:
AR = /A\ER (6) (2.88)
which leads to:
A¢ = AR(8,10)R(6)7 (2.89)

For an infinitesimal rotation, /A@ is also called spatial spin or angular variation.The above
relation is equivalent to the following equation:

AP =T(0)A\O <~ NO=T(0) 'A¢ (2.90)
Where T(0) and T(0) ™" are defined as:

1—cosO~ O —sinf~~

T(0) =1+ 8+ "~ 08 2.91)
82 6/2 \ 06" 1
TO)" = Gnio/2) +(1_tan(9/2)) oz 20 (2.92)

The derivation of the above expressions is presented in Appendix 4.5.5. As stated before, rotation
tensor R is an element of Lie group SO(3). Rotation variation SR lies on the tangent space to
SO(3) at the current rotation R defined by TgSO(3). Unlike non-linear manifold SO(3), TrSO(3)
is a vector space as shown in Figure 2.20a and Figure 2.20b. At point with (R = 1), the tangent
space is defined as T1SO(3), such that rotation vectors 6, and 0 belong to the same vector space
T1SO(3) and the can added together as follows:

.50 €T;S0(3), 0+50 €T;SO(3) (2.93)

While variational rotation SR evaluated at rotation tensor R belongs to another tangent space
TrSO(3), such that it is defined as:

SR = 5¢R € TrSO(3) (2.94)
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As 8¢ belong to a different vector space it can not be added to 8 and 66, which leads us to use the
mapping tensor T (0) in Equation 2.91 to relate the linearized rotation at T} SO(3) defined as 0
with the linearized rotation at TgSO(3) defined as d¢ as stated in Equation 2.90.

When |0| approaches zero, T(0) approaches identity matrix 1 and A¢ = AB, while for an
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infinitesimal rotation 6,[7(0) — 1], T can be approximated as follows:

T(0)~1+-6 (2.95)

2.1.11 Adding two infinitesimal rotations or spin

As shown in Figure 2.19, imagine a rigid line v rotated about axis n; with infinitesimal rotation
A¢; around point O moving the point Py to point P; by changing vector v as follows:

Avi = APy xv (2.96)

Then
around point O moving the point P to point P, by changing vector v as follows:

Avy = A¢2 X (v—i—Avl) = A(Pz X v+ A¢2 X (A‘Pl ><v) ~ A(Pz XV 2.97)

The last expression results form neglecting second order terms, so the resulting rotation A¢ comes
from:

Av=A@ xv (2.98)

Avy+ Avy = A¢1 XV+ A¢2 Xy (2.99)

= (A1 +L¢2) xv (2.100)

Then the resulting infinitesimal compound rotation will be:
AP =0¢1+AL¢> (2.101)

This is called addition theorem. In this chapter, we generally use 0, and A for addition rotational
vector, A¢ for non-additive one following rotation 6.

= Example 2.4 For[0,]=(n/3,0,0), [082] =(0,—x/3,0), [A¢; =]n/100(1,1,0),and [A¢,] =
7/200(0,2,1), from formula in Equation 2.54.

1 00 00 O
[R(@1)]=[0 1 0 +sin<—) 00 —1
0 0 1 01 O
- 0 0 O 00 O
+<1—cos(§>> 0 0 -1 00 -1 (2.102)
01 O 01 O
1 0 0
=0 05 =
0 ¥ 05
Similarly, the second rotation tensor will be:
0.5 0 =83
R@)]=| 0 1 0 (2.103)
=5 0 05

2
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The resulting compound rotation will be:

05 0 =2 |[1 0o o0
R(®)=R(02)R0))=| 0 1 0 0 05 = (2.104)
| =5 0 05 |0 £ 05
[ 05 —0.75 =83
= o o5 = (2.105)
| 3 3 025
Using the procedures in subsection 2.1.7 to evaluate 8, we get
[6]" =[ 0.9463 —0.9463 0.5463 | (2.106)

We find that @ # 0, + 0. If we change the rotation sequence, the resulting compound rotation
will be:

05 0 =¥
R(01)R(62)=| —0.75 0.5 = (2.107)
¥3i 3 025
We can conclude that:
R(62)R(6,) # R(61)R(62) (2.108)

and the sequence of rotation effect the final compound rotation.
The compound rotation formed by rotation 8 followed by infinitesimal rotation A¢; will be:

R(91+A91):R(A¢1)R(91) (2.109)

The resulting additive rotation vector A@; will be:

[26,]7 =] 0.0313 0.0286 —0.0165 ] (2.110)
Or using Equation 2.91
1 00 [0 0 0
1— z

T@®)=|0 1 0|+ 028(3) 00 —1

0 0 1 (%) 01 0

2w (zy ] 0 0 0 00 0
+(3) :111(3) 00 —1 00 —1 (2.111)

(5) 01 0 01 0

1 0 0

=10 0.827 —-0.4775
0 0.4775 0.827

The last solution is an approximate solution to the first one and can be used in the linearization
of weak form of the finite element differential equation to evaluate the geometric stiffness matrix
(predictor phase), while updating rotation after each increment can be done through the first one
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to ensure the exact results (corrector phase in which the accuracy of finite element depends on).
We can get A@; from A@; as follows:

AR:R(91+A91)—R(91) (2.112)
. —0.0005 0.0005 0.0314
[Ag]=ARR(O) = | 0.0005 —0.0005 —0.0314 2.113)

—0.0314 0.0314 —0.001

Note that A@ is totally skew-symmetric when the added rotation becomes infinitesimal, so we
can consider the skew-symmetric part of the above equation to evaluate its axial vector A@ as
follows:

[A¢1])" =[0.0314 —0.0314 O | (2.114)

Which is identical to A¢; = w/100(1, 1,0) given in the start of the example.
For adding two infinitesimal rotations (spin) A¢; and A@,, we get:

0.9979 —0.0142 0.0633
R(ABuggea+001) =R(A92)R(AG) = | 00162  0.9994 —0.0307 | (2.115)
—0.0628 0.0316 0.99751

—0.0002

[A0ugged] = | 0.0317 (2.116)
0.0152

ABdgeq = NP> (2.117)

Or using addition theorem:
AP finat = P11+ Lo (2.118)

2.1.12 Manipulation with bases

As shown in Figure 2.21, assume a rotation tensor R(0) that transforms bases Z = [e; e; e3] to
basis #* = [e] e} €3], such that any axis of the resulting basis equals to:

el =R(0))e; fori=1,23 (2.119)

T €5 e ] through R(8,) as follows:

Similarly, rotation tensor R(8-) brings basis %* to " = |e
e =R(0))e; (2.120)
The compound rotations will be:
R(0)=R(0,)R(8)) (2.121)

Equation 2.119 can be resolved in any basis, e.g. it can be resolved in basis # as follows:

€] = [R(61)]17 [e;)} ! (2.122)
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Figure 2.21

Where A1l means that tensor A is resolved in basis . [e;] ] means that the basis e; of frame 4 is
resolved on itself which yields:

1 0
e =101, [e?=|1], [?=]0 (2.123)
0 0 1
From Equation 2.54, we get:
in® Tz (1—cos8) 7 ; ,
[R(01)]7 =1+ %e[ﬁ’] + (gfs)e[ﬂe?] =R (61") =R7l(0) (2.124)

The last equality is used for convenient. Also from Equation 2.122 and Equation 2.123, the rotation
tensor (@) resolved in basis Z will be:

ROV = | ) (s (o5 ] 2.125)

It means that a rotation tensor R rotating from basis %1 to basis %2 contains three columns, each
one represents a unit vector in basis %2 and resolved in basis A1. Similarly, we can resolve the
compound rotations in bases %, #* and #* as follows:

R(e%’) :R(@?)R(e?) or R%(8) =R” (6,)R” (8))
R(6%) =R(63)R(6}) or R*(0)=R"(6:)R*(6,) (2.126)

R(6%)=R(65)R(67) or R"(@)=R"(6,)R"(6))
Where , R” (), R*(8) and R* () are rotation matrices resolved in bases %, %* and #*
respectively. We also note that the rotation tensors R (6) resolved in bases % and #* are identical

as the axis of rotation 8| remains the same after the rotation and its components in bases % and
H* are identical, so using Equation 2.124 results in

R(G?) —R(8") (2.127)
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Similarly 8, when resolved in bases %* and Z*:

R(63) =R (07) (2.128)
Also the components of rotation tensor resolved in different bases is related via:

R”(0,) =R (e?) — R (R (e?’) e;) —R (e?) R (e;)R(e?) ' (2.129)

The last equality comes from Equation 2.124 and identity <Ifi\¢/1 = RﬁRT> , so the compound rotation
will be:

R(G‘%> :R(G?)R(G?) (2.130)
- R(G?)R(G’;)R(O?)TR <e?) 2.131)
:R(@?)R(e;) SR=RR (2.132)

R1, R, are rotation tensor that brings basis % to basis #* and basis %* to ", both resolved
in basis 4, While R} is the one that describes the rotation from basis %* to basis £ resolved
in basis %*. We find that the sequence of rotation is reversed in Equation 2.132 compared to the
sequence of rotation in Equation 2.80 and the order of multiplication depends on the basis which
they are resolved in.

= Example 2.5 A basis % is subjected to rotation @ resolved in basis % with 07 =(0,0,7/4)
to form basis B* and followed by 85 = (0, 71/2,0) to form basis 2+,
Rotation of basis Z to basis Z* is shown in the Figure 2.22a through 01@ via R;

) cos(w/4) —sin(m/4) O
Ri=R (9(3) = | sin(zw/4) cos(m/4) O (2.133)
0 0 1

Rotation of basis #* to Z* as shown in Figure 2.22b through R,

cos(m/2) 0 sin(m/2)
R§=R(e§’”> - 0 1 0 (2.134)
—sin(zw/2) 0 cos(m/2)

So the compound rotations will be:

0 0 1
R”(0)=R”(6,)R”(6))= | —1/V2 1/vV2 0 (2.135)
1/v2 1/v2 0

The resulting rotation R” (0) resolved in basis Z with bases e defined as:

RZ0)=[(e})” (e})” (e)”] (2.136)
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Where (e;r) are components of ej' resolved in A fori=1,2,3.
2 1
HNE =
(e3)" =10 (2.137)
0

. [0
) 1/v2

0
C

- 2

(

eh)’=| -1/v2
1/v2
But if we calculate the components of 0, resolved in basis #* as (05), it will be:
(2.138)
(2.139)

i
= R1T92
Or from Figure 2.22d (resolving angle along axis e in basis Z*), it follows:

(59

SI-

ST

05 =
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Applying this rotation is shown in Figure 2.22c. Adding a rotation tensor R! to the above

rotation, R = R R} yields a identical results in Equation 2.135 as shown in Figure 2.22d.
From the last case, we reversed the rotation from #" to Z% through R! then reverse the

rotation through R;Tto transform finally to basis %8 as shown in Figure 2.22d. "

K

B
p cos(8)
xsin(@)

0, e

B
ef
(a) (b)
Figure 2.23

= Example 2.6 Imagine that we have a unit vector v come from the rotation of basis e} about
e} via an angle 6,. The components of the vector v resolved in basis #* is (v{, v}, v}) =
(cos(02) ,sin(B2) ,0). If we track the bases e} due to rotation R(05), we get new basis A"
with bases e; with components resolved in basis %* as follows:

R (02) =[(e])" (e3)" (e)7] (2.140)

Where (e;’)* are components of e;’resolved in #* for i = 1,2,3. (Note vector v and e;r are
identical)

If the vector v and basis Z* are attached to rigid body, and this body is subjected to rotation
R(6)), the vector v and basis %8* rotate also with the body. We find out the components of new
vector v resolved in (projection on) basis Z* is still the same as old one and is not affected by
R(0,) at all. Similar to vector v, components of ¢; resolved in %* and donated by (e;“)* do
not change with R, so R* (0,) is constant for any rotation R (6) and the components of spatial
abject or vector attached to a body referred to its local frame (basis Z* attached to this body) is
called the material components. Studying material components is important, especially when a
body is rotating with high speed (R;), while deformation (change in distance between any two
point on it) is very small, so it is convenient to study this change relative to its local basis not
global basis without affected by Ry, the same case in our study. After rotation (e+

i

)”@ resolved
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in basis 4 is as follows:

() =R(81) ()" (2.141)
1 [

(€/)"=R*(62) | O | =R*(62) (e‘f*? ) (2.142)
0

(e;-% ) are components of eresolved in &, for i = 1, 2, 3(components of basis on itself).

Which equal to (1,0,0), (0,1,0), (0,0,1), respectively. So

[

()" =R (0:) ()" =R(0) () = R(O)=R(O)R (62)  (2.143)

2.1.13 Angular velocity

From chapter 1, we concluded that the velocity of a point lying on object rotating with angular
velocity m about axis with unit vector n as shown in Figure 1.13 is defined as:

a= a (2.144)

Where @ = wn, so the time derivative of vector with constant length equal to the cross product of
angular velocity and vector itself.

Also vector a(t) can be formulated from rotation of vector @y (constant with the time) through
rotation R(r) which is a function of time:

a(t) =R(t)ap < ap =R(t)" a(r) (2.145)
a(t) =R (t)ag =R()R(t)" a(r) (2.146)
®=R()R(1)" (2.147)

As the angular velocity can be imagined for constant axis of rotation as
d A
ot At
So it is infinitesimal rotation rotated in infinitesimal time. There no vector its derivative is angular
velocity due to the fact that:
d(¢n)
t

COL — fn-+ 41 = 0+ (2.149)

(2.148)

So angular velocity can be called the spin as it is similar to infinitesimal spin (Z(ﬁ = AR.R(0)")
o=T(0)6 (2.150)
Following addition theorem A¢ = A¢| + A@», adding two angular velocity follows:
O =0+ 0, (2.151)

Also addition theorem can be proven as follow in Figure 2.24. Assume that @, is spin that convert
basis % (with basis E;) to basis #* (with basis e;), and spin @, convert basis %* to basis Z*(with
basis b;), such that:

b; = RYRYE; (2.152)
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Figure 2.24

or
bi=R’RY E,=R\RE; —E;=R;'R,"b (2.153)
Then the time derivative of basis b; will be:

b; = (RiR;+RR,)E;
= (RiR; +RiR;)R' R, "b; (2.154)
_ (RlRlT +R1R§R§TR1T) b,

Using the following expressions for angular velocity:
@, =RR,, @, = R,R;" (2.155)

where @ is the angular velocity of basis %* with respect to % resolved in basis . While @3 is
angular velocity of basis 2" with respect to basis Z* and resolved in basis %*. Resolving @, in
basis # results in:

@ =R @>R," (2.156)
Equation 2.154 will be:
b= (@ +Ri@R,")b; = (@ + @) b; = Ob; (2.157)
And the equivalent angular velocity is:
0=0,+0; (2.158)
Note that

R:R,) # o, (2.159)
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As it is expressed in terms of basis (%) different from the basis the angular velocity is supposed to
be measured with respect to (%*), so it is not considered as an angular velocity as follows:

. J(R\R;RT
RR,T = (IaIZI)RlRETRIT (2.160)
- (R1R§R1T +RIRRT +R1R;R1T) RR;"RT 2.161)
=RRT +RIRR;RT + R\RSR R R;TRT (2.162)
=@, +® —R,® R} (2.163)
—@+(1-Ry) & (2.164)

As
RRR|RRRT =R\ R;RTR R R\R;'RT = (R\R,RT) R\R] <R1R§TR1T) (2.165)
— _R.@R! (2.166)
Where
RR = RR") =& =&, (2.167)
X
x_;A 3‘
A Y
a)1=0.5f h=(0,2,3)
>
>
-
/6 X2 o
X2
X7
Figure 2.25 Figure 2.26

= Example 2.7 The plate rotates about the x3 axis at a constant rate @; = 0.5 rad /s without
slipping on the horizontal plan pictured in Figure 2.25. Evaluate the @.

Plate rotation is:
O =0;+0; =—0.5e3+cos(n/6) x |@;| *ex + sin(w/6) * |@2] * e3 (2.168)

As axis x; represents the instantaneous axis of zero velocity, such that:

V=@xer=0= (O.S—Sin (g) >(<|a)2|)e3—> @] = 1 (2.169)
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From Equation 2.168, we get:

3 3
D=0 +0; = {|0)2|82 = {82 (2.170)

= Example 2.8 A disk attached to a shaft spinning with angular velocity @, = 2 rad /s shown
in Figure 2.26 attached through an internal hinge to another shaft rotating with angular velocity
®@; = 1 rad/s, calculate the velocity of point b.

O =0,+0;=(0,V3,2) (2.171)
The velocity of point b is defined through:
V=@ Xr (2.172)

Where vector r is a position vector from point a to point b defined as r = (0,2,2), so the resulting
velocity will be:

v=wxr=(2V3—4)e (2.173)

2.2 Applications in structural analysis

2.2.1 Finite rotation of a rigid joint in framework

Assume a rigid joint connecting some structural members through rigid links with negligible length
as shown in Figure 2.27. Each member i has its local axes formed through rotation transformation
R’ of the global axes such that:

Ei=R'e; (2.174)

Where E} is the local basis of element i in the direction /, while e; represents the global axis. If the
connecting joint is rotated through spatial rotation 0 resolved in global axes as:

6], =[ 61 6 65]" (2.175)

Because of the rigid links, this will result in a rotation of each element with rotation 0’ resolved in

the member local axes (61) as follows:
6" =[6's, =R"[6],, (2.176)

This rotation leads to a motion of each material point on the member cross section, such that
if the position of a point P relative to the beam centroid resolved in the member local bases is

[X];, = [0,X2,X3]" as shown in Figure 2.28, it will be R(§i)X , so the displacement u of the material
point (X2,X3) resolved in the local axes of the member will be:

u=x—X=R®)-1)X (2.177)

For relatively small rotation and using Equation 2.66, the displacement will be:

= 1S S
u= (9 —1—50 0 )X (2.178)
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With [X];, = [0,X>,X3]" and [6"],, = [6,, 6y, 6,], the displacement components resolved in the
member local axes are:

0 -6 6 1| (6y2 + ezz) (Gxey) (6,8;) 0

[u],,(l o o ex]+[ YRISLIND i SR D[X]
6, 6 0 | 2| (66) (6,6.)  —(62+62) X

(2.179)
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~ 02
= L 7
Figure 2.30
Figure 2.29
2.2.2 Curvature of two dimensional beams
For a two dimensional curve with a radius of curvature R, its curvature K is defined as

1 d6

K=—=— 2.180
R ds ( )

Where s is the arc length along the curve. Assume an Euler-Bernoulli in plane curved beams shown
in Figure 2.29 with radius of curvature R, so any fiber located in distance y away from its center-line
is stretched along the arc length by strain &,(y) defined as:

_ length change — A(ds) —yd6

& (y) —yK (2.181)

~ original length  ds ds
The above relation relates the strain induced in beam element with its curvature k which ds is the
undeformed or initial arc length. The beam is subjected to uniform axial strain across its cross
section €&, as shown in Figure 2.31 defined as

————— dSI ———————————
Nata—F- -~

i ds? -—-—————-

Figure 2.31
Total length (ds®) _/
Figure 2.32
ds' —ds°
Then followed by curvature in Figure 2.32 with total strain of:
ds*—ds® ds'—ds® ds*—ds' do
€= = =& —Y——F =& YK 2.183
ds® ds® + ds® a” Vg0 — Y ( )
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The third equality comes from:
ds®> —ds' = (R—y)d® —RdO = —yd6 (2.184)

As differential arc length (ds) is related to differential coordinates increment dx and dy through:

dy\? 2
ds:\/cm:dx\/l—l—(ch) = dx\/1+(y) (2.185)

(") means here differentiating with dx.

_ dy - dzy o
0= = do = T dx = 'dx (2.186)
1
oo 40 _ 40 Y (2.187)

ds dX\/l—i— <%)2 ) \/1+(y’)2

First order analysis assumes that the dominator of the upper equation equals to unity which results
in:

! (2.188)

= Example 2.9 Assume a beam shown in Figure 2.30 with length L directed along axis e; with
end rotations 6, 6,. A smooth curve can be formed from the end boundary conditions:

y(0) = 0;y(L) = 0;y'(0) = 613y (L) = 6, (2.189)
The curve will be a polynomial of third degree as follows:
y=ax’ +bx*+cx+d (2.190)

Solving for 4 unknowns a to d, we get the following:

0, +6,)\ ; 200+ 6\ ,
= — 2.191
y ( 2 )x ( 7 )x + 01x (2.191)
0,+6\ , 20, + 6,
y’=3( 12 )x —2( i3 )x+91 (2.192)

From Equation 2.188

0,+ 6, 20+ 6, 4  6x 2  6x
6 (0582 (B0) (4,80 (2e8)e, iy

Curvature at beam mid point will be:

L\ (66
K<2>—( - ) (2.194)
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Even if we assumed a constant curvature along the element, so the rotation y’ (integration of
curvature) would be a first-order polynomial as follow:

y =ax+b (2.195)
Applying only the rotational boundary conditions at ends in Equation 2.189:
Y (0) =815y (L) = 6 (2.196)

We conclude that

0,—06
y’=< — 2)x+61 (2.197)
So the assumed constant curvature will be:
6,—6
K:y":( lL 2) (2.198)

So for a constant curvature along the member, it can be evaluated from the changed in beam
orientations at ends with beam length L as follows:

YAN?)
K= — (2.199)
L
[ |
For a three dimensional beam, the curvature will be:
A¢
K= 2.200
7 ( )
Or generally
d
B (2.201)
ds

A¢ is variation in non-additive rotation (see Equation 2.86). Also curvature K, in this case is
vector. For more details, see subsection 2.2.4

2.2.3 Effect of beam bowing on axial strain

s———— Ly-——————- u—o

1

Ly A A |

// :

01 o Lr |
,»""_——_ TS 01 // :
- ————————— _ S _/_2_5 i
02 A . H

o L-———————————— - 02
A L-——— i
Figure 2.33
Figure 2.34

As shown in Figure 2.33, a straight beam is initially oriented along axis e; and subjected to to
ends rotation 6; and 6,, the current beam length Ly compared to its projection on axis e is defined
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as:

L
L = /ds = / V1+4y?dx (2.202)
0

Using Equation 2.192, and solving the integration results in:

2 2
L =L (1 4200 23(2) o 92) (2.203)

If a two dimensional beam with initial length Ly shown in Figure 2.34 is subjected to axial
displacement u, such that the axial strain &, will be:

u
g, = — 2.204
‘T Lo (2.204)
Then, its ends are subjected rotations 6; and 6,. From Equation 2.203, the bowing created in the
beam induces axial strain through beam elongation formed by end rotations as follows:
_ change in beam length L, — Ly

a =

original length L
u L()+I/t 2912+2922—9192
= 2.2
() @29
_ 207 4265 — 6,6,
Ly 30

For second order analysis, we can consider (L“L—JOF”) equals to unity. The total strain on the beam

section due to axial strain and curvature will be:

207 +267 — 6,6 4 6 2 6
e(x,y)=¢€,+€p(x,y) =€, + i 25 12—[( +x>91+< +x>92]y(2.206)

30 L I2 L I2

Figure 2.36

Figure 2.35

2.2.4 Curvature of three dimensional beams with small strain and large rotations

As shown in Figure 2.35, assume a three dimensional beam with two nodal triads (or nodal frame)
at beam ends, T and U with axes [t1,%2,13], [u1,u2,us], respectively, so the first axis of each triad, ¢;
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and u;, is directed along the beam tangent, while other two axes of each triad are directed along the
principal axes of beam sections at ends. We can use another triad along the element E (generally
with first axis linking two ends of the beam, while the other two axes are defined using many
different procedures mentioned in subsection 2.2.8).

Assuming the relation between nodal triads as follows:

U=R(A))T = R(L$)=UT" (2.207)

A¢ is relatively small within beam element, so it can be approximated as follows:

—2

— A
UTT =R=1+1/¢ + 2—? (2.208)

The skew-symmetric part of the above rotation tensor will be:

R-R" — UT"-U'T
skew (R) = =ANp=——"T— (2.209)
2 2
And from Equation 2.200, curvature will be:
~ Ur'-U'T
X — 2.210
oL ( )

The above formula can be resolved in any basis. To get the global curvature, it can be resolve in
basis I = [iy,iy,i3] as follow

T _pTp1l]
K [”][”=[UT UT] 2211

K, = |K
§ 2L

While it can be resolved in local basis E to get the local curvature k; with axes [e},e;,es] (or
observed by triad E)

k=[x =E"xk, (2.212)

Where E is the rotation tensor transforming from the global basis to the element local one E. Also
the local curvature can be written in this form:

_ 09, =09, — AP,

K; 7 (2.213)
Where the local spin (non-additive) rotation related to global one via this relation:
N$,=ETA, & Ao =ET N E (2.214)

A@, is the rotation from E to T basis. Using formula in Equation 2.211 results in the global
components of this rotation as follows:

— TET _ETT (7]
Dy = [2 ] (2.215)
While the local components are:
- o T _ppT U T _ T l]
A¢la — ETA¢gaE — |:ETT'E.2E‘TE:| — |:E‘7'2”':| (2216)
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In the same manner, if A@, is the rotation from E to U basis, it follows that:

- ET _ TE 1]
[Aq;,b _ UzU] (2.217)
So the variation in rotation between the two ends A@;, = A¢;, — A¢,, will be:
Ul 1]
- [(E"U-U'E)- (E'T-T"E T —U'T ]!
NP, = ( )2 ( ) ~ [ETUZUE (2.218)

The last equality comes from the fact that U is close to T for small deformation inside the beam
element, so it follows:

UT" ~UE" +ETT (2.219)
Using Equation 2.213, the local curvature will be:

N UTT _ UTT 7] ~
kK = |E" —; E| = E"x,E (2.220)

Which is identical to the findings in Equation 2.211, so the assumed formula in Equation 2.213 for
local curvature is right.

Differential form of beam curvature

As shown in Figure 2.36, assume a differential beam ds with a nodal triad R changing along the arc
length to R+ %ds at the other end, such that T and U in the previous section are replaced with R
and R+ R'ds, respectively, where R’ is derivative of R with respect to arc length s.

. urr-uv'r
K, =— =

. 7 (RR" —RR") =R'R" (2.221)

| =

kK =E"x,E=R'RR'R=R'FR (2.222)
The second equality comes from E ~ R

Effect of nodal spin on beam curvature

As shown in Figure 2.37, a beam with initial end rotation @ and 0, is subjected to spin at ends
0@ and 8¢, such that the resulting nodal rotation at the ends will be:

R(6,+360,) =R(06¢1)R(6,) =R(5¢1)R (2.223)
Assuming for an infinitesimal beam element of length ds that R(68;) =R and R(0,2) =R+ %ds

R(82+565) =R (5¢2)R(8:) = R(5¢2) <R+ illjds> (2.224)

Before inducing the nodal spin, the initial global curvature is:

K. =RR" (2.225)
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Figure 2.37
Figure 2.38
While the final global curvature will be:
N_de T_R(92+502)—R<91+591) T T
Ko = - JR) = — R'R(59)
R(5¢>) (R+“Ras) —R(5¢1)R
_R( 02) ( +dzlSS) (001) RTR(59,)" (2.226)
_ R(5¢2)R(5¢) ~ 1

0 R(592) S RTR(561)

Where subscripts f and o refer to the old and final state, respectively, while 8¢ 1, 6@, are infinitesi-
mal change:

R(5¢)=1+5¢ (2.227)

(1450) (1-50)

— —\ dR <
Ker = 1+38¢,) —R"(1-6
Y + ( + ¢2) - < ¢1) 2%
0¢2— 09— 0920 — T~ o~y aT o~
= ¢2 ¢61ZS ¢2 ¢] +Kgo+5¢2'(g0_'(g05¢1 _5¢2Kg05¢1
Neglecting second order terms (6¢,6¢ )
54281 | o
Kor = 7¢2ds il + Kgo + 5¢2Kgo - K.g05¢1 (2.229)
The infinitesimal change in global curvature due to end nodal spins 6k, = K5 — Ko is:
 5b_5d —
5K, = % + 802Kz0 — Kgo B0, (2.230)

A similar expression to above can be deduced as follows:

K, =RR" < 5k, = SRR" +R'6R” (2.231)
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Where OR and SR’ are evaluated through:

SR= R(0+50)—R=R(5¢)R—R

— — 2.232
= (1+5¢)R—R:5¢R—>6RT:RT66T:—RT56 ( )
I % S 5¢
SR =5 ( ) == < (5R) = = (5¢R) TR+ 50 (2.233)
Subtitling in Equation 2.231 and Equation 2.233 results in
486 o~
0Ky = d—f + 09K, — K00 (2.234)

Which is identical to findings of Equation 2.230. if we assume that 8¢, ¢, are very close to each
other for an infinitesimal element

Using the identity that (@b = @b — ba), the infinitesimal change in curvature is related to induced
nodal spin through the following expression:

ds¢

0Ky = 7

+ 89K, (2.235)

The corresponding infinitesimal change in beam curvature with respect to the local axes can be
evaluated from the local curvature defined as:

K =R"K.R (2.236)
Taking the variation results in:
5K, = SRk ,R+R" 5k,R+R"k,6R (2.237)

From Equation 2.234, Equation 2.232 and the identity (RRT —=1—>RR"+RR" =0& 6RR" +RSR" = 0) ,
we can deduce the following:

5K, = SR'K,R+R" <dd§¢ + 8K, — @5&) R+RTK,6R
N

= 6R"xR+R" <d5¢>R SR"k,R—R'K,6R+R" Kk, SR (2.238)
ds
ds¢
=R"—FR
ds

Consequently, the infinitesimal change in curvature resolved in local axis (local curvature) will be:

dég
_ pT
61(] =R 7ds

(2.239)
Equation 2.235 and Equation 2.239 can be used in formulating the geometric stiftness (predictor
phase), but using them in updating curvature after each converged step results some computational
errors, as they are formulated for an infinitesimal change in rotation (spin), while the incremental
non-additive rotation at ends for each step is generally finite. Simo and Vu-Quoc proposed a method
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to update the curvature as follows:
1. Evaluate the final rotation R and its derivative with respect to arc length s

R;=R(59)R, (2.240)
R; =R (6¢)R,+R(3¢)R, (2.241)

2. Using substituting the above formulations into the global curvature expression /KZ} = %R; as
follows:

Ko = (R'(50)R,+R(59)R,) RIR(5¢)"
—R (6¢)R(5¢)" +R(5¢)R,R'R(5¢)" (2.242)
= Ky—ata + R (56) KeoR(59)"
Which results in:

Kef = Kg—add + R (89) Kgo (2.243)

Where K‘/gj;;d =R (8¢)R(8¢)" is evaluated from the incremental rotation induced in the current
step/increment. Term K,_,44 can evaluated approximately for small values for 6¢ through:

Kg-ada =T (69) 59’ (2.244)

This expression is concluded from Equation 2.86 and Equation 2.90. Substituting Equation 2.2.6
into the above equation results in:

Ky =T (6¢)5¢' +R(59) %, (2.245)

From above, we can deduce the following expression for beam global curvature:

AR =AQR(0) = Np = ARR(8)" = Ap =T (6) 10 (2.246)

Replacing the variation with time derivative results in:

R=¢R(6)=¢=RRO) =¢=T(0)0 (2.247)

While differentiating with arc length s yields:

R=¢'R(6)=¢'=RR(0) < ¢'=T(6)6 (2.248)

The beam curvature observed by beam element triad £ (local curvature) will be:

— dR

K= Rjid—sf (2.249)
Substituting Equation 2.240 into the above equation yields:

K1y =RIR(59)" (R (5¢)R, +R(5¢)R)) (2.250)

=RIR(5¢)"R (5¢)R,+RIR, (2.251)

Assuming (K;_gq0 = R(5¢)TR’ (8¢)) and using old local curvature (k;, = RYR!) results in:

Kif = RUKI_qqaRo + K1 & K1y = RIK|_qaa + Kio (2.252)
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In the same manner, using K;_.sq = T(5¢)” 8¢’ approximation for small 5@, the final local
curvature is evaluated from:

k= (T (50)R,)" 5¢'+1x, (2.253)

Equation 2.245 and Equation 2.253 can be used to update the curvature after each converged
step in nonlinear finite element analysis. Crisfield proposed an approximate update to the above
equations using the fact that §¢ is small during incremental step so 7 (5¢) can be approximated
using Equation 2.95 as follows:

6¢

T (5¢) ~ 1+%§$ ~R (2) (2.254)

Introducing a medium rotation tensor R,, = R (%‘P) R, in Equation 2.253 results in another approx-
imation for local curvature:

Kip =R, 5¢'+x, (2.255)

2.2.7 Methods of updating rotation and curvature in finite element analysis
There are two methods for updating rotation and curvature defined as follows:

1. The first method (updating on an iteration or incremental basis)
e convergence at step j with following data:

— Rotation and local curvature at Gauss points (g.p) K;; - 6?’7' and rotation at ends
] ;j and the new unbalanced force vector F.

— initial: local curvature at the start of iteration phase ko = K;; and rotation at Gauss
points and at beam ends 5" = 55'[)' &0p=0 ;j at ends - Start the iteration phase
withi=0

B iteration i
% solve F = KA to get A which includes incremental displacement and
incremental spin at element nodes /A@ then applying interpolations function
to evaluate incremental spin and its derivative with respect to arc length s at
Gauss points A@SP- and A@'SP-.
% updating spin at ends and Gauss points:

R(0i11) =R(AP)R(6:)

R(67[]) =R(A¢ " )R(67")

% update the local curvature:
Kiaer) = (T (DOS7)R(657))" £g's7 +

% Use the updated curvature to evaluate the unbalance vector force F
% Stop iteration when the solution converge or the magnitude of unbalance
force vector is less than the allowable or start new iteration with i =i+ 1
— New step curvature at Gauss points: K;j = Kj;
— New rotations at beam ends and Gauss points:

0,=6,

sl _ pgp
05" =65
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— Start a new step with j = j+ 1 and new external load.
2. The second method (updating on a step basis)
e convergence at step j with following data:
— Rotation and local curvature at Gauss points (g.p) 5%;"" - K;; and rotation at ends
6 ; and the new unbalanced force vector F.
— initial: Null spin at ends and at Gauss points ¢ =0 & (I)mc 8P = () - Start the
iteration phase with i =0
B iteration i
% solve F = KA to get /A which includes incremental displacement and
incremental spin at element nodes A@ then applying interpolation functions
to evaluate incremental spin at Gauss points A@S-7-,
% updating spin at ends and Gauss points:

R(97) = R(LG)R(9")

R(®VSP) =R(A$ &P )R($" 57)

% update local curvature:

95" T i a¢mclg P
inc tinc g.p. | = rinc gp. _ 9%iy1
Ki(i+1) = ( (¢ ) ( )) o i1 TKij where ¢ itl Js
atg.p.

% Use the updated curvature to evaluate the unbalance vector force F
% Stop iteration when the solution converge or the magnitude of unbalance
force vector is less than the allowable or start new iteration with i =i+ 1
— New step curvature at Gauss points: K;; = Kj;
— New rotations at beam ends and Gauss points:

R(8;:1) =R($!)R(8))
R(6%) =R($! 5" )R(05")

— Start a new step with j = j+ 1 and new external load.
We can use Equation 2.245 or Equation 2.255 instead of Equation 2.253 for updating curvature in
both methods.

2.2.8 Beam element triad E with axes [e;,e;,e3]

Calculating element triad E is essential step in co-rotational formulation for non-linear analysis
and evaluating natural deformations which are responsible for inducing the internal stresses. There
are various methods to evaluate this triad. However, these methods agree that the basis e; of the
element triad is pointed along the line connected beam ends. We will introduce three methods
defined as follows:

According to Crisfield(6)
As shown in Figure 2.39, assume a medium triad V with axes [v{,v2,v3] related to beam end triads
T and U as follows:

U=R(AO)T (2.256)
V= (M) T (2.257)
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Figure 2.40

Figure 2.39

Triad V does not have to be identical to the element triad E as axis v; is not necessary to be
directed along the line connecting beam two ends, so we need to apply a rotation on triad V to
transform axis v; to axis e pointed to beam ends. There are an infinite number of rotation tensors
to achieve this rotation, but we can choose the one with least angle of rotation. This transformation
is achieved through rotating about axis n orthogonal to axes v and e; as shown in Figure 2.40 with
angle 0 equal to the angle between these two axes as follows:

cos(0) =vi.e (2.258)
‘While the direction is defined as:
vy Xe; =sinOn (2.259)

So the resulting rotation tensor will be:

R=1+sinOn+(l—cosO)nn=1+v, xe;+ U;)Z)(vl xep)(v) xep) (2.260)
sin
— 1
R=1 —_— 2.261
+v1xel+1+cos(6) (vi xep)(vi xey) ( )
Then the resulting axis e, will be:
1
ey :RV2 :v2+ <v1 X81>V2+ m(l’l Xel)(VI Xel)vz (2262)

Using the following identity (a x b) x ¢ = (a.c) b — (b.c)a, we can conclude:

(Vl X 81) V) = (V1 X 81) XV = (Vl.VQ) e — (81.VQ) v =— (el.Vz) Vi (2.263)

v1.v, =0 as v and v, are orthogonal to each others

(V1 ><e1)(v1 Xel)Vz = (V1 ><e1) (V1 ><e1) XV

= — (el.v2) (V1 X el) Vi (2'264)

= —(e1.v2) (vi xe1) xv;
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Using this identity ab = ab — ba, it follows:

(V1 X 81)(V1 X 81)VQ = — (el.vz) ((V].V]) e — (el.vl) v1) =— (e1 .VQ) (81 — COS (9) v1) (2.265)

If we assumed that b; = e;.v;, for i = 2,3, we get:

e :RV2
1
:v2—b2v1+m(b2 (COS(G) vl—el)) (2.266)
b,
BRCE +cos(0) (er+v1)
In the same manner:
o=y — (e 4w) (2.267)
T  Txcos(e) ! ’
According to Yang(12)

As shown in Figure 2.41a, the projections of beam axes t,, #13 and £57,#,3 of the ends triads T';
and T, on a plane orthogonal to e; are defined using Equation 1.34 as follows:

pij=tij—(tije)el (2.268)

These projections are pictured in Figure 2.41b with unit vector defined as:

~ _ Dij

0= (2.269)
|Pij]
Then, as shown in Figure 2.41b, we will evaluate a medium vector P, and P; as follows:
Pj=Pijt+Py, J=2,3 (2.270)
In Figure 2.41c, we construct another two vectors é; and é3 defined:
&= P2+ p3 (2.271)
|p2 + P3|
o= PP (2.272)
|p3 — P2

Then rotating axes &,, &3 by an angle —m/4 about e}, such that the final element triad will be:

1

er — oX_ et 2.273
2 \ﬁ( 2 3) ( )
1
3 \ﬁ( 2 '5) ( )
According to Battini(3)

Assume a straight beam shown in Figure 2.42 with initial triad E° for the beam element and T, Tg
for the two ends. We can see that the three triad are identical for an initially straight beam and have
equal transformation tensor as follows:

E'=T1"=T) =R, (2.275)
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with axes defining the above rotation tensor as follows:
0 0,0 ,0 0 0 0 40 0 0 0 40
E° = [e}.ey.e3], T\ =[t,10,103], T3 = [13,12,1%;] (2.276)

If the nodal triads at ends are rotated via R, and Ry, the final triads of the beam ends 77, 1> will
be:

[T1] = [ti1,t12,t13) =Rg1R,, T2 = [t21,t22,223] = RpoR, (2.277)

where t;; represents the j™ axis of nodal end i. The second axis of each nodal triads ¢;, can be
evaluated through:

0 0
to=Rut,=RuR,| 1 |, tn=RptH =ReR,| 1 (2.278)
0 0
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Figure 2.42: Rotation tensor R (9T> with i = 1,2 defines the rotation of basis E to basis T;

(tij=R <§,) e;) with j =1,2,3 and defines the natural rotation deformation which is responsible
for internal stresses.

_ . T
The last equality in the above equation (9, =R,[ 0 1 0 | ) comes from the fact that ¢9,
represents the second column of the rotation tensor Ry. Defining a new vector ¢, by taking the
average of t1, and t,, as follows:

tip+in
1 =
2
Vector e can be defined from position of beam ends, but generally ¢, is not necessary pointed
normal to e;. However, we can create basis e,, such that it share the same plane with basis e; and
vector ¢, as shown in Figure 2.43. In this case basis e3 is orthogonal to this plane with direction
defined as follows:

(2.279)

t
ey = 1 X82 (2.280)
|e1 X t2|
Then basis vector e, will be:
er=ezxe; (2.281)

The formulated element basis E = [e], e, e3] will be evaluated.

Natural deformations

Evaluating the local (natural deformation) that is responsible for internal stresses requires removing
any rigid body motion (displacement or rotation) from the beam nodal displacements. As shown in
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Figure 2.43

Figure 2.44, axial displacement induced in the element can be evaluated through comparing the
beam length before and after deformation.As shown in Figure 2.42, after defining the element triad

using one of the above three methods, we can evaluate the rotation tensors R (E) that transform
SN |
element triad E to nodal triads T'; at beam ends resolved in global (local or element) basis [R <0,-)]

( [R (E)]E) as follows:

I (eﬁ)r —TiE” = Ry RoE” (2.282)
In the same manner:
®(8:)] ' RORET (2.283)

Where frame of reference I is formed by inertia basis ef shown in Figure 2.42, while the local
(element) components will be:

[R(81)], =E" (RuR,E")E = E"RuRo (2.284)
R(6,)| =E"RpR (2.285)
7(%:)];

Where frame of reference E is formed by element attached basis e; shown in Figure 2.42. Generally,

local end rotations [R (E) } . are directly responsible for beam bending stresses.

Variation in natural deformations

In this section, our goal is to evaluate the variation in natural deformations 8d; due to variation in
global displacements at element nodes 8d,, through the following equation:

[6d)] = B[5d,)] (2.286)

Where [8d;] and [6d,] are the local natural deformation and global displacements variation in
beam element, respectively. This process is done through using so-called linearization. This step is
essential in deducing the geometric stiffness matrix in co-rotational formulation of beam element. In
the next two subsections, we will illustrate how to evaluate B matrix for two and three dimensional
beams.
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Figure 2.44: Natural deformation include axial displacement % and local end rotations 61, 6,

Two dimensional beam

As shown in Figure 2.44, the deformed beam possess local (natural) deformations d;, and global

displacement d, defined as follows:
T
dg: [ uir wi 91 ur wi 92 ]
_ = 1T
dl = [ u 91 92 ]

Relation between d; and d, can be defined as follows:
The change in beam length comes from:

u=1,—1I

And the local natural rotation is defined as:

=0—0o fori=1,2
=B—Fo

6;
o

Where

l() = \/(X2 —X1)2+ (Z2 —21)2

Ih = \/(x2+142—x1 _M1)2+(Z2+W2_Zl —w1)2 = \/Ax2+Az2

(2.287)

(2.288)

(2.289)

(2.290)
(2.291)

(2.292)

(2.293)
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Where Ax=xy+uy—x;—ujand Az =20 +wyr—z1 —
Assuming the following:

s=sinff = %, c=cosf} = %, so =sinf, = Aljo, co=cosfy = Alxo (2.294)
We get:

sina = sin(f — Bo) = sin(B) cos(Boy) — cos(B) sin(fy) = s co— ¢ o (2.295)
In the same manner

CosSO =ccy—c S (2.296)

Relation between the variation or increment in local deformationdd; and global displacement 8d, is defined as:

Sdy=1[ Su; Swi 56, Su; Sw, 86, | (2.297)

5d,=[ 5u 56, 86, (2.298)

From Equation 2.292 and Equation 2.293, we can evaluate the variation in the axial displacement u
as follows:

Su=6l,—8ly=5I, (2.299)

The variation in the initial length &/ is null.
As the change in beam length or axial deformation depends only on ends displacement, it follows

dl, dl, 8 ol,
ol, = S+ =28 ow 2.300
9 O 3,0 5 O T G, (2.300)
Where:
gl"z Lot —x —u)x 1 - _le:—c (2.301)
“ \/(xz—l-uz—xl—u1)2+(Zz+W2—Z1—W1)2 "
In the same manner
al,  Ax
2.302
8u2 1, = ( )
al, =Nz
e 2.303
8w1 ln s ( )
dl, /\z
e R 2.304
8wz ln S ( )
So the resulting variation in beam length will be:
Ol, = —c Ouj+c Ouy —s Swi+sdwy =c 6 (Dx) +56 (A7) (2.305)

Where 0 (Ax) = Suy — Suy, 6 (Az) = Swy — dwy, so the variation in beam length or axial
deformation will be related to the variation in the global displacement dd, as follows:

bu=8l,=[ - —s 0 ¢ s 0]éd, (2.306)
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Also we need to evaluate the variation in beam orientation 3. We find that it is related to the
increments 6 (Ax) and 8 (Az) by differentiating equation sin § = % as follows:

5 (mﬁ - fz) = con(p) 6 = 242 - o (2307)
_ li(a(gz) 5 e 8 (Ax) +58 (A7) (2.308)
_ ll (6(22) (1—52) —sc 8 () (2:309)
- ll (28 (A7) — sc 8 (Ax)) (2310)

n

The spin of the beam element orientation 3 will be:

5ﬁ:ll(c5(Az)—s6(Ax)) 2311)
:li[s —c 0 —s ¢ 0] éd, (2.312)

From above equation, the infinitesimal change in beam orientation 8 is related directly to the
variation in position of nodal coordinates 6 (Ax) = Suz — duy, 6 (Az) = dwy — dwy, while the
variation in local rotations at ends results from:

560, =860,—8a=256,—(8f—38Py) =86,— 8P fori=1,2 (2.313)
50, =56,—58 (2.314)
:;[—s c 1 s —c 0] édd, (2.315)
(2.316)

Similarly
%:592—5/3:%[—s c 0 s —c 1]éd, (2.317)

So the relation between variation in local deformations and global displacements will be:
0d, =B dd, (2.318)

Where matrix B is defined as:

—c -s 0 ¢ S 0 b,
B=| —s/l, ¢/l, 1 s/l, —c/l, 0 |=|[0 0 1 0 0 0]-b, (2.319)
—s/ly ¢c/ly O s/l, —c/l, 1 [00 000 1]-b
Where
bi=[-c —s 0 ¢ s 0]/l
b, = —c 0 — 0]/
L s e 0}/ (2.320)

5B =b, 5d,
5, =b,5d,
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Three dimensional beam
Relation between d; and d, is defined as:

d;=[d 0, dy 0, withsize 12x1 (2.321)

Where the components of global displacement is defined as:

di=[uw vi w | (2.322)
d, = [ U Vo wp ] (2.323)
6,=[06/ 0 o]] (2.324)
6,=[ 6} 67 6] (2.325)

while the local (natural) deformation is:

di=[a 0, 0,] withsize7x1 (2.326)
The local axial deformation expresses the beam change in length as follows:

a=1,—1 (2.327)

Where the initial and final length are defined as:

lo = \/(Xz —x1)"+ (=) + (2 —a)’ (2.328)

= \/(Xz+uz—x1 —u) 4+ (n+va—yi =) (o +twr—z —wi) = \/szJrAszrAzz
(2.329)

Where Ax = x, +up —x1 —uy, Ay=yy+vy—y;—vy and Az =75 +wy — z; — w;. While the local
rotation angles, 8; observed from element triad E are defined from Equation 2.284 as follows:

R(8:) =E"RyRo <+ R, =R(8;) fori=1,2 (2.330)

Assume a unit vector e; along element axis with components resolved in the global frame of

. . . T .
reference I with basis elig shown in Figure 2.42 as [el]l = [ re rn o n ] which represents the first
column of element rotation tensor E resolved in the global frame as follows:

1
el =E| 0O (2.331)
0

In the same manner as in Equation 2.305

B
8L, =11 8 (Dx) +18 (DY) +138 (Lz) =[e)]” | §(Ay) (2.332)
)
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(2.333)

Su=[ —lixs lixs | EI[0d,)' =rE] [8d,] (2.334)

Where 6 (Ax) = dup — Suy, 6 (Ay) = 0vy — 8vy, 6 (Az) = Swyp — dwy, r= [ —1ix6 lixe ],
I

lixe=[1 0 0 0 0 0], and [E4];= with size 12 x 12

0 0 0 E
If the beam is displaced 5a’112, 5d122 (displacement in the direction of current element axis e;),
22 s 12
the element triad E exhibits a spin rotation via a rotation about axis e3 by angle = M, so the

spin vector of the element will be:

Figure 2.45: The displacement shown ar parallel to the element triads e, and e3

§d?? — 6d}2] !
(2.335)

8051% ~ 0.0,

[6¢e]E is the spin of element resolved in basis E. In the same way, if the displacement in e3
direction through 8d}?, 8d7°, the spin will be:

§d3—8da3 1"
0 (2.336)

mE _
B0r1F = 0,24

For local nodal spin 561“, 56121, about axis e; contributes greatly to element spin around axis e;.

Soll 1 562! r
[69.']" = [‘P’ er # 70,0] (2.337)
Using addition theorem for spin [8¢,]F = 21'3:1 [80/1E
6¢]1|+8¢12]
2
(69 )F = | 454" (2.338)

ln
8d2—5d}?
In
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0 0 0 1200 0 0 0 1/2 0 0
=0 o0 1/, 0 00 0 0 —1/L, 0 0 0 [[5d]F

0 —1/L, 0 0 00 0 1/L, 0 0 00
(2.339)

Where [Sdg]E defines the global nodal displacement but resolved im the element triad E. From
above, we can define the following expression:

[60.)F =A[d,]" (2.340)

Where [6d g]E is defined as follows:

(6d,F = [ 8d, ¢, odr 50, |° (2.341)
— [ Bdl“ 6d112 6d113 5¢lll 5¢112 5¢ll3 5d121 6d122 6d123 6¢l21 5¢122 5¢[23 ]
(2.342)

Where Sd;j defines the displacement of beam end i in direction j parallel to element basis e; as
shown in Figure 2.45a and Figure 2.45b, while rotation vector with components resolved in the
element basis (5¢;', 5¢;%,8¢;*) defines the end i orientation. Term A is equal to:

0 0 0 /200 0 0 0 1/2 0 0
A=| 0 o 1/, 0 00 O O —1/L, 0 0 0 (2.343)
0 —1/L, 0 0 00 0 1/L, O 0 00

But the components of the global displacement resolved in element frame of reference E ([6d g]E )
are related to these resolved in the global frame I ([6d g]l) through the transformation rule defined
as follows:

8d,]F = E} [5d,)! (2.344)

Using addition theorem, the nodal spin measured from the element triad is equal to the nodal spin
measured from the global triad minus element triad spin measured from the global triad as follows:

8¢;=05¢;—5¢. (2.345)

This spin can be resolved in any basis, such that if we choose the local element basis E, the spin of
the first nodal beam measured from element triad 6 is defined as:

56:])" = [50.F — [50.]F (2.346)
=[ 0343 1343 03x3 0343 | [5dg]E _A[Sdg]E (2.347)
=P, [6d,]F (2.348)
= P\E][6d,) (2.349)

Where P matrix is defined as:
Pi=]0s53 133 03,3 033 |—A (2.350)
and [8¢,])F can be defined as:

[6¢.)F =A[6d,]F =AE![5d,) (2.351)
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‘Where

1 0
13.3=1] 0 1
00

In the same manner:

- o O
oS O O
S O O
S o O

o

(562)° = Po[5d,JF = P,E} [5d,)!

|

With P, defined as:
Py=[033 033 033 133 |—A

We get from above that

B=PE!
with
(5d])=[ 67 5, o, | withsize7x 1
[Sdg] = [ 5(11 5¢1 5(12 6¢2 ] with size 12 x 1

~

=

v v

(2.352)

(2.353)

(2.354)

(2.355)

(2.356)

(2.357)

(2.358)
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3.1

[3. Infroduction in Continuum Mechanics

Description of motion

Material can be described using two scale; microscopic and macroscopic scale. Microscopic scale
considers that the material is discontinuous and takes into account the gap between the particles
and the sliding of particles relative to each other. Continuum mechanics study the material at
macroscopic level in which it is assumed that the material is continuous with no gaps, and the body
completely fills the space. Also it studies the macroscopic geometric change undergone on the
body under external loadings or kinematics of the body. This loading yields a geometric change
and internal stresses, forcing the body to occupy continuous sequences of geometric regions. Body
motion includes two types of motion; deformation and rigid body motion. Rigid body motion
neither changes body shape nor contributes to internal stresses, while the deformation (change
in the distance between any two particles attached on the body) is responsible for stresses. First
we shall introduce some definition used commonly in continuum mechanics like configuration,
material and spatial descriptions, then we will move to deformation gradient and how to separate
rigid body motion out of the body motion. After that we will give different measures of strains and
stresses followed by introducing an objective stress rate for nonlinear finite element.

Any continuum medium is formed by an infinite number of particles, each one occupies a
particular position in space during its movement with time. Every particle attached to the body, we
are interested in, is called material point, while any position in space, constant with time, is called
spatial point. As a result, the location of material points changes with body motion, whereas spatial
points have fixed position in space. As shown in Figure 3.1a, if we focus on a particle moving
in a river, we find that it occupies different spatial positions with time, but if we are observing a
particular position as shown in Figure 3.1b, we will record many material particles passing this
spatial point ith time.

Also we need to introduce another definition called configuration C; at time ¢ which is defined
as a set of positions occupied by particles of the body or the region occupied by the body in space
at this time. As illustrated in Figure 3.2, anybody has a different configuration each time. The
initial configuration C at time (# = 0) is called reference or known configuration. While the current
or deformed configuration C; defines the region occupied by the body at the current time 7. As



100 Chapter 3. Introduction in Continuum Mechanics

/ = -
/ -1 /j,—’

Tracking the same > _
spatial position at NS
different configuration Y — \

Spatial Description

Tracking the same ~><_
material points at
different configuration

/

X

L
'
'

(a) (b)
Figure 3.1

schematically shown in Figure 3.3, the position vector of a particular particle at the reference
configuration is X with components [X},X>, X3] referred to the spatial frame. This initial position
X is called the material coordinates of the particle of label X which is a fixed property for the
particle and does not change with time. The position of material points of label X in the current
configuration at time ¢ is called spatial position x with components [x],x7,x3] referred to the spatial
frame, such that it will be a function of material position of particle label X and time ¢ as follows:

. . Current
time tll;’le tl;ﬂe C conf.
Z() ! 2 Initial CO - = !
- RS T w Current conf.

Initial conf.

conf.
e Ct . ClZ

Ct()
Figure 3.2 .
& Figure 3.3

x=x(X,t)=X+u 3.1

The above equation is called the canonical form of the equation of motion. x(X,¢) defines the
current position of a particle point at time ¢ with initial position X, while u refers to the displacement
displaced by the material point X from the initial configuration to the current one.

The mechanical properties of the bodies are defined using two descriptions, material and spatial
description. If we are concerned with properties of a particle moving with time, we shall use the
material or Lagrangian description, but if we study the properties of particles passing particular
position in space, we can use the spatial or Eulerian description. For example shown in Figure 3.4a
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when testing a composite beam, we attach strain gauges at some points and record strain readings
with loading. In this case, the description used in tracking the properties of these material points
with time is Lagrangian description which is more suitable for studying solids, while an example of
Eulerian description is installing velocity readers (velocity-meter) in some fixed positions in fluid
channel to record its velocity with time as shown in Figure 3.4b. It is hard to track the motion of
fluid particles as the case of Lagrangian description, so the better choice for fluid description is to
implement Eulerian description. The general Lagrangian description for property ® is defined as:

:
I
P Hine ~ |\ I
I
vzza 0;
1
1 |
=t A
T 1
B Siain Gauge fixed | 7> :
at material point i . “ L’
P A, |
! — e !
L C, |
' i
I
i
I
Strain Gauge fived / L ~ M
at material point Lo — !
[ — !
L C, |
(a) Material description ' :
(b) Spatial description
Figure 3.4
b= <I>(X,t) 3.2)

Which ®(X,¢) is a function of the initial position of X and the current time ¢ e.g. the Lagrangian
description of position vector x and strain € of a material point at time ¢ with initial position X is
given by:

x=x(X,1), e=¢€e(X,r) (3.3)
Whereas the general Eulerian description is defined as:

D = O(x,1) 34
Which ®(x,7) is a function of the spatial position x recorded at it the property ® and the time of
recording ¢. For example, the Eulerian description of particle velocity at spatial position x and time

t is given by:

v=v(x,t) (3.5)
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Time derivative

Time derivative of a property with a material description is defined as a time rate of change of a
particular property as follows:

d®(X 1) _ dD(X,t)

dt ot (3.6)

In the above expression, we equalize the total derivative dq)gt(") and partial derivative aq>§)f7;) of the
property & as the time derivative of property ® tracks the same particle of label X, so it depends
only on time, whereas the total time derivative of a property descried using a spatial description is

given by:
dd(x,t)  IP(x,1) dd(x,t) ox

dt ot ox ot
N—— N —

Local derivative  Convective derivative

(3.7)

As the total derivative tracks the change in particle property with time, it includes two parts for
spatial description; local derivative % defined as the rate of change of the property measured at
a fixed spatial position with time, and convective derivative, which compensates for the effect of

particles motion at this fixed position. The convective derivative part is defined as follows:

0P(x,1) dx;  JdPIx;  IPIx; IPIx3

ox 9t ox 9t oo Tom o (3-8)
oP(x,t) dx
P E =Vodvy (3.9)

Where v defines the velocity of the particle passing the spatial position x and V& is the
gradient of ®. The above expression of time derivative does not need the current position function
x =x(X,r) but the velocity of the particle and gradient of the property V& at particular position
x.

m Example 3.1 Let us consider a steady flow through tapered pipe shown in Figure 3.5, and we
want to evaluate the time derivative of particles velocity with spatial description v(x,z). As the
discharge for the steady flow is constant, the velocity recorded at any spot shall be constant with
time, but if we track a particle velocity through its motion in the pipe, it increases with time due
to pipe contraction. Applying the above expression, we find that the local derivative vanishes as
the velocity do not change for the same spatial point for steady flow, while the convective part
results in (V®.v = Vv.v) which makes up for the increasing velocity of the particle with time. =

Also we will states two definitions for volume, material volume and spatial (control) volume. The
material volume generally expresses the volume of the body occupying series of configuration.
The material volume has a constant mass and a varied shape or space occupation with time, while
control volume has a constant shape and position with time, so the particles is expected to move in
and out of it.

Deformation gradient

Let us assume a body shown in Figure 3.6 with undeformed configuration Cy is gradually displaced
to the current configuration C; under the application of external loads body. Through this displace-
ment, the body undergoes two different types of motion; stretch (deformation) and rigid body
motion. In rigid body motion, the distance between any two particles does not change, such that
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Figure 3.6: Material description

all the material particles undergo the same linear and angular displacement. Assume two arbitrary
particles, P and Q embedded in the body, infinitesimally close to each other and spaced by vector
dX in the undeformed configuration. After deformation, line PQ translates to line P"Q", such that
point P with material position X relative to global axes is translated through displacement u to point
P with new position vector x defined as follows:

xX,t)=X+uX,t) (3.10)

An infinitesimal vector dX is transformed to its deformed state dx through what is called the
deformation gradient F' such that the components of the new deformed vector dx can be evaluated
through:

ox1 ox1 o0x1
dxi = =—dX| + —dXo + —dX
X1 X 1+ 9%, 2+ X 3
0x> o0xy Ix;
dxy = —dX; + —dXo + —dX 3.11
X2 X, 1+ A >+ ox; % (3.11)
aX3 8X3 aX3
= —dX|+ =—dXo + —dX
90 = 5x, T G e T x4

Where dx; and dX; are the components of vector dx and dX for i = 1,2, 3. Writing these components
in matrix form yields:

dxy dx dxp

dx ) e dX;

X X X
dv, | =| 5% 5% 95 || d% | »dx=FdX (3.12)
d. X3 dx; dx; dx3 dX3

JX; X, X3

Deformation gradient F provides a mapping from the reference configuration Cj to the current
configuration C;, so it can be written in this form ((F). Also it provides a complete description
of the displacement (excluding translations) which includes deformation and rigid body rotation.
Using Equation 3.10, deformation gradient takes many forms as follows:

P) P)
F:VOx:—x:1+V,,u:1+£ (3.13)
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which Nabla operator V,, = % operates on the initial configuration and V ,u is the displacement
gradient. For infinitesimal vectors dX and dx with components defined respectively with respect to
the initial or material E; and final or spatial frame of reference e; as dX = dX;E; and dx = dxe;,
the index notation of the above equation will be:

F =Fje,QF; 3.14)

So the deformation gradient is called a two-point tensor as it maps between two different config-
urations, each one defined with respect to a particular frame of reference. The components of
deformation gradient will be as follows:

ox;
Fj=—t=xi;=uj;+6 3.15
1= 3%, Xij = uij+ Oy (3.15)
Where u; ; is defined as g)‘g. While the inverse of deformation gradient is defined as:
12).4
F'="—" (3.16)
ox
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m Example 3.2 Rigid body translation shown in Figure 3.7a, the deformation gradient F will
be:

F=1
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Finite rotation shown in Figure 3.7b

cosf® —sinf O
[F]=[R]=| sin@ cos® O
0 0 1

Where R is a rotation matrix.
Pure stretching in Figure 3.7c, the deformation gradient is evaluated as follows:

2 0
x=2X, y=15¢¥ - [F]l=|0 15 0 (3.17)
0 0 1

Shear with rotation in Figure 3.7d, it follows from the figure that two dimensional deforma-
tion gradient will be:

X=X+, y=Y — [F]:[(l) 71’] (3.18)
Pure shear in Figure 3.7e, it follows that:

c=x+1v, y=Ixiv 5 [F= [ o.lsy 0'157] (3.19)
The un-symmetry of deformation gradient indicates that body motion contains rigid body
rotation as shown in Figure 3.7b and Figure 3.7d. Off-diagonal elements in deformation gradient
matrix reflect the existence of shear deformation in Figure 3.7d and Figure 3.7e which result
from change of the angle between two perpendicular planes initially oriented along material
frame E;. n

3.2.1 Volume and area change

Assume an infinitesimal cubic with dimension shown in Figure 3.8 subjected to deformation
gradient F. Assuming the following expressions:

dx} dx} ax; dx} dxi dx3
H= | dX] dX} dX; |h=| dx} dx3 dx (3.20)
dXi dxi dxj dx} dx3 dx3

Where dx{ are components of vector dx; resolved in the global bases e;. These above matrices are
related through deformation gradient as follows:

h=HF" — det(h) = det(HF") = det(H)det(F) (3.21)
Evaluating the volume of the cube before and after deformation dVy, dV; as follows:
dxl dxi dx}
dV =dx).(dxy x dx3) =det | | dx} dx5 dx3
dx% dx% dxg
=det(h) = det(F)det(H) = det(F)[dX .(dX, x dX3)] = JdV
(3.22)

Where J is the determinant of the deformation gradient. Some formulation can be proved as follows:

dx;.(dxy x dx3) = dX1FT(FdX, x FdX3)' =T FT JF T (dX, x dX3) =J (dX,.(dX> x dX3))
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(3.23)

Which is identical to the first expression. Also infinitesimal areas before and after deformation are
related as follows

dv =JdV — dx,.da = JdX,.dA
dX,"F"da = JdX," dA
da.dX; = (JF~"dA) .dX (3.29)
da=JFTdA
nda =JF~TNdA

Where N, n are unit vectors normal to the areas dA, da, respectively. This formula is called Nanson’s
formula.

Polar decomposition

As stated before, the stretch is responsible for stresses, while rigid body rotation is not, such that if
we need to measure the stresses, we shall first remove rigid body rotation part out of the deformation
gradient to keep only the part responsible for stresses. As schematically shown in Figure 3.9, a
body is subjected to pure deformation, such that an infinitesimal line dX transforms to dx; through
what is called stretch tensor U and then the body is subjected to a rotation tensor R to yield finally
dx defined as follows:

dx; =UdX — dx = Rdx; = RUdX (3.25)
So the final deformation gradient will be defined as:
F =RU (3.20)

As rotation tensor R does not contribute in body stress, the stretch tensor U is a symmetric tensor
and responsible for the deformation and can be considered as a strain measure to evaluate body
stresses. Stretch tensor can be evaluated as follows:

FTF=U"R"RU =U"U =U? (3.27)
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For example shown in Figure 3.10, if we have a rectangular block undergoing a pure stretch in e
and e, directions, then followed by a rotation with angle /3, the stretch and rotation tensors can
be given by:

ezA ezA ’C/\
R /’/ )

”
Ve
/__\ 7

1 PR ” nj.?
H |
] T >, * 1 B >,
a b o
Figure 3.10
U] = 2 0 R] = cosm/3 —sinm/3 (3.28)
10 05’ ~ | sint/3 cosm/3 ’
So the resulting deformation gradient will be:
2C —0.5S8 .
[F]=[RU]= [ S 0.5C ] , where S =sinm/3, C =cosm/3 (3.29)

We can evaluate the deformation gradient in a different way by tracking the coordinates of the new
rectangular block points after deformation and comparing them with its initial positions as follows:

If the coordinate of points » and d are (X,0) and (0,Y), respectively, before deformation
and reached to b = (2CX,28X) and & = (—0.55Y,0.5CY), any general point like point ¢ with
coordinates (X,Y) transforms to point ¢" as follows:

¢=b+d =(2CX —0.55Y,25SX +0.5CY) or x =2CX — 0.58Y and y =2SX+0.5CY (3.30)
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8x,< o 2C —0.58
[Fly = [axj] - [ 2§ 0.5C ] (3.3D

Deformation gradient can be evaluated for two dimensional cases, whereas general three dimen-
sional case needs some effort to perform polar decomposition in extracting stretch tensor U from
deformation gradient F.

= Example 3.3 Assume the deformation gradient F as follows:

0.415 —-0.894 —0.208
[F]= | 1.009 0.684 0.004 (3.32)
-0.1 0.18 1.165

we can evaluate FTF as follows

12 03 —02
FTFl=[U]P=| 03 13 04 (3.33)
—02 04 14

We can extract U from U? through spectral decomposition as follows:
[FTF) =ALAT (3.34)

Which A, A; are the Eigen vectors matrix and Eigen values of matrix F7 F evaluated as follows:

A 0 0 069 0 0

A=|0 % 0|=| 0 145 0 (3.35)
0 0 2 0 0 176
058 0.81 —0.12

[A]=| 063 035 —0.7 (3.36)
| —0.52 —0.48 —0.71

So U is defined [U] = [A] | A>*] [A]T as follows:

-0.58 0.81 —0.12 ] [ +/0.69 0 0 —-0.58 0.81 —0.12
U= 063 035 -0.7 0 1.45 0 0.63 035 0.7
-052 -048 —-0.71 | | O 0 V1.76 —-0.52 -048 —-0.71

=|( 0.14 1.12 0.18

[ 1.08 0.14 0.1]

| —0.1 0.18 1.16
(3.37)
Then the rotation matrix R will be:
R=FU"! (3.38)
v -] 5 |ar 3:39)
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~0.58 081 —0.127[1/08 0 0 —0.58 0.81 —0.12
U] '=| 063 035 -—07 0 1/12 0 063 035 —0.7
—0.52 —048 —0.71 || 0 0 1/133 || —052 —0.48 —0.71
[ 0.954 —0.141 0.105
=| —0.141 094 —0.159
| 0105 —0.159 0.892
(3.40)
[ 0415 —0.894 —0.208 0.954 —0.141 0.105
[R]=[F][U]"'=| 1.009 0.684 0.004 —0.141 094 —0.159
| —01 018  1.165 0.105 —0.159  0.892
[ 05 —0.866 0
=086 05 0
|0 0 1
(3.41)

From above calculation, using stretch tensor U as a strain measure can be tedious and time-wasting,
so we will mention another strain measures in the following section.

Strain measure

As stated before, deformation gradient cannot be used as a strain measure as it includes rigid body
rotation, while stretch tensor U can be used as a strain measure, but it requires some effort to extract.
However, we can measure the strain from the change in the length between two infinitesimally-
spaced points. Let us assume infinitesimal line of length ds in the deformation configuration with
initial length dS at the reference configuration. The length square of a vector can be evaluated from
the dot product of the vector with itself as follows:

ds* = dx.dx = dx"dx = (FdX)"FdX = dX" (F'F)dX = dX"CaX (3.42)

where

C=F'F=U"R'RU =U"U =U? (3.43)
Where C is called left Cauchy-Green tensor. It depends on the stretch tensor U, and consequently
excludes rigid body rotation from body motion and can be used as a strain measure. However, it
yields identity matrix 1 when ds and dS are identical (no strain case), so the appropriate strain
measure can be evaluated from the length change defined as follows:

ds® —dS? = dx.dx —dX .dX = dX"CdX —dX"dX = dX" (C—1)dX (3.44)
=2dX"EdX = 2dX .E.dX (3.45)

1
E=3 (FTF-1) (3.46)

Where E is a symmetric tensor called Green-Lagrange strain. It can be evaluated in index notation
as follows:

1
E=E E,;QE; where E;j= 5 (Fm]FmJ — 6]]) (3.47)
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Where E; represent vector bases of the material frame at the initial configuration for / = 1,2, 3.
Using Equation 3.15 yields:

1 1
Eij = 5 (8 +uis) (8j+ e j) = 8ij) = 5 (1 + i+ vt ) (3.48)
Or in tensor notation:
1
E=2 (Vou+t Vou' +V,u'V,u) (3.49)

With components defined as:

1
2 2 2
Evp =i+ 5 (ui) g +u3 )

2
1
Ep=ups+ 3 (”%72 + ”%,2 + ”%,2)
1
E3z; =u33+ 3 (1&3 + M%J + u§73)
| (3.50)
Ep, = 3 (u12+uz1)+ 3 (ur 2+ up jurn +uz 1u3 ) = Eny
1 1
Ej3 = 5 (u13+uszi)+ 5 (ur w1 3+ up 1ur 3 +uz 1u3 3) = E3;
1 1
Ey = 5 (ur3+u32)+ 3 (u1,2M1,3 +uspur 3+ M3,2u3,3) =E3pn
_ Odu
Where u; j = a)l(‘,'
— CO
e — C]

S — — + dou

5]

Figure 3.11

s Example 3.4 Lets assume an infinitesimal line attached to a bar and directed along its
longitudinal as shown in Figure 3.11. The bar is stretched, such that the initial and final length
of the line are dS and ds, respectively, with a change in its length of value (d6u = ds — dS), so
the axial Green-Lagrange strain E1; using Equation 3.44 will be obtained from:

_ds?—dS*  (dS+dSu)’ —dS?  2(dSu)dS +ddu?

E = = = 3.51
U s 2dS? 2dS? £t
Neglecting second order terms in above expression yields:
déu
Ejj~— 3.52
e (3.52)

Which is similar to strain evaluate using small strain theory, so using half used in Equation 3.46
is necessary to define a physical meaning for Green-Lagrange strain. We also need to note that,
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for a body undergoing small strains and large rotations, Green-Lagrange strain is very similar to
stretch tensor minus identity matrix E ~U — 1. =

s Example 3.5 Assume a rectangular body shown in Figure 3.12 undergoing only a finite
rotation by rotating counter-wise an angle 6 about axis x3 such that the deformation gradient
will be given by:

cos® —sinf 0
[F]l=[RU]=[R]=| sin6 cos® 0 (3.53)
0 0 1

We can conclude that Green-Lagrange strain vanishes for rigid body rotation as follows:

E=_(F'F-1)=-(R'"R-1)=0 (3.54)

N =
| =

m Example 3.6 Let us assume that this rectangular body is subjected uniaxial strain after rigid
body rotation, such that the final configuration is Coordinate of points b, d, ¢ before deformation
will be (X,0), (0,Y) and (X,Y), respectively, and reached to following points:

b=(1,T)X,d =(-S,C)Y,c = b +d = (X — SY,TX +CY). (3.55)

where T = tan(6), C = cos(0) and S = sin(6), so the deformation gradient F stretch tensor U
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and rotation tensor R will be given by:

1 -5 0
Fl=| T ¢ o (3.56)
0 0 1
1 T 0][1 =S 0 &z 00
[FTF]=| =S C 0 T C 0|=|0 10]|=[UP (3.57)
0 0 1 0 0 1 0 0 1
1/C 0 0
U= o 1 0 (3.58)
0 0 1
1 -s 0][Cc 00 cC =S 0
R =[FIU'=|T C 0 01 0|=|S C 0 (3.59)
0 0 1 00 1 0 0 1

We conclude that the body is rotated through by angle 6 about origin, then subjected to a stretch
through uniaxial strain of amount 1/cos (0). .

Infinitesimal strain tensor

For small displacement gradient V,u, the strain tensor can be approximated by neglecting second
order terms and assuming that the final configuration is very close to the initial one, such that
the gradient operating on the initial and final configuration can be identical (V,u = Vu), so the
resulting strain will be obtained from:

1
€ =

T (0w o
(Vu+vu') — g;= 5 axj+ o, (3.60)

[\}

Where € is a symmetric tensor called an infinitesimal strain. This strain measure can not be used for
a body undergoing a finite rotation or it will introduce large errors for strain results. Engineering
strain vector &, is identical to infinitesimal strain tensor, but its shear components are twice the
shear components of the infinitesimal strain tensor as follows:

e={¢€1 & & Y2 N3 V3 }T_>Yij:28ijf0ri7éj (3.61)

Velocity gradient, rate of deformation and spin
Assume a velocity field v(x) shown in Figure 3.13, such that the change in velocity dv between
two particles of the body infinitesimally-spaced by spatial vector dx measured in the deformed
configuration is evaluated through:
0

dv = a—;dx — Ldx (3.62)
where L is called the velocity gradient that describes the spatial rate of change of the velocity field.
It can be written in index notations as follows:

o

dV,‘ = axj d)Cj = L,-jdxj (363)
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But the time rate of change of deformation gradient can be defined as:
d [ Jx Jd (odx dv  dv odx 1
=—|=—=<)==<|= )= === =LF -L=FF 3.64
az(ax) ax(az) X oxox (3.64)

From above equation, the velocity gradient maps deformation gradient onto rate of change of
deformation gradient. Generally the rate of change of deformation is implemented for nonlinear
analysis, in which it uses incremental process or time rate of change. Velocity gradient can be
decomposed into two parts; symmetric part called the rate of deformation tensor D and anti-
symmetric part called spin or vorticity tensor W defined as follows:

L=D+W

1 1 (3.65)

D=_(L+L"), W=_(L-L")

N |
N |

Also from polar decomposition expression in (F = RU), time rate of change of deformation
gradient will be:

F =RU+RU (3.66)

And consequently, the velocity gradient and vorticity tensors W can be evaluated as follows:

L=FF'=(RU+RU)U 'R" =RR" +RUU'R" (3.67)
1 T L onr rrr—1pT pl a1\ o7
W= (L-L") =3 (RR" +RUU'R" —RR' —R(UU™') R
(3.68)

—RR” + %R (UU1 - (UU*‘) T) R’

As the rotation tensor is orthogonal (RRT = 1) , we can derive that:

. . T
RR" = —RRT &+ Q =RR" = SV xv (3.69)
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Where Q is the angular velocity tensor, which depend on rigid body rotation and its time rate of
change. From above, we can express vorticity tensor W as follows:

. . T
W=0+ %R (UU1 - (UU’I) )RT (3.70)

Generally term (U Uu'- (U U *I)T) has a negligible value and vorticity and angular velocity

tensor can be considered approximately equal (W ~ Q). We can also express the relation between
time rate of change of Green-Lagrange strain tensor and rate of deformation tensor as follows:

E= % [FTF+F'F| = % [FTLF +FTL'F] = %FT [L+L"|F =F"DF (3.71)
D—FTEF! (3.72)

In some textbooks, rate change E is defined as a push back to rate of deformation tensor D while D
is considered as a push forward to E. Also using polar decomposition expression (F = RU), time
rate of change of Green-Lagrange strain tensor E is obtained from:

E= % [F'F+F'F| = % [UR" (RU +RU) + (UR" +U'R) RU |

1 (3.73)
~ 3 |UR"RU +UU +UR'RU + (VD)
As the underlined terms cancel each other, the final expression of E will be:
. 1 . . .
E= |[UU+(UD)"| = sym(UU) (3.74)

s Example 3.7 Lets assume a rectangular body shown in Figure 3.14, stretching and rotating
with constant angular velocity 8 such that the time rate of change of current stretch and rotation
tensor can be obtained using Equation 3.58 and Equation 3.6 as follows:

S/C* 0 0 -S —C 0
=6 0 00 Rl=6| C -S 0 (3.75)
0 00 0 0 0

where C = cos(60), S =sin(6).

S/C 0 0
U t=6| 0 0 0 (3.76)
0 00
0 -1 0 sc s 0
[L]=[FF 1 =[RR" +RUU'R"]=6|1 0 0 |+6| $* $*/c 0| (377
0 0 0 0 0 0
sC §2 0
[D]=[RUU'R"|=6| $* S*/C 0 (3.78)
0 0 0

Also rate of deformation tensor D is known as a push forward to tensor UU ~!, the verticity
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tensor will be:

0 -1 0
Wl=6|1 0 0|=@cw=1[0,006]" (3.79)
0 0 0

From above example, we find D and W are identical and another expression for rate of deforma-
tion tensor D is approximated as follows:

D=RUU 'R" (3.80)
u
a R
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m Example 3.8 If a rectangular body shown in Figure 3.15 is rotating with angular velocity 6
without axial strain, the deformation gradient and rate of deformation tensors at any configuration
orientated at angle 6 are given by:

cos® —sinf 0
[F]=[RU|=[R]=| sin® cos® 0 (3.81)
0 0 1

D=RUU'R" =0 (3.82)

From the last equality in the above equation, we can use rate of deformation tensor D in nonlinear
geometric analysis as it depends on the time rate of change of stretch tensor U and vanishes for
rigid body rotation. "

3.3 Introduction to stress analysis

As schematically shown in Figure 3.16, Let us assume a bar with rectangular section of area A
subjected to axial load P, such that the stress distribution ¢ induced on a cut plane normal to the
cross section is defined as follows:

P

o=" (3.83)
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Figure 3.16 Figure 3.17

As the force is normal to the cut section, the stresses induced are normal stresses, while shear
stresses are tangent to the section cut as the case of two hinged beam with normal section cut
near the support, as shown in Figure 3.17. Complexity arises if we choose another cut plane with
normal axis different from the force vector direction. For example, if the cut plane is oriented at
angle O relative to the plane normal to force vector, as shown in Figure 3.18, the new cut plane has
surface area equal to A/cos(8). From equilibrium, Force normal to the cut plane equals to Pcos(6)
resulting normal stresses 0, given by:

Figure 3.18

G, = (Pcos (6)) /(A cos (8)) = §005(6)2 (3.84)
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While force tangent to the surface equals to Psin(0) resulting shear stress 7, obtained from:
P .
T, = Xsm(@)cos(@) (3.85)

These results are identical to the findings of Mohr’s circle. Also using axes transformation form
axes x; to x;, shown in Figure 3.19, leads to the followings:

P P
0-22 T T 0-2 2
T 02 o
éov 2 TP A 3} \(‘ \(V 11
Oy 4'—] ’\——> o ?}/A /"‘,}/’1(‘ A)\
"HT O afi
R 02

0-22 7
lP lp
Figure 3.19
=000 (3.86)
With:
_|ou on|_|00 | cos(@) sin(0)
[o] = [ Oz Op ] N [ 0 o ]v Q] = [ —sin(8) cos(8) ] (3.87)

The transformed stress tensor will be:

a_ | oy o | osin () * osin(6) cos (H)
lo1= [ 0y Op ] B [ osin(0) cos () ocos(6) 2 ] (3.88)

Stress vector

Let’s assume a body subjected to external forces (body or surface forces) shown in Figure 3.20,
and a cut plane with normal direction # is used to divide the body into two parts. Focusing on an
infinitesimal area located on the cut plane AA it will be subjected to small force vector AF such
that the stress vector or surface traction acting on this area will be:

AF
(n) — ()
t (3.89)
A AA—0

Superscript (n) means that the stress vector is associated with plane n. Stress vector has two
components; normal stress o normal to the section cut, and shear stress 7 tangent to the cut section.
If we change the orientation of the cut section, it will result in different stress vector as concluded
from the previous example. Also, at any point, there is an infinite number of section planes at this
point, such that each one has its own stress vector, but tracking the stress vectors associated with
three perpendicular or independent planes is enough to define the stress state at that point. These
three planes with three different components of stress vector associated with each plane can be
combined together in what is called dyadic or second order stress tensor of nine elements shown on
rectangular block as shown in Figure 3.21 and expressed as follow:
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o= 0je®e; (3.90)

011 O12 O13
[0ij]=| 021 02 O3 (3.91)
031 O32 033

We shall exhibit here how to extract stress vector ¢ associated with plane n from stress tensor G.
Assume a rectangular block shown in Figure 3.22, with plane cut with normal n with area equal to
A and surface traction t), while the traction force associated with plane normal to axis e; can be
defined as ¢, for i = 1, 2, 3 defined as :

1(1)2{ 011 O12 O3 }T
12 ={ 0oy 0n O }T (3.92)

t(3)={ 031 O3 033 }T
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Figure 3.22 shows the components of stress vector t(D. We can evaluate the area of each side A()
normal to axis x; through the projection of area A on each side as follows:

AD = ()" An = ((n)(i) n) A? (3.93)

The unit vectors normal to each surface shown in Figure 3.22 and resolved in the global frame is
given by:

n={m m ). a"=0{1 00}, @P={01 0, @P={0 0 1

(3.94)
And consequently,
AV = Any, A% =Any, AP = An; (3.95)
Applying equilibrium over the this part of rectangular block in Figure 3.22 results in:
™A =1 An, +19An; +19 Ans (3.96)
Dividing by the area A yields:
O11 021 031
1) :t(l)nl +t(2)n2 —|—t(3)n3 = O pn+ O pny+ O3y o 13 (3.97)
O13 023 033
O11 021 O3] nj
=| Onn O0n Oxn n (3.98)
013 023 O33 n3
The above matrix form can be rewritten in tensor or index notation as follows:
t" =6'n=no=n"c (3.99)

The above equation is called Cauchy formula. The components of stress vector t™ = tie; on plane
n = n;e; are defined in index notation from above equation as follows:

li=0jin; (3.100)

Conservation of linear and angular momentum

Conservation of linear momentum or Newton’s second law of motion states that the time rate of
change of linear momentum (mv) of a particle of mass m and velocity v equals to the net force Y  F
exerted on this particle as follows:

%(mv) ~YF (3.101)

If its mass is constant with time, the above expression reduces to:

d 0%x
me (vV)=m=5=ma=)» F (3.102)

Where a and x are particle acceleration and position. Generally the forces are divided into two
parts; internal and external forces. The internal forces result from stresses induced in the cut plane,
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while external forces include body forces and surface forces. Body forces act on mass distribution
like inertia, gravity, electromagnetic forces and are generally measured per unit mass, so if the body
force per unit mass is f, the total body force Fj, will be obtained from:

F,= /V pfrdV (3.103)

And consequently, the inertia force F is given by:
°x
F;= ——dV 3.104
1 /Vp at2 ( )

While the surface traction ¢ includes the forces acting on the boundary surface of the body and
measured per unit area with normal vector n, e.g. contact forces, such that the total surface body F
can be evaluated through integrating surface traction over the area as follows:

F,= / tMdA = / n.cdA (3.105)
s s
From divergence theorem, the above expression can be rewritten in this form:
F,= / V.edv (3.106)
14

Substituting the above relations into Equation 3.102 results in:

Fb+FS:F1—>/pfde+/V.0'dV:/pavdV (3.107)
1% 1% y' ot

And consequently, we reach to the equilibrium equation of motion as follows:

dv d°x
V- = —_— = A = .1
c+pfr=p =P 55 =pa (3.108)

It can also be expressed in tensor notation as follows:

an,' ale‘
. = pa; 1
G+ P =P = pa (3.109)

On the other hand, conservation of angular momentum states that the time rate of change of the
total angular momentum of a body equal to vector sum of the moments of external forces acting on
this body. This principle leads to the symmetry of the stress tensor as follows:

O12 = 021, 013 = 031, 03 = 03 (3.110)

Work and power

Change in work dW done by a force F on some particle equals to the dot product of the force vector
and displacement change dx as follows:

dW =F .dx (3.111)

Such that the total work done through the particle path ¢ will be:

W= /F.dx (3.112)
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while power p is the time derivative of the work W defined as follows:

aw __d
p:W:p.df’t‘:p,v (3.113)

From above expression, the power can be defined as the dot product of the force vector with velocity
vector v. The power generated by the external forces includes the contribution of the body and
surface forces as follows:

= (Fy+Fy) .v:/T.vds—i—/pfb.vdV:/n. (G.v)ds+/pfb.vdV (3.114)
K} \%4 s \%4

The velocity v here is considered as a velocity field as it can be varied over the body volume. Using
divergence theorem on the first term of the right hand side in the above expression yields:

p:/V.(O'.v)dV—I—/pF.vdV (3.115)
|4 |4

J J J
V.(0:) = 5 (o)) = aj v+ ”av (V.o)v+o:LT (3.116)

As stress tensor 0 is a symmetric matrix, we can conclude using Equation 1.100:
o:L"=06:L=c6:sym(L)=0:D (3.117)

such that power will be given by:

p:/(V.0'+pfb).vdV+/0':DdV (3.118)
\%4 \%

From equilibrium Equation 3.108, it follows:

:/pa.vdV—i-/O‘:DdV (3.119)
/pa vdV = — ( /pvvdV) ( E) (3.120)
d (K.E)+ / : DdV (3.121)

From above equation, the external power is converted into two parts; time rate of change of
kinetic energy K.E associated with body motion and time rate of change of strain energy associated
with deformation. Cauchy stress tensor and rate of deformation strain rate & and D are called
energetically conjugate pairs of stresses and strain rates. There are other energetically conjugate
pairs other than Cauchy stress and deformation strain rate. For example, if we need to evaluate the
stress measure conjugate to time rate of change of deformation gradient F, we need to convert the
power part associated with deformation as follows:

/G:Dde/O‘:Lde/G:(FFl)dV
\% \% Vv

/ GijFimFy,; dV = / GijF ;! FimdV (3.122)
Vv Vv

= /V (oF~"):Fav = /V (6"F~T):Fav
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So 6”F~T is conjugate to the time rate of change of deformation gradient F and integrated over
the current volume V. Using dV = JdVj, where dV, dVj are the volume of a differential body in
the final and initial configurations, respectively, we can convert the current volume integration into
integration over the initial volume as follows:

/o:DdV:/JoTF—T :deoz/ P:Fav, (3.123)
%4 v Vo

Where P = JoTF~7 is called first Piola Kirchhoff stress tensor, such that P and F are considered
energetically conjugate pairs. Cauchy stress can be evaluated from the following:

c= %FPT (3.124)

From the above relation, it seems that P is unsymmetric tensor. However, the symmetry of Cauchy
stress ¢ leads to this expression:

FPT = PFT (3.125)

Also we can search for another stress measure conjugate to time rate of change of Green Lagrange
tensor using Equation 3.71 as follows:

/G:DdV:/G: (FTEF")av

Vv Vv

= / 6ijFyy EmnFy;'dV = / F,;' GijF;," EpndV (3.126)
Vv Vv

= / JF'oF T EdVy= / JF'6"F T EdVy = / S:Edv,
Vo Vo Vo

Where S = JF'6”F~T is called second Piola Kirchhoff stress tensor, such that S and E are
considered energetically conjugate pairs. Also it is easily to verify that S is a symmetric tensor.
Also it is considered as a push back of Cauchy stress from the current configuration C; to the initial
configuration Cy which takes sometimes this form {,S. Also the above expressions can be rewritten
in variational rate using virtual work principle? as follows:

/0' : 0edV :/ P:6FdVy= [ S:06EdV, (3.127)
Vv Vo Vo
Using Equation 3.71, Equation 3.64, and Equation 3.65 results in:
1
de =3 <6FF‘1 n (6FF—1)T) . SE—F'G¢eF (3.128)

3.3.4 The physical meaning of the first and second Piola Kirchhoff stress tensor

m Example 3.9 Assume a four-node element with undeformed configuration Cy and subjected
to deformation to reach configuration C; shown in Figure 3.23. The stress tensor resolved in the
inertia basis e; is:

1
[0 leie;] = [ ? 5 ] (3.129)

3see chapter 4
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(a) Initial unstressed configuration Cp with  (b) Final stressed configuration C; with section normal n(V)
section normal N() and N® and material ~ and n(®. Cauchy stress state is shown for an infinitesimal
frame of reference E element

Figure 3.23: Configurations Cy and C;

From the above figure, deformation gradient is defined as

1 02 . 1 1 -0.2
[F][ei®El] = |: 0 1 :| ;o owith J=1; F = |: 0 1 :| (3.130)
First and second Piola Kirchhoff stresses will be:
2.8 1 2.68 0.6
Plie,or) = [ 0.6 2 ] > [SlEce) = [ 0.6 2 ] (3.131)
Kirchhoff n

First Piola Kirchhoff stress means that plane n{!) has force P; = (2.8,0.6) on face 1 with initial
normal N() = [1,0] and initial area |A;| = 1 and current area |a;| = v/1.04

2
) 1,

—— ]
b n,
0.6
2.8 ]
0.6 2.8 n, =[1 -0.2]/~1.04
1.16
1

' S /Azm
&E; 2.68
2 —_

N1.04

Figure 3.24: Force distribution F on the deformed  Figure 3.25: Stress distribution on the deformed
surfaces deduced from firts Piola Kirchhoff stress  surfaces after resolving the forces in surface nor-
P and the initial area A (F = P.A) mal and tangent direction
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face 2 @k‘
116 208
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A @r 1.04
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{

Figure 3.26: Cauchy stress state transformed

in the direction of n! and its normal n Figure 3.27: Applying virtual displacement dx

= Example 3.10 — Equilibrium study. In the above example, the i'4 column in P represents
the force applied on the material surface with current normal n; and initial normal N; with unit

initial area (dAgl) = 1) as pictured in Figure 3.24. It is denoted by stress vector P; defined as
follows:

P=P,QE; — P; =PE; (3132)

P=Pe;QE; —P; =Pje;
P, =2.8¢; +0.6e; (3.133)
P, =e|+2e

The resulting force on plane n; willbe F| = P1A; = PN dA; = (2.8e; +0.6e;) x 1 = 2.8e; +
(0.6e; as shown in Figure 3.24, while the corresponding force to plane n; is F, = e| + 2e,. We
can get the deformed area using Nanson’s formula nda; = JF “TN,dA, = [ 1 -0.2 ]T with

. 1 —02] , .
unit vector Tioh and area magnitude da; = +/1.04 as shown in Figure 3.25, such that

the Cauchy stress vector on this plane is defined as

o)y o__[l —0.2][3 1]_[2.8 0.6 | S
Vo, VIR [ W RV Wi '
6™ =mo=[1 2] (3.135)

The stress distribution is shown in Figure 3.25. The resulting forces F'; = oc™da, = [ 2.8 0.6 ] ,
F>=[1 2], whichis identical to the first Piola Kirchhoff resultant force mentioned in the
previous paragraph. Also the same results can be obtained from Cauchy stresses ¢ on plane n;
can be defined using transformation rule

1
G =R'0R, with R= —— [

Nex (3.136)

1 02
-02 1
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It follows as shown in Figure 3.25 and Figure 3.26 that

O =

1 [2.68 1.16] (3.137)

1.04 | 1.16 2.52

Evaluating the components of the resultant force over face 1 shown in Figure 3.26 results in:

268 1 116 0.2 268 1 116 02
F = + a = + xv1.04 =2.8
. (1.04\/1.04 1.04\/1.04) ! (1.04\/1.04 1.04,/1.04)

(3.138)

As the surface n; has area v/1.04. This is the component of resultant force on face 1 in e
direction (F 1), while, in e; direction, it will be:

268 02 116 1 268 02 116 1
Fo=(- + a = (- n «V/1.04 = 0.6
? ( 1.04 /T.04 1.04\/1.04) 1 ( 1.04 \/T.04 1.04\/1.04>

(3.139)

s Example 3.11 — Virtual work. We can also prove Equation 3.127 as follows. Assume a
virtual displacement dx shown in the Figure 3.27 applied over the deformed configuration Cj,
such that the resulting deformation gradient and its variation will be:

|1 0240x
1D iy = [ 0 1 ] (3.140)
0 ox 0 1
5F—FneW—F—[O 0 ]—[O 0]5)6 (3.141)

Also the variation in infinitesimal strain and variation in Green-Lagrange strain using Equa-
tion 3.128 will be:

0 05
5e = [ 05 o ]Sx (3.142)
o rem | O 05
SE =F"8¢F = [ 05 02 ] Sx (3.143)

Such that the resulting virtual work in terms of different stress measures using Equation 3.127

[ 3 1 0 05

aw_/vo.asdv__l 2].[0.5 ; ]ax_ax (3.144)
(2.8 1 0 1

oW = Vop.éFdV:_Oﬁ 2].[0 0]5x=5x (3.145)
£ 2.68 0.6 0 05

SW = VOS.SEdV—_ PP ].[0'5 Oz]ax (3.146)

= (0.6%0.5+0.6%0.5+2%0.2)5x = 5x (3.147)
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Where volume before and after deformation is equal 1 (v =V = 1). Also the same result can be
obtained if we use Figure 3.27 to evaluate the virtual work exerted by first Piola Kirchhoff stress
vectors P} = (2.8e; +0.6e;) and P; = (le; + 2e;) as follows:

The virtual work done by these forces =2.8 * <%) —2.8% <%) +1%6x=6x.
Which gives the same findings of the above equations "

3.3.5 Geometrically exact beam theory

/ [‘KZ
/
CO - — — — —

Figure 3.28

t
E 2 2
(X27X3)
°
E;
Figure 3.29: Position of point X relative

to the material triad E at configuration
C; in Figure 3.28

Figure 3.30: Applying rigid body rotation R on configura-
tion C; in Figure 3.28

Assume a Timoshenko beam (rigid cross section assumption) shown in Figure 3.28 with an
undeformed infinitesimal arc length dSy and material basis* E; subjected to shear strain ¥;, and

4The material basis E; in Figure 3.28 does not change with deformation and is assumed to be aligned with beams
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axial strain & to reach configuration Cj, then a curvature K3 around basis e3 to finally reach
configuration C, such that the total difference in cross section orientation is K3dS in e3 direction.
If we are interested in evaluating the deformation gradient at a material point located at distance X»
from centroid, the deformation gradient of configuration C; will be:

_ 1+8, 0
(6 ]e®E—[ Ten ] (3.148)

Y1 1

The axial strain & ;(curv) due to curvature results from change in the length of the longitudinal
fiber located at X, as follows:

Change in beam length

£ = 3.149
i (curv) original length ( )
_ Change in beam orientation x Point position relative to centroid (3.150)
N original length ’
(K3dSo) (X2) -
=——""= =K3X 3.151
dSo 3X2 ( )
Such that overall deformation gradient at configuration Cj is:
- 1+81+KX; 0
2 _ 11+ K342
[0F] e = o X (3.152)

For a three dimensional beam, the axial strain &(curv) due to 3D curvature resolved in material
basis E as [IZ]E =K K K ]T is defined as:

~ K2X3 — K3X2
&(curv) = KX — [E(curv)]® = —K1 X3 (3.153)
KX,

Where X defines the position of a material point. When it is resolved in material frame, it will be
X]g = [ 0 X2 X3 ]T, where X, and X3 define beam position along the beam principle axes as
shown in Figure 3.29, such that the resulting deformation gradient in index notation will be:

1+&1+KX3—-KX, 0 0
[0F |, = P —KiXs 10 (3.154)
1+ K1 Xa 0 1
And in tensorial form:
F=Fe,E;=1+EQE| =¢;QE |+ &e;QE, (3.155)

where & = €11, &=81=11—-K X3, =81 =% +KX>

Applying virtual strain [68]; = | 68, 6& 08&; ]T and curvature [6K|, = [ 6K; 6K, OKs ]T
to the beam in the final configuration, the internal resulting virtual work W, in terms of first Piola
Kirchhoff stress tensor will be:

principle axes and cross section normal at the undeformed configuration Cy which, in this case, is identical to inertia
frame e; as the line of undeformed beam centroids is straight and directed along e, while co-rotational or moving frame
(beam triad) ¢; is attached to the beam and its orientation changes with deformations (change in cross section normal #1)
and principle axes orientation #,, £3.

SThe strains &, £33 and &3 vanish from the rigid cross section assumption in Timoshenko beam theory
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SWip = / P:SFav,
Vo

= / Py (681 + 6K X3 — 8K3X,) dVy
Yo (3.156)

+/ Py (871 — 6K X3)dV,
Vo

+/ P31 (8113 + 6K 1 X2) dVyy
Vo

Where P; forms the components of first Piola Kirchhoff stress tensor (I_’ =P,QE; =Pe;FE 1)
and P; is stress traction vector applied on the beam cross section surface. As beam strain and
curvature are only function of arc length s along the line of centroids, the integration can be
simplified to:

Wi = / (N.6% + M.5K) dSy = / (IN]z-[58]z + [M]z.[5R]z) dSo (3.157)

So
The last equality comes from the fact that work is a scalar value, so we can resolve its terms in any
frame of reference. Terms [N]; and [M]y represent the cross section resultant force and moment
resolved in basis E defined as follows:

[Nz =[N Ny N3], Mg =M, M> A_/I3]T, [Pi], =[P Py Py]”
Elg=[&n 21 1), [K]E =[K K K3)"

Where

N = fAOPUdAO’ Ny = fAOledAo, Nz = fAOP31dA0

My = [, (P Xo—PuX3)dAy,  My=— [, PuXsdAy, Mz = [, PuXadAg

If a rigid body rotation R is superimposed on the configuration C, as shown in Figure 3.30, the
beam triads (co-rotational basis) ¢;, the stress traction vector applied on the beam cross section
surface Py, the strains and curvature, the resultant force and moment on the cross section, and the
new deformation gradient will be:

t;=RE;, Pi=RP,, n=RN, m=RM, ¢=Ré, K=RK, F=RF (3.158)

As all the above terms except deformation gradient in the last equality are vectors, they transform
like vector, while the last equity can be deduced using subsection 3.2.2 or using section 3.4. The
above expressions can also be interpreted as shown in Figure 3.31, such that the components of
stress vector P; resolved in the local triad #; is identical to the components of stress vector P,
resolved in the material frame I; (P;) and it follows:

Py =Pre; = Puty (3.159)
With
nlg = [ no n3)", [m)g = [m my ms]", [P\l =[P Py Py]”
elg =[en v1 vil’s K|z = [Ki K> K3)"

In the same manner:

n=ne; = Njt; (3.160)
m = mpe; = Mjt; (3.161)
€ =¢1e1 +iex+ 1163 = €t + Hutr + Ptz (3.162)
K =Kie; = Kit; (3.163)

F=Fe,QE;=Ft,QE, (3.164)
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Cs

Figure 3.31: Applying a rigid body rotation on configuration C, with surface first Piola Kirchhoff
stress P resolved in material frame E; as (pll,pzl,}_)31) to get configuration C; with surface first
Piola Kirchhoff stress P; defined through the transformation rule P = RP| and resolved in the
inertia frame e; as (P, P>1,Ps1) and in the co-rotational frame ¢; as (Py1, P>1,, P31) which is identical
to this vector in C, and resolved in E;

The last equality results from using (R =¢;  E;) and (E;.e; = Jy;) as follows:
F=RF = (t;RE)) (Fye;QE;) = Fy&it; QE; = Fyyt, QE (3.165)
In the same manner:
P =RP (3.166)

Note that first Piola Kirchhoff stress tensor and deformation gradient are called two-point tensors
and they follow the transformation rule described in the above expressions. We also need to note
that the virtual work created by these spatial vectors n, m, € and K described in Equation 3.158
are not effected by rigid body rotation and it should be equivalent to the virtual work generated by
Equation 3.157 as follows:

Wi :/ P:6FdV, :/ (n.6e +m.5K)dSy (3.167)
Vo So
Such that
P:SF =P:S8F (3.168)

Using Equation 3.158, Equation 3.166, it yields:

P:SF=R'P:5(R"F)=P:RS5(R'F) (3.169)
Term RS (RT F) is called the co-rotational variation in deformation gradient and dented by 5}?‘ Ctis
defined as a variation of spatial property recorded by an observer attached to the moving frame to

get §(RTF) and pulled forward to the spatial form (It will be farther discussed in section 3.4). The
relation between the co-rotational variation and ordinary variation is defined as follow:

SF =R 5(R"F) = SF + (RSR") F = 6F — S®F (3.170)
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Where 8@ is the variational spatial spin °.
From Equation 3.168, it follows that

P:5F =P:R"5 (RF) =P: 6F (3.171)

We see that the first Piola Kirchhoff tensor P is conjugate to co-rotational variation of deformation

gradient & Fin exerting the virtual work.
N Af

anp e
Af = F Af

.~
F—I

Figure 3.32

The physical meaning of the first Piola Kirchhoff stress tensor P is obvious from the previous
examples, while it is hard to imagine a sensible definition for second Piola Kirchhoff stress tensor
S which performs work over the variation in Green-Lagrange strain tensor SE, see equation
Equation 3.127. However, being a symmetric tensor makes it desirable in finite element formulation
(see chapter 3). Also (1)SN can be defined using Figure 3.32 as the current force at configuration
C; affecting a section area with current normal n and unit initial area with initial normal N at
configuration Cy after being subjected to inverse mapping via deformation gradient (pulled back to
the initial configuration Cy) as shown in Figure 3.32. From this definition, second Piola Kirchhoff
stress tensor can be defined as follows:

d.? I laf da _1df -T
lo(N) _ & _ — 1 _ | (n)p-T
oS ; 5 JF F =JF~ ' c""F (3.172)

Where df is the applied force of current area da with unit normal vector n and initial area dA with
unit normal vector N as shown in Figure 3.32. Applying inverse mapping on this force results
(F~'df = df). We used Nanson’s formula to prove the above equation (g—ﬁ =JFT).

SFor a spatial vector v = 7it; = vie; = R, we get 5v = SRV +RS% = SRRTv+ RS (RTv) = Sav + v, while for
second order tensor T = a; ®a;. If each vector a and a, is induced from individual rigid body rotation (a; = R1a; and
a; = Rya,), the resulting tensor T will be:

T = (R1@) ® (Ry@y) = R1@ ® @R} =R\ TR} . Where T =a, ®a, the variation of T will be:
8T = SR\ TRY + R STRY + R\ TSR} = SR\RIT + R S(RITR,)R} + TR,SRY = 6w T + R, 5(RI TRy)RY — T 5w,
Where 6w; = SR R! and Sw, = SRR}

For Cauchy stress tensor o, the transformation rule 6 =R & RT makes (Ry =R, =R) and

56 =5 (R& R") =RSGR” + SRGR” + SRGR” =R & (R"GR) R + wG — Gdw = 56 + Swe — 6w

For two-point tensor A, R; = R and R, = 1, the resulting variation will be:

8A =8 (RA) =R6A+S5RA=R S (RTA) + 6wA = 52 + 6wA, where 5,2 represents co-rotational variation of tensor A
(farther explanation in section 3.4).
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= Example 3.12 Assume four-node element shown in Figure 3.33 with axial stress 07 = 7’:
and then subjected to the rigid body rotation, such that the resulting stress will be:

_pl+= o c =S — | O11 0
G—RO‘R,R—[S c1"%=1 0o o

] where C =cos(0), S=sin(0) (3.173)
It follows that

(3.174)

Cc? SC
sC 2

6 =011 [

As the deformation gradient is identical to rotation matrix, second Piola Kirchhoff stress tensor
S will be:
S=JF'6'F " = [ o 0 ]

0 0 (3.175)

Which is identical to the co-rotational Cauchy stress tensor G.

Reciting the definition of second Piola Kirchhoff stress tensor in the previous paragraph, S is the
force applied in the current configuration is (Pcos(0), Psin(0)) is subjected to inverse mapping
through deformation gradient F = R to be (P,0) applied on the initial area A which yields the
same results in the above equation.

3.3.6 The material form of equilibrium equation of motion

Substituting with ( = a‘; %’Jf %F _1) into Equation 3.106 results in:
F;z/V.GdV:/VO. (F~'o) dV:/ Vo.PTdv, (3.176)
\% \% Vo

The above expression can be proven using index notation and first Piola Kirchhoff stress tensor
definition as follows:

a . .

P="rjeQF; —JcrlekJ Te,@E;; Fj= X, i T i
l

8P,-j . <90'k, an 8(‘7]@ 8Xk
X, = ax; ax, % T ax, ax, O = 0y,

If f1o is the body force per unit volume of the initial configuration, the total body force will be
defined as follows:

F,= / FdV=[ frodvo (3.179)
\%4 Vo

V,.P' = e, = JV.6 (3.178)

Which leads to the material form the motion equation of equilibrium in terms of the first Piola
Kirchhoff stress tensor P as follows:

Vo.P" 4 fro—poa=0 (3.180)

Where f,, , po are the body force and density referred to the initial configuration. Also from
expression (P = F.S), the material form of equilibrium equation of motion in terms of the second
Piola Kirchhoff stress tensor will be defined as follows:

Vo.(S"FT) + fro—poa =0 (3.181)
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As second Piola Kirchhoff stress tensor is symmetric tensor, it yields that:

(Vo.8) .FT +8.(Vo.F") + f 10— poa =0 (3.182)
Where Vo.FT can be written in index notation as follows:
ox; 9%x;
Vo.F' =V,. | =——'E,RE; | = " E; 3.183
0 0 (axj ;@ ) 0X;0X; (.183)

3.3.7 Constitutive equation in the rate form

For a linear elastic body with Young modulus £ and Poisson’s ratio v, the constitutive relation
between the infinitesimal strain € and Cauchy stress o is defined as follows:

e:é[(1+v)0'—wrace(0')]<—>0':C:£ (3.184)
with index notation defined as follows:

e,-j:%[(lJrv)G,-j—vo,-,-] (3.185)
But its time rate form does not follow the above constitutive equation or:

D;«éé[(l-}—v)d‘—vtmce(d’)]<—>67EC:D (3.186)

For example, if the body is subjected to rigid body rotation, D = 0 as stated in the subsection 3.2.5,

)

€

Figure 3.33
while & changes according to the transformation rule (see in the next example).
m Example 3.13 If we have a bar shown in Figure 3.33 with cross section area A and axial

load P inclined at angle 6 and under rigid body rotation with time rate 0, the current stress rate
G (0 (1)) is defined as:

G (0(1) =R(6(1)c (6 =0)R(6(1)"
_ [ cos(@) —sin(8) ] [ 2.0 ] [ cos(0)  sin(@)
~ | sin(6)  cos(0) 0 0 —sin(0) cos(0) (3.187)
_F [ cos(6) * sin(0) cos(6) ]
sin 2

A (6) cos(8) sin (9)
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As (P/A) remains the same with time and angle 6 changes, the time rate of change of stress
will be:

2_ @2
6= ég C—zz_assz Czs_CS Using C = cos(0), S = sin(0) (3.188)
While D vanishes if we used the same procedures defined in subsection 3.2.5. Consequently,
Cauchy stress rate and rate of deformation tensor behave incompatibly in the presence of finite
rotation. This problem forces us to search for new objective rates for stresses and strains. Using
an objective stress rate is an essential step in nonlinear finite element analysis. In the next
section, we will find out other objective stress measures which can be also used in nonlinear
analysis. For example, we can relate the time rate of change of Green-Lagrange strain E and
time rate of change of second Piola Kirchhoff stress tensor § as follows:

E:é[(l—l—v)s—vtrace(S)] ~+8=C:E (3.189)

The above expression can be used as stress-strain constitutive relation in the rate form, as this
relation is not effected by finite rotation and consequently are considered objective quantity. =

3.4 Change of observer and objectivity

Observer O

R 0 " - - Clockw1se rotation
% o R
(1\ — ’\C(l) u bserverO
0 )%

o0 PR i

Counter clockwise rotation R(O)
€]

Figure 3.34: Two observers tracking a rectan-  Figure 3.35: What observers O and O™ see in
gular block Figure 3.34

Any physical phenomena should remain unchanged even if we change the observer or the
point of view from which we observe it. This is called objectivity or frame-indifference which is
necessary part in nonlinear continuum mechanics. We can describe a phenomena or an event by
choosing an observer which has the ability to record the position and the time of the event, and
track its change with time. Assume we have two observers O and O™ monitoring the same event
(two-dimension event) (e.g. a rectangular block) through their eyes as shown in Figure 3.34. If we
asked both observers to take a snapshot of what they see, we find that each every observer sees a
different picture (e.g. observer O finds the rectangular block inclined toward him or her, while the
other sees away inclination for the block as shown in Figure 3.35). Assuming the relative position
between the two observers is ¢(¢) and the orientation of observer O is formed through applying
rotation R(¢) on the observer O by rotating an angle 6 about axis e3. These terms c(¢), R(¢) may
change with time ¢ as one of the two observers may be moving relative to the other. For vector u
attached to the rectangular block as shown in Figure 3.35 and observed by observer O as u, it will



134 Chapter 3. Introduction in Continuum Mechanics

be observed by O defined as follows:
uw =R 'u=0Q()u (3.190)

For a general position X in space, if this position is monitored by the two observers as X and X,
these two observations are related through the following:

Xt=c(t)+Q()X (3.191)

Where Q(7) represents the transformation tensor from observer O to observer O™ which is equivalent
to the transpose or inverse of rotation tensor Q(t) = R(¢)”. Any vector that transforms like the
above expression is called objective. We also conclude that the change in observer preserves the
scalar quantities like material properties at the point of interest, the distance between two points
and the angle between two vectors.

The velocity and acceleration vector are not objective as the time rate of change of Equa-
tion 3.190 results:

vi=e(t)+Q(t)v+Q ()X =
(3.192)
as Q)QW) =R(t)"R(t)=w' =W =—W  See chapter 2

Where (A) signifies the time derivative of the quantity (A). The non objectivity results from the
effect of spin appeared in the last term in the above equation —W (X —¢(t)).

R(-6)=R(6)"
&~

€

Figure 3.37: Two events monitored by a single
Figure 3.36: One event monitored by two  observer. The second event C* is formed through
observers superimposing a rigid body rotation R(6)” on
configuration C

To simplify the idea, a single motion monitored by two observers can be equivalent two
different events observed by the same observer via rotating the event in reverse direction the
observer is rotated as pictured in Figure 3.36, so the same results can be obtained if we assume
two different events observed by single observer O as shown in Figure 3.37, such that the second
event or configuration C* is formed via superimposing a rigid body rotation R” (6) on the first
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€
0+

-

- F7u17H

A
O

Figure 3.38: The components of vector # resolved in a particular basis, e.g. e; do not change with
changing the observer

configuration C. This rotation makes orientation of vector u attached to the body rotate to u™ in the
final configuration as follows:

Xt =c()+R(1)'X (3.193)

which is identical to the results of Equation 3.191. Term ¢(¢) is the position vector linking observer
O and observer O as shown in Figure 3.36.

To describe any physical event in three dimensional space, we have to assign a frame of
reference (rectangular coordinate system) for each observers. If we choose a single inertia frame
(e.g. e;) for both observers as shown in Figure 3.38, the vector u seen by observers O and O" can
be resolved in this frame through:
t=ulel (3.194)

u—=ue;, u i €

Where u and e; defines, respectively, the vectors u and basis e; monitored by observer O, while u™
and e; defines the same vectors monitored by observer O™ with relation defined as:

u" =Qu, e = Qe (3.195)
Substituting the above expressions into Equation 3.191, we get:

ut =Qu
uel = Quie; (3.196)

u;“Qe,- = Qu,-ei — uj_ = U;

We conclude that the components of vector u observed by two different observers and resolved in
the same frame are identical and independent of the observer as the projection of some vector on
some basis is a scalar value which does not change with changing the observer.

If we have two vectors u; and u, that transform according to the above rule like ui’ = Qiu; and
uzr = Qhu; and a second order tensor A defined through dyadic product (#; ® u,), this tensor can

be seen by both observers as follows:
A" =ul Quy = (Qiu1) @ (Qor) = Q1 (w1 ®u2) Q) (3.197)

For Cauchy stress tensor 0, it is written in index notation as & = 0;e; ® e; where e = Qe;, it
follows that

c =g jel-+ ®e7, where o;; and GiJ]f are identical as they are components (3.198)
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o= 0;; (Qei) ® (Qe;) = Q(Gijei®ej)QT = Q000" (3.199)

R(0)=1 N
L w0
ob-ov 01000
Figure 3.39 Figure 3.40

» Example 3.14 Assume we have two frame of references shown in Figure 3.39, one is inertia
frame fixed in the space e; and other is co-rotational or moving frame ¢#; attached to the body.
We note that the co-rotational frame #;(¢) is changing with time 7 and is identical to the material
frame E; at time (¢ = 0) such that:

t/(t=0)=E, (3.200)

Assume we have two observers; one fixed in the space (observer O) and the other attached to
the body (observer OT). The orientation of observer O is formed through the rotation of the
body with time R(¢) superimposed on observer o such that R(t = 0) = 1 and they have the same
orientation at time ¢ = 0. If the initial configuration of the body is Cy and is rotated by rotation
tensor R(¢) to configuration C;, the moving frame will be related to the material frame through:

t;(t) =R(t)E,, or R(t)=1;(t) QE, (3.201)

We can observe this tensor rotation through observer O™ as follows:

Rt =t;(t)" @E; (3.202)

As the two observers orientation are identical in the initial configuration Cp (R(t =0) =1) we
get E;“ = E;. This results can be observed in Figure 3.39 (both observers O and O are directed
in the same directions at Cp), while in the final configuration C;, the moving frame ¢; seen by the
two observers O(t), O™ (t) follows this relation:

1) =Q()t(t) =R(t)"t,(¢) (3.203)
From above expression, Equation 3.202 will be:

Rt)"=1,()" ®E =Q(t) (t:(t) ®E;) =QR=R"R =1 (3.204)
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as R and R are identical from Figure 3.39 (R(r) = R(¢)R(0) =R(t)). Even if the orientation of
observer O™ is not identical to that of observer O in the initial configuration Cy as shown in
Figure 3.40, we get also the same above result R(t)™ = 1. As if we use the same above example
with both E; and observer O" are formed through superimposing a rotation tensor Ry on e;, it
results:

E; =Rye;, E} = QuE, where Qy=Q(t=0)=R) =R(t=0)"  (3.205)

For a rotation tensor R imposed on the body in configuration Cy to form configuration Cy, the
observations by observers O and O™ will be:

R' =t/ ®E/ (3.206)
As t;r = Qyt; and E;r = QoE;, we get
R" =04,®E/ =Q.RQ{ =1 (3.207)

The last equality comes from the fact that @7 = R, = RRy = RQ} .
From above, rotation vector is called two-point tensor and transforms like vector field as follows:

R"=0R (3.208)

Also rotation tensor R is composed of three orthonormal unit vectors, e.g. [R]; = [t1,22,23], each
vector transform like vector, so we can get the same findings of the above equation. "

In the same manner, deformation gradient F = Fjje; ® E; transforms like vector field (F+ = QF).
Using spectral decomposition for deformation:

F"=R'U" =QRU = QF (3.209)
as R™ = QR, while U is not effected with rotation (Ut = U) or from

ox ( 8x)+ B oxT ox

P — +: — = — —_—
F=a%—F oX X “ox

. OF (3.210)

As rigid body rotation transform vector dx through dx™ = Qdx Similarly, the first Piola stress tensor
P = Pje; ® E; transform like vector field (P™ = QP ) as:

P =Jo . F* " =JQoQ"QF T = QP (3.211)

Another type of second-order tensor is called material tensors or tensors parameterized only by
material coordinates only like stretch tensor U = Up;E; ® Ej, Green-Lagrangian strain tensor E,
and second Piola Kirchhoff S that transforms as follows:

1 T 1 T
E+:§(1"+ F+—1) =3 (F'F—1)=E—F" F'=F'Q'QF =F'F (3.212)

In the same manner:
St=JFt et F T = JFt7'QTQoQ"QF T =§ (3.213)

All stresses and strains measure mentioned above are objective, while the time rate of change
of Cauchy tress is not, as differentiating 6+ = Qo:Q” with time results in:

6" =000" + 060" + 060" +# 0607 (3.214)
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Also we need to check the objectivity of different types of strain rates like F, L, D, and W as
follows:

FT=QF <+ F" =QF +QF +QF (3.215)

Lt =F'F* ' = 00" + oLQ" + QLQ" (3.216)
+ LT L+LT

pr =L _gg7 007 r ottt s Jor —olE+E) s ) o — oo’ (3.217)

Wt =asym(L") = QWQ" +0Q" # QWQT (3.218)

We find that all the above time rate of change of strains mentioned above are non-objective and
do not follow the transformation rules except the rate of deformation D.

m Example 3.15 Lets assume a bar shown in Figure 3.33 with area A and subjected to axial
load P and aligned horizontally in the initial orientation, and its orientation is changing with
time ¢ such that the bar only undergoes rigid body rotation. We need to write down the Cauchy
stress referred to two frame of reference; spatial frame and co-rotational frame attached to the
body

If the stress at the initial configuration and final configuration at time ¢ are denoted by ¢(0),
and o (1), respectively, the relation between them will be:

o(t)=R(t)o (0O)R(r)" (3.219)

Where R () infers the rotation tensor that defines the orientation of the bar. This orientation is a
function of the time ¢. To sense the values in the problem and describe it, we have to choose a
suitable coordinate system, e.g. coordinate system E, such that the Cauchy stress resolved in
this coordinate system at the initial and final configuration will be:

P
[0 (0)|ger = [ 0 8 ] (3.220)

_ [ cos(0) —sin ] [ 20 ] [ cos(0) sin(0)

sin(6) cos(6) 0 0 || —sin(6) cos(6) (3.221)
_P[ cos (6)* sin (@)cos (0 )]
"~ A sin(8)cos(8) sin (6)?

If we observe the same stress using the co-rotational frame attached to the body, the stress will
be called co-rotational stress resolved as follows:

[6- (t)]E®E = [G (t)]t®t (3.222)
=R (1) [0 (1)]geeR ()" (3.223)
=[0(0)|gxE (3.224)

P
= g 8 ] (3.225)

So we conclude that co-rotational Cauchy stress is an objective quantity as it is independent of
the bar orientation as follows: "

Also its time rate of change is objective such that it can follow the material constitutive relation
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in the rate form (e.g. for linear elastic material):
1 . . .
D:E[(1+v)6'—vtrace(6')] ~é=C:D (3.226)

We shall now introduce another type of stress measure known as Jamann stress rate 6° which is
considered as a push forward to the time rate of change of co-rotational Cauchy stress:

6° =R <&) R’ (3.227)
=R(QoQ") R" (3.228)
=R(R"oR) R" (3.229)
— 6 +RR o+ oRR” (3.230)
=6-Q0c+0Q (3.231)

We used (RRT =1 — RRT + RR” =0 — Q = RR7) in the above expression
In the same manner, for vector v, the co-rotational time rate of change of this vector v° is defined
as:

v =R(¥) =R(Qv), =R(R™v) ,=v+RR v=v—Qv (3.232)

Which R(R"v) . R(R"oR) 7 tRT} means rate change of spatial tensor v[6] taken by an observer
attached to the body. For a fixed observer in space, he or she needs to pull-back the object to the
material form R v [RT O'R] to perform the usual derivative operation and then push-forward to the
spatial form R(R"v) , [R (QoQ") tRT] ; or equivalently removing the spin effect Wy [Qo — 6Q)]
from the usual deriva;tive v[6] to h7ave the same objective observation seen by an observer fixed in

the moving frame .Another application to co-rotated derivative of basis e; attached to the body is
null

el =¢,—Qe; =0 (3.233)
Such that:
é, = Qe,- (3.234)

The objectivity of Jamann stress rate can be proven as follows:
For tensor 6 observed by O and O™ as follows

c’=6—-Wo+oW (3.235)

ct’'=ct—-W'oT+o'W" (3.236)
Where

wt=0wQ" + 00" ot =000" 6" =00Q" + 060" + Q60" (3.237)

Substituting into Equation 3.236 results in:
c’=0"-Wre" —cTWT
= 000" +06Q" +000" — (QWQ" +00") 060" — 050" (OWQ" +00")

= 060" —gWaoQ" —QoWQ" = 05°Q"
(3.238)
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From above equation, we conclude that Jamann stress rate is an objective rate.

Assume a bar shown in Figure 3.41 with cross section area A which is aligned horizontally in
the unstressed configuration Cy with material frame E attached to it, then rotated to configuration C;
at time ¢ with axial load P, with length /; and co-rotational frame ¢ attached to the body at the other
configuration C;. If the bar is further stretched to [, n, = I + %At to form final the configuration
C;. a; With final axial load P,. The co-rotational stress at two different times ¢, # + At is defined as:

Ny L y y
[6 ()] gor = [ 0 o ] as 6(t)=00.0" <06, =R (t)R" (3.239)
. 2o
6 (1 + A1) per = [ R ] (3.240)
as 6 (t + At) = Ql"!‘AtGI"rAlQl‘T—‘,-At R a Gt-‘,—At :Rt—l—At& (t + At)RtT_,'_At
(3.241)

If the body co-rotational coordinate system rotates with rate @, the rotation tensor at time ¢ 4 At
will be:

Rion =R(OA1)R = (14+640) R = (1+ QAN R, (3.242)
We assumed in the second equality in the above equation that @/\z is infinitesimal due to the

infinitesimal change in time A¢ such that (R (0 At) = (1 + AéAt) ).
Using the following

(1+QAN" =(1-QAr) (3.243)
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We can evaluate the time rate of change of Cauchy stress & as follows:

5 O —Or _ R 16 (1+ AR\, —RG (1)R]
At At
(1+QAr) (R {6 (1) +RC: DANR,}R] ) (1 — QA1) —R,6 (1) R
At
(1+QAr) (R6 (t)R] +R, (R{[C: DIR,A1)R] ) (1 - QA1) —R6 ()R]
At
(1+QAt) (6, 4+C:D) (1 -QAr) -0,
ANt
(Qo, —06,Q+ (C: D)) At+O(Ar?)
ANt
~C:D+Q0,—06,Q—~C:D=6—-Q0;+0,Q=0°

Such that the constitutive relation will be:

(3.244)

D= é [(14+V)(06%) =V trace(0’)] (3.245)

We used 6 (1 + At) = 6 (1) + RI[C : DAt]R, as the deformation rate D resolved in the co-rotational
frame of reference ¢, at configuration C; as follows:

9k g
(Dl = [ 0 ] (3.246)
While it is resolved in inertia frame e; as follows:
[D]e®e =R [D]t®thT (3.247)

As from Equation 3.239 and Equation 3.240

. . h-P
50+ 80pes— 8 Wlce = | g o] (3.249
and from
al
a0
[R7[C:DAUIR, ] . =R/ [C: DAtggER, = [C: D),y At = [ClEgk - [ %t 0 ] At (3.249)

Which, using the constitutive relation, gives the same findings of Equation 3.248.
Co-rotational deformation gradient rate of change F©. Deformation gradient is a two point tensor,
so co-rotational rate will be:

F°=F —QF (3.250)

The conjugate pairs P : F can be reduced to

P:F=P:(QF +F°) (3.251)
=P:QF +P:F° (3.252)
=P:F°+PFT:Q (3.253)
=P:F° (3.254)

P:F=P:F° (3.255)
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Note that PF is symmetric’ and Q is skew-symmetric, so we find that PFT : Q vanishes, (see
Equation 1.100) and

/ P:Fdvy= / P:F°dV, (3.256)
Vo Vo

So P : F? can be considered as conjugate pairs which was proven in the geometrically exact beam
theory in subsection 3.3.5.

€

Figure 3.42

Second Piola Kirchhoff Stress update and force resultant in beam element

There are two methods to update second Piola Kirchhoff stresses, namely total Lagrangian and
updated Lagrangian formulations. Assume a rigid cross section of a beam shown in Figure 3.42
with Cauchy stress resolved in the inertia frame and co-rotational frame as follows:

IO'ZIO'ijei(XJej:lEijlti@ltj (3.257)
‘While second Piola Kirchhoff stress tensor is defined as follows:

i§=18,'t®'; (3.258)
Defining a stress vectors (1)S 1 and 3S 1 at configurations C; and C, as shown in Figure 3.42 as follows:

081 =81ty (3.259)
281 =381’ (3.260)

TPF=JoTF~TFT = JoT is symmetric quantity due to the symmetry of Cauchy stress
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Figure 3.43

Where superscript signifies the time or configuration of measure, while subscript indicates the
reference configuration the property referred to. Due to the objectivity of second Piola Kirchhoff
stress, the update form of total Lagrangian formulation is defined as follows:

051 = 65+ 2 (6°Sw) (3.261)
Where the constitutive relation is defined as follows:
A (92Si)) = §2Cijns s (PErs) (3.262)

The resultant forces and moments applied on beam section at configurations C; and C; are defined
as follows:

'F ='Fe;,='F;'t; (3.263)
M ="M, ="'M,'t; (3.264)

The co-rotational components IF; and 'M; is defined as follows:
'F, = / oS1dA (3.265)
A
M, = / X] 151, da= / X; 481k esxidA (3.266)
A A

Where X = X;E; = XoE, + X3E3 or {)N(} = [0 X> X3] as shown in Figure 3.44, while [(l)Sl] =

[(1)S11 (1)S12 6513] and ek, is Permutation symbol.
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Figure 3.44

The spatial components of Equation 3.263 and Equation 3.264 can be defined using (t; = (])R e;) as

follows:

'F={Ry'F1 = (I)Ril/(l)SlldA
A

'M; = oRi'M; = (l)RiI/XJ 051K esk1dA
A

Where

(I)R = (])Ril e, QFE; = 1ti®E1

'F = /(I,SndA
A

'Fr = / 0S12dA
A
'F; = / AS13dA
A
M, = / (X2 §S13 — X3 $S12) dA
A
M, :/X3 0S11dA
A

'M; = / —X (S11dA
A

In the same manner configuration C,, with:

°F =’Fe;="Ft;
21‘4 = 2M,e,~ = 2M,'2ti

We get the following:

’F; =3Ri°F; = }Ris / 3S1dA
A

2M; =2R*M; = (%R[[/Xj 0S1x esx1dA
A

Where 3R = 2Ry ¢, ®E; =, QE].

Using Figure 3.43 to define the following force and moment resultants:

2 = 2F = 2F
2M =20t = 20T,

(3.267)

(3.268)

(3.269)
(3.270)

(3.271)

(3.272)

(3.273)

(3.274)

(3.275)

(3.276)
(3.277)

(3.278)

(3.279)

(3.280)
(3.281)
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The components of forces and moment resultants can be defined as follows:

°F;=1Rs"F; =1Ry / 1S1dA (3.282)
A
2Mi = %Rl‘]2M[ = %R,‘[ /X]’ %S]j ejK[dA (3283)
A
Where
R=IRy 1,0, ="1,0'1 (3.284)

The update form of updated Lagrangian formulation is defined as follows:
%S[j: {S[j‘f‘A({zS[]) (3.285)
Where the constitutive relation is defined as follows:

A(128i) = 12Cijus A (1PEys) (3.286)

Figure 3.45

€

Figure 3.46

m Example 3.16 If we have a beam shown in Figure 3.45 subjected to only axial loads with
Op, 1P and 2P and lengths °I, '/ and 2/ at configurations Cy, C; and Cs, respectively, the only
generated second Piola Kirchhoff stress components is f)S 11 at configuration C; at time ¢ with
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corresponding Green Lagrange strain (£}, defined as follows:

0F, 1 =%, (3.287)
1 1[2_0[2

g = o (3.288)
1 112_012

2p, = T (3.289)

The update form of total Lagrange formulation is defined as follows:

5811 = 0S11 + A (§7S11) (3.290)
oSt =081+ A (0'S11) =1 + A (Qsn) (3.291)

Where “e;; is the infinitesimal strain and A (815 11) and A (81S 11) are defined as

AQS1H) =0 Cuin (OB —en) (3.292)
A(§2S11) = % Crin (§En — 0Enr) (3.293)

For linear elastic material (1)2C1111 = E, where E is Young modulus.
While The update form of updated Lagrange formulation is defined using Figure 3.46 as follows:

1E11 =121 (3.294)
1 112 _ 112

B =5 (3.295)

Su=1S1+A0Ssn) ="on+40"'s)) (3.296)

Where ¢;; and G;; are the co-rotational components or the components of the infinitesimal strain
and Cauchy stress resolved in the co-rotational frame I¢, as shown in Figure 3.46. A ((I)IS 1 1) is
defined as

A(12S1) = 1*Cuiun (FEn —12n1) (3.297)
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(4. Energy Principles and Introduction to FEA

4.1 Introduction

4.1.1 Work
A__
AN N —~ N
N\
NN ~__B
~__"7
€
€
Figure 4.1 Figure 4.2

Assume a particle moving through path AB with position vector r relative to fixed frame of
reference under an influence of force F, such that the infinitesimal work dW on the particle through
moving from position r to position r + dr will be the dot product of the force vector at position r
and the infinitesimal movement dr or the product of the displacement and force in displacement
direction.

dW =F .dr = Fidr, + Fodry + F3dr; 4.1)

So total work done through the entire path AB will be:

B
W:/ F.dr 4.2)
A
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The work carries positive sign if projection of the force vector on displacement and displacement
vector has the same direction. Bear in mind that this quantity is a scalar value which does not
change with changing coordinate system, even if the components of dr and F (vectors) depend on
the coordinate system chosen.

Like above, work done by moment vector M through an infinitesimal rotational spin d¢ will be:

dW = M.d¢ 4.3)

The total work done from point A to B will be:

B
W= / M.do (4.4)
A

See Appendix 4.5.5 for different types of moments and the corresponding work done for each type.
For example, the work done by particle’s weight mg elevated a distance y equal to —mgy. Also the
work done on linear elastic spring with stiffness k stretched or compressed by displacement x is
—%kxz. The work is negative in both cases as the force and its displaced distance have different
direction. For flexible bodies, the total work performed on the body contains two parts, work done
by internal forces Wy and other by external forces Wr defined as:

W=W+Wg (4.5

Power

The time rate of change of the work done by force F to move a particle through an infinitesimal
distance dr for an infinitesimal time dt leads to definition of the power P given by:

aw dr
P=—=F.— =
dt dt

Fv (4.6)

Where v is velocity of the particle. As a result, the total work done through path AB can be
converted to time integral with interval [t4, 73] given by:

B B g
W:/ F.dr:/ F.vdt:/ Pdt 4.7)
A tA 17

Where #4 and p represent the start and end time of path AB spent by the particle. Newton’s second
law of motion for particle with mass m moving under an influence of force F is given by:

F =ma (4.8)
So power exerted by force F contributes to change in kinetic energy K.E as follow:
d (1 , d
dt <2mv ) dt (K-E) (49)

From above equation or using principle of work and energy, work W is converted to a change in
kinetic energy as follows:

Ip
W= / Pdt = AK.E (4.10)
A
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Potential energy and conservative forces

A force F is considered conservative, if the work done by it is independent on the path taken, but
it depends only on the initial and final positions of the force, e.g. work done by particle weight
depends only on the vertical displacement. This work is stored in the weight as a potential energy,
such that if the weight mg lifted a distance y which means that negative work —mgy is exerted by
weight (as weight force is downward and the displacement is the opposite direction), the weight
acquires a positive potential energy (IT = mgy) as it has the potential or capacity of doing positive
work mgy when returning back down to its initial position so the change in potential energy is
defined as

B
AH:—/ F.dr=-W 4.11)
A

Also, when elastic spring with stiffness k is stretched or compressed by distance x from its
unstretched position, an elastic potential energy is stored in the spring equal to %kx2 (linear elastic
spring), as in any deformed position, the spring has the potential to do positive work when moving
back to its undeformed position. From above equation, the conservative force F can be evaluated
from the gradient of its potential IT in the direction of its displacement as follows:

F(x) =—VII(x)  where V(A) is the gradient of a scalar A (4.12)
D, C@.1)
A (0,0) B 2,0
Figure 4.3

= Example 4.1 — Conservative force. Consider a force field F(x,y) = (y+2x)i+x; affecting
a particle moving from point A to point C shown in Figure 4.3, check whether the force is
conservative or not, then calculate the work done through two paths ABC and ADC.

The components of force F(x,y) are:

Fo=y+2x, F,=x (4.13)
Applying Equation 4.12 to get the potential as follows:
dIl

Fo=—— > T=—p—x+£i(y) (4.14)
dll

Fy:—d——>H:—yx—f1(x) (4.15)
Y

So we can conclude that

I1=—yx—x>+C where C is constant (4.16)
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So the force is conservative.
The work done through path AB is

B 2 2N
w =/ F.dr= / (y+2x).dx| = [yx+ ]
A 1 y=0 2 x=0

Similarly, work done through path BC, AD, and DC is 1, 0, 3, respectively. so the work done
through path ABC and ADC is equal to 3 which makes the force F conservative.

= (2y+2)]y20 =2 4.17)
y=0

= Example 4.2 — Non-conservative force. Force F = xyi+ yx? is not conservative as

ATl 1,

Fx——E—)H—_EX}"i‘fI(Y) (4.18)
dIl 1

Fy:—dfy—>nz—§y2x2—f1(x) (4'19)

There is no potential function that can achieve the two equations which make the force field
nonconservative. n

Another example of non-conservative force is friction forces which depend on many parameters
like path length.

Conservation of energy
From Equation 4.10 and Equation 4.11, we get

A(TT+K.E) =0 (4.20)

Conservation of energy states that the total energy (sum of the system potential energy II and
kinetic energy K.E) for a conservative system remains stationary. Conservation of energy needs the
external forces to be conservative or have a field, so we can evaluate the change of its potential from
end points of the path moved. For flexible bodies, Another requirement to apply the conservation
of energy is that the body should be elastic, such that a unique internal forces can be extracted for
the given body deformation. In this case a unique force field will be a function of the deformation
and independent of the path, such that we can extract the internal potential (potential strain energy)
for any particular deformation.

= Example 4.3 Assume an object of mass m located at an earth gravity field and thrown upward
from level x; with velocity v; to reach level x,, what is its velocity at level x,? The object is
subjected to force field or gravity force (F (x) = mg) pointing downward (constant with x),
where g is the gravity acceleration of the earth.

The change in potential energy AIT = — fxxf F(x)dx = — xxl2 —mgdx = mg (xy — x1), the
negative sign of mg inside the integral due to the applied force is opposite in the direction to
displacement moved.

The change in kinetic energy K.E will be AK.E = %mv% = %mv% .

As the total energy is constant, we get.

1
mgx + Emv2 = constant 4.21)
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Also differentiating the equation, so the acceleration of the object (a) is as follow:
mgx+mvw =mgv+mva=0+<>a=—g (4.22)

Also the power of the gravity force equals to the rate of change of kinetic energy which leads to
the same results.

d
mgv=Fv=P=—

dt

1
<2mv2) i e (4.23)

From the last above two equation, we can check that acceleration is identical to the gravity
acceleration. "

? F
X *mg

118
il
A B

Figure 4.4

f

#o-Lfx

m Example 4.4 — Flexible body. Assume unstressed vertical linear elastic spring shown in
Figure 4.4 of length L and stiffness K then glued with gravity load mg to displace downward
distance mg/K, then this mass is pulled at distance x added to L (x+ L) then left to vibrate
freely. We need to evaluate the mass velocity when spring reaches its unstressed length L.

When the mass is vibrating, it is subjected to two force fields, gravity force field and force
exerted from the spring equal to Kx where x is the distance the spring stretches, such that the
force field will be:

F(x) =mg+Kx (4.24)

The change in potential energy for the mass moving from point A to point B will be:

X 1
ATl = —/ F(x)dx=— (mgx—i— 2Kx2> (4.25)
X1

The negative sign resulting from the above equation because the motion of the mass in the
direction of the force field. Note that the first term of the equation called increase in load
potential energy AV, while the second term is called increase in the strain energy AU.

The change in the kinetic energy AK.E = %mvf9 — %mvﬁ = %mv%, such that the total change
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of the energy of the system will be:

1 1
Emv% — (mgx+ 2Kx2) =0 (4.26)

4.1.5 Strain energy for different types of loading

O ..
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Figure 4.5
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Figure 4.6
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Figure 4.7 Figure 4.8

Applying loads on elastic body results in internal stresses and strains. Strain (potential) energy
stored in the body per unit volume (U) is defined as the area under stress strain curve shown in
Figure 4.5a as follows:

_ &
U= / O'ijdE,'j (4~27)
0
For linear elastic body shown in Figure 4.5b, this energy will be:
— 1 1
U — 7Gij8ij — 762 (428)

2
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Stain energy for the total volume of the body will be:

U= / (U)av = / ( / Sfo,-l,-del-j) av (4.29)
\% \%4 0

For linear elastic body, the total stain energy is:

1
U= [ —o2av 430
v 2E i (4.30)

Strain energy due to axial loading

Assume a linear elastic bar problem shown in Figure 4.6 with length L, area A and modulus of
elasticity E fixed at one support and subjected to axial load N at the other free end. The stress and
strain distributions along the bar is defined as follow:

N
= — 4.31
o= (4.31)
c N
_ - _ 4.32
E=E T EA (4.32)
Also the kinematic relation for the axial strain is defined as:
du ,
_ 4.33
il (4.33)
2 L 2
1 /N 1 /N
2
—o0°d — | — ] dV = — | —]dA ] d
U= [, 30 = /2E<A> /(></2E<A> )x
(4.34)
1 N
:/ A x—/ —dx
0 2F 2EA
From Equation 4.32, it follows:
1 (L N2
U=3 EA(u')” dx (4.35)
0

Strain energy due to bending moment
For a linear elastic beam directed along x direction subjected to moment M, about its major axis z
with inertia I, the stress and strain distributions is defined as:

M
o=——y (4.36)
IZ
M
=21 4.37)
E EL

Where y is the vertical distance away from the geometric natural axis Jof the beam. Also the strain
can be related to beam curvature v using this expression:

£= —@ ="y (4.38)

dx
2
/ 1 (MZ ) dA dx (4.39)
v2E \ I

1 (M, \° L
~N2E\TL 0
M\° L1 M 1 >
:/ = /ysz dx:/Z Id / Zd—/ SEL(V") dx
o 2E\ [ A o 2E\ L 2EI 2

(4.40)
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Strain energy due to shear stresses

For a linear elastic beam subjected to shear force Q with area A, length L and shear modulus of
elasticity G, using the concept of an equivalent shear area Ay = kA, where k is area shear factor.
The shear force is equal to the shear stress Ty4 calculated at the neutral axis times this area as
follows:

Q = TvaAs = kTvaA (4.41)
So the corresponding shear strain at the neutral axis will be:
wa 0
== 4.42
Y= AG (4.42)

= _— = —_— —_— A = = - AS 4.4
U /VZEG av /O/VZG(AS) dA dx i 2GAde /O 5G Y dx (4.43)

Strain energy due to uniform torsion

[ aayiasa]
N\ a

free warping % _

~——— > —7
e - - - - - - -—

at beam end M,

(b)

Figure 4.9

No warping
at beam end

Torsion for warping restrained beam

(a)

Figure 4.10

For I-section shown in Figure 4.9a with length L, torsional rigidity GJ, fixed from axial rotation
at the left end and subjected to torsional moment M, at the other end, the rate of beam twist 3 is
defined as:

M
p=b/ =2

o (4.44)



4.1 Intfroduction 157

As the torsion moment is constant along the beam length, the rate of twist from above equation is
also constant with rotation 6, at the right end defined as

ML

GX = L:
p GJ

(4.45)

M, is called ST. Venant or pure torque My, = GJ 6, with shear stress shown in Figure 4.9b, so the
strain energy is defined as:

L M 2
U= / SN (4.46)
o 2G

Strain energy due to non-uniform (warping) torsion

In some cases, torsion can be carried by axial stresses in addition to shear stresses. This occurs
when the cross section is prevented from warping, which is supposed to happen in the section
when subjected to torsion as in Figure 4.10a at the left end of the beam. Warping out of plane
means that the axial displacement of fiber appears as shown in Figure 4.9a. Preventing section
from warping results in longitudinal stresses and corresponding torsional resistance called warping
torsion. Consider two beams in Figure 4.9a and Figure 4.10a subjected to moment M, at the right
end, and restrained from twisting at the other end but one beam is warping restrained and the other
is not. The first warping free beam has the freedom to displace axially without any restriction and
exhibits a similar warping distribution at any cross section along beam length. Also the rate of
twist is constant across the beam length, and all the cross section is subjected to shear stresses.
While the warping-fixed beam shows that the rate of twist is not constant starting from null at the
wrapping-restrained section end reaching to its maximum at the right end which forces the two
flange of the beam to display laterally in a bending form. As a result, axial stresses is formed in the
bending flange and participates in resisting the applied torsion besides shear stresses. The torsion
portion resisted by axial stresses is called warping torsion which is defined as

M, =V.d (4.47)

Where V is the horizontal shear force resulted due to the resistance of the flange to the bending and
d is the distance between two flange as shown in Figure 4.10b.

M
V= — dxf (4.48)
d*w
My = EjnyZf (4.49)
From Figure 4.10c, wy = %, the warping torsion is defined as:
de dSWf Elyfdz d3 Qx "
TW - —Wd - _EI}’de - — 2 dxs == —ECWGX (450)

nyd2 — I,de
2 T 4

Where C,, is defined as warping constant equal to for beams with I-sections. So the

total torsion resistance will be:
T=T,+T,=GJO.—EC,0) 4.51)

stress distribution across the flange will be:

o=—zZ 4.52)
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From Equation 4.49 and wy =

d*w; _d*de

c=F =F
de * TP h gt T

Ede"; (4.53)

So the resulting strain energy form the top flange Ur will be:

1 L1 L1
Ur = / —o%dV = / —Ed* (6" / 2dA ) dx= / —Ed’l,; (6") dx= / ~EC,0* )d
8 A 0 8 ’ 0 4

(4.54)

Similarly the bottom flange stores the same strain energy, so the total strain energy for beam
subjected to torsion moment is defined as

L 1
U= /0 <2G19;2 + 2Ecwe;’2) dx (4.55)

In finite element analysis, we can consider the rate of twist 6’, as an additional DOF with a
force variable conjugate to it called bi-moment. Bi-moment B is considered an auxiliary quantity
represented by two equal and self-equilibrating moments appears at the two flange as shown in
Figure 4.10b and defined as:

d*ws . Elyd* d*0,

fd2d 4 dx?

B=M;yd =EI, =EC, 6/ (4.56)
The objective of bi-moment is to formulate an expression similar to the one used in beam theory
M, =EL(V").

For open cross section like I-sections, out-of-plane warping resistance is large compared to its
torsional rigidity and can not be neglected.

Virtual work

Any system restrained at some locations on its boundary and subjected to external forces takes
many configuration. The set of configurations that satisfies the geometric boundary condition is
called set of admissible configurations. For elastic bodies, there is only one equilibrium or true
configuration in this set that corresponds to these applied forces. We can also assume that the
admissible configuration is obtained by infinitesimal variations of the true configuration. These
displacement variations are completely imaginary or virtual and does not have any relation with
the true displacement. However, these variations do not violate the boundary conditions (B.C) as
shown in Figure 4.11a. Also the applied loads should be the same in the magnitude and direction
during these variations as shown in Figure 4.11b. Also it should be independent as shown in
Figure 4.11c(As it is a rigid body, the dv; is related to dv; and both displacements can not be used
together in formulating the virtual displacement of the beam). The principle of virtual work states
that, for a body configuration under equilibrium of external loads and for any virtual displacement
added to this equilibrium configuration, the sum of the virtual work exerted through this virtual
displacement vanishes. We can verify this principle via the following examples.

m Example 4.5 — Rigid body. Let us assume a rigid rectangular plate shown in Figure 4.12
with dimensions a and b subjected to external concentrated forces Fy, F», F3, and concentrated
moment M, then it undergoes three independent virtual displacements du, év , and 66 “. For
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(c) The virtual displacement 6v; and dv; are dependent if the beam is rigid

Figure 4.11
equilibrium case, the resulting virtual work should vanish as follows:
1 1
oW =F —6u—§b60 +5|—-0v+ §a39 (4.57)

+ F3sin O <6v—|— ;a&)) + F3cos O <6u— ;b60> =0 (4.58)
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el

Figure 4.12

1 1 1 1
(—Fy + F3cos0) du+ (F, + F3sin 0) v+ <—2F1 b+ EFZ a-+ % asin @ — §F3 bcos 9) 66=0

(4.59)

As the virtual displacements are independent and arbitrary, so their coefficients will vanish also
as follows:

—F+ F35c0s0 =0 (4.60)
F,+F35in0 =0 (4.61)
1F b+ 1F —|—1F in 6 1F bcos6 =0 (4.62)
—= = —F;3 asin@ — —F3 bcos 6 = .
1At 23
From above, the principle of virtual work provides the three equilibrium equations. "

“We note that any rigid planar element has three independent displacements; two displacements to express
displacement in x and y direction and the third one to expresses rotation. We can choose any three independent
displacements to express this motion like using two displacements in x direction and one in y direction, such that we
can fully describe the planar body motion

In some cases, the assumed virtual displacement could violate the boundary conditions as
shown in Figure 4.13. In this case, the reaction related to the violated boundary point will be
considered as an external loads and the virtual work will be defined as follows:

F

5W:R5v+F67V:0—>R:§ (4.63)

This violated virtual displacements is used to calculate the reactions of structures.
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Figure 4.16

m Example 4.6 — Flexible bodies. Assume a linear elastic spring with stiffness k and subjected
to external force F' stretching the spring a displacement A as shown in Figure 4.14. To evaluate
this displacement, we assume a virtual displacement.

The virtual work includes two components; one results from internal stresses W; and other
comes from the external loads §W,,;, such that the total virtual work will be:

OW = oW+ OWey (4.64)

Each component is calculated from the area shown in Figure 4.15

OW = (KA)OA— (F)0A=0— A= g, for arbitrary 6A (4.65)

Virtual work principle is used for solving nonlinear problems and non conservative systems. The
above examples are very simple compared to its powerful use in solid mechanics and finite element
analysis. The next two examples provide an insight into its use in nonlinear analysis.
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Force

Force

dm d®

Elongation

Figure 4.17 Figure 4.18

= Example 4.7 Assume a nonlinear elastic spring with such that the internal force is a function
of the spring elongation d (F = F(d)) as shown in Figure 4.17. This relation is irreversible such
that we cannot calculate the elongation for a particular force directly®. It is required to evaluate
the displacement d for applied external force F. In this example we will evaluate this force
using Newton Raphson method or Taylor’s theorem as follows:

First we start at a assumed trial displacement d;,, and evaluate the corresponding force F,,
then applying Taylor’s Theorem after neglecting the higher order terms of Ad than first as
follows:

JoF
F=Fp+2| Ad (4.66)
Y ad d=dy,
The g—g represents the slope of tangent at d;,, which could be evaluated from function

=diry

F = F(d) and is called the tangent stiffness of the spring as shown in Figure 4.17. From the
above equation we can evaluate an approximate solution to Ad. Repeating this process using
diry = diry+ Ad many times leads to an accurate result for displacement d. Also it can be solved
using virtual work principle as follows:

As shown in Figure 4.18, we can assume the first trial solution is d (1) and it is required to
evaluate a better approximation for the displacement d(2). Applying a virtual displacement 8d
on both cases. As shown in Figure 4.16a and Figure 4.16b, this virtual displacement is identical
in both cases and independent on Ad. The virtual work in the both cases will be:

SW| g = 8dF W, §W|,_ 0 = 8dF (4.67)

In the second case, the virtual work can be evaluated using Taylor’s expression as follows:

oW
5W|d:d(2) = 6W|d:d(l) + — Ad (468)
(9d d=d)
As a result:
(1)
8dF = 8dF") + 8d ag y Ad (4.69)
d=d")
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Sd (F—F<‘>) = §d (agc(;)

Ad) (4.70)
d=d)

For an arbitrary displacement dd, we get an equation similar to Equation 4.66.

1
W _ oF)

F-F
ad

Ad 4.71)
d=d®

The process above is called linearization of virtual work which is used to evaluate the tangent
stiffness of the structures. "

“In most structures, if the displacement of the structure is known, we can evaluate the corresponding strains
and stresses which is integrated over the body volume to evaluate the external loads, but real problems have the
displacements unknowns for given external loads and this irreversible function (F = F(d)) is an example of a real
problem.

u; U

— VvV -

-l | .

F; T T

_ F
A,=uyu, ?

F, _ Fy
A/=u,

Lo | -

'P ‘/\/\/\ P'

k] 1 kz 2

Figure 4.19

= Example 4.8 Assume two linear springs connected in series as shown in Figure 4.19 and
subjected to two concentrated loads P; and P, with corresponding displacements #; and u5.
From equilibrium at each node, we get:

Py = ko (up — uy)
P1 +P2 e k1u1 — P1 e k1u1 —kz(uz—ul)

P _ | kitk —k || w
A=l el 79

If the two springs are nonlinear, the forces generated in each spring are

(4.72)

F=0.1A+A, B=02/A3+1, (4.74)
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Where A and A, represent the elongation undergone in each spring which are related to the
nodal displacements through:

A] =Uup, Azzuz—ul (4.75)
So the forces in each spring will be:
Fi=0.1u4u;, P=02(u—uy)*+ (uy—u) (4.76)

The nodal forces is related to the internal forces in springs as follows:

pr=F=020u—u)> +up—u (4.77)
pitp2=hH (4.78)
p1= Fl —F2 = O.lu%—l—ul — (0.2(u2 —u1)2+u2 —ul) (4.79)

So the stiffness of each spring is defined as:

0F;
ki==——=02A 1=0.2 1 4.80
YN 1+ uy + (4.80)
k= 0401+ 1= 0.4(ur —uy) + 1 4.81)

Using virtual work principle as in the previous example as follows:
Starting with trial solution W’ = [ u(ll) Mgz) ]

oW

oW = 5W‘u:u(1) ol I

Au (4.82)

u:u(l)

As shown from Figure 4.20, applying identical virtual displacements on the real displace-
ments before and after the current trail and rewriting the upper equation in terms of theses virtual



4.2 Virtual work 165

displacements as follows:

20
SurPy + SusPy = 5uy P + 5un PV + Ty Au (4.83)
u=ul)
p—pPY ISW
[ 6ur Sur | W == Au (4.84)
P, —P, ou |,
But
ISW| 9 (SurP+ SurPy) [ 6w bun ] o ok [ Auy ]
8u ) 8u =grf(1) g—fz g—ﬁi S Auz
(4.85)
Then it follows:
(1) 9P 9P
P] —P ) p] Aul
61/[1 61/[2 L — 3“1 auz |: =0 (4.86)
[ ] ([ py— PV ot o8 ||| Aw
As Ouy and Suy are arbitrary, it follows that:
1 P, P
[Pl_Plili —[3# 3#” [Aul]z[o] (4.87)
P,—P} 3 | R AT 0

The second term is called stiffness matrix and can be defined using Equation 4.72 as follows:

dP, dP
Tui Tu; _ ki+ka —k (4.88)
% 9P —ky k e :

uj auZ u:u(l) u=u

While the first term of Equation 4.87 is called the unbalanced forces at nodes which approaches
zero with iterations as follow:

Assuming the nodal forces P, = —0.1 and P, = 1.2 and we need to evaluate the nodal dis-
placement due to nodal forces . Assuming the first iteration uh’ = [ 05 1.5 } and using
Equation 4.76, Equation 4.77 and Equation 4.80, the stiffness matrix and nodal forces will be:

|: ki+ky, —k :| . |: 0.4ur —0.2u; +2 —O.4(u2—u1)—1 :|

—ky ko —0.4(u2 = Ml) —1 0.4(u2 = ul) +1
4.89
Pl—Pl(l) _ [ —O.l—O.lu%—Zul—i-(0.2(u2—u1)2—|-u2) ] ( )
Pz—PZ(U 1.2—0.2(u2—u1)2—u2—|—u1
(1)
ki+ky —kp 25 -—-14 P —P | 0.575
e[ el o s 0l B L R
Applying Equation 4.87

Aup T [ 05227
[ Auy ] - [ 0.5227 ] @91
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The next trial start with u(?) = u(1) + Ay = [ ;85;; ] , the stiffness matrix and nodal forces
will be:
[ ki+ky —k ] 3 [ —2.6045 —1.4 ] p-pP? | [ —0.0273 ] o
-k k|| _ —1.4 14 p,— P 0 '
Applying Equation 4.87
Aup | | —0.0277
[ Auy ] o [ —0.0277 ] ©25)

The next trial start with (3 = 4(® + Au= [ ; ] , the stiffness matrix and nodal forces will be:

3)
ky +k; —kz] [—2.6 —1.4] P —P [o]
= & = 4.94
The unbalance forces vanishes which mean the equilibrium configuration is reached. u

4.2.1 Stationary potential energy

K=1 N/m
F=1N s

Figure 4.21

Figure 4.22

As stated in subsection 4.1.3 and Equation 4.20, for a conservative system (elastic and subjected
to conservative forces), there is no change in the total potential energy for static loading as follows:

ST =8U+68V =0 (4.95)

where U and V is the elastic strain energy stored in the system and load potential energy, respectively.
In other words, the potential energy is stationary and it could be maximum or minimum. For stable
structures, it undergoes minimum value with respect to displacements.

s Example 4.9 Assume a linear elastic spring with stiffness K subjected to axial load F as
shown in Figure 4.21. Due to axial displacement x the strain energy induces is %kxz, while the
load potential will be —Fx , so the total potential will be:

1
II= Ekx2 —Fx (4.96)



4.3 Variational approach 167

Its variation will be:
dIl
O8ll=—6x=0 4.97)
dx

For arbitrary displacement Ox, % will vanish as follows:

dIl F
E—kx—F—O—)X—E (4'98)

Figure 4.22 shows each components of potential energy and the total energy for k = 1N /m and
F = 1N. The total potential reaches minimum value at x = 1. n

4.3 Variational approach

4.3.1 Calculus of Variance

Figure 4.23

If a function f(x) has an extremum (minimum or maximum) at a point x, in the interval
x = [a, b], the first derivative of this function at this point vanishes as follows:

ar

=0 4.
o (4.99)

X=X,

The function is considered maximum (minimum) at this point when

2 2
) <0 <df > 0) (4.100)

dx? dx?
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For a differentiable function f(x,y) of two variables, the necessary condition for an extremum at
some point (xg, o) is that the total differential of this function vanishes at this point as follows:
0

df = —fd —i—a—fdy 0 atx=xpandy=yp (4.101)
As x and y are linear independent (x and y are not related to each other), so for arbitrary values for
dx and dy, it follows that:

0 0

—f:0, —f:0 at x = xp and y = yg (4.102)
dx dy
For paraboloid z = x> + y?> +0.25 shown in Figure 4.23, its derivatives with respect to x and y
vanish at:

a—f:2x:0—>x:() (4.103)
dx
9 o 0y=0 (4.104)
dy

As shown in Figure 4.23, the surface tangents at point (0,0) in x and y directions vanish as shown
in red arrows with zero slope at point (0,0).

Variational methods seek the extremum of integrals of what is called functionals or function of
functions. Functional is definite integral of dependent function(s) and their derivatives that are
themselves functions of other independent variables. For example:

b
F=/ 1(y,z,y',2,y",...)dx (4.105)

y =y(x) and z = z(x) are dependent functions of independent variable x, and I(y, z) is functionals
or function of functions. The calculus of variance is used to calculate this dependent function(s)
that make the functional stationary value. For example, in the real structures, the total potential
energy should reach minimum value at the equilibrium configuration. For example, if functional F
is given by:

b
F= / (u' +2u*) dx (4.106)

it could be written as:

b
F= / ¢ (u,u')dx (4.107)

Where u = u(x) is dependent function of independent variable x. The purpose of calculus of variance
is to evaluate the function u(x) that make functional F stationary value. First we will introduce
variational operator (8), such that 0F is called the first variation of functional F. Variational
operator (9) operates like differential operator (d), but does not depend on the independent variable,
such that x is fixed during variation of function du and its derivative 6u', such that the first variation
of functional § F and differential dF are defined as:

JoF JoF

OF 55 +£5 ! (4.108)

JoF JoF oF
dF a—d +?d +a—d (4.109)
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Variational calculus operates similar to differential calculus as follows:

§(Fi+F) =08F +8F (4.110)

S (F]Fz) =0F b+ F 0F 4.111)

Also (8) can be interchanged with differential operator or integral operator as follows:

b b
5 (‘l”) = d(‘S“), 5 (/ udx) :/ Su dx (4.112)
dx dx a a

For functional F = fab ¢ (u,v,w) dx defined in terms of several dependent functions u, v, and w, its
variation

OF =8F,+0F,+0F, (4.113)
Functional is called linear (quadratic) functional as follow

F (qu) = aF (u) (F (au) = &*F (u)) (4.114)

« Example 4.10 F = [ (au-+ bu' + cw) dxis alinear functional, while F = [ (au® +bu? + cw'” ) dx
is a quadratic functional. "

The first variation §F also called Gateaux derivative of function in direction Su takes these
forms

OF (u,6u) = Dg,F (u) = DF (u,du) = DF (u) [Su] = %F (u+6u)|,_, (4.115)

Note 4.1 The following expressions are useful for nonlinear analysis:

_9(6u)  9(5u)oX .
V(Bu)= " = =5 =Vo(Su)F (4.116)

d(6v)  I(8v)oX

_ @t —
V(év) = % = oX 9x - Vo(ov)F (4.117)
Using the above expressions:
B du _ d(0u) B
5F_6(8X+1> = ox =V, (6u) =V (6u)F (4.118)
- v\ d(6v) -
OF =6 (8X> = 9x = Vo(6v) = 6F =V (ov)F (4.119)

1 1
Se =28 (Vu+Vu') = <V(5u)T +V (3u)> (4.120)
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_ 1 rn_ 1 T Ve o T T
6D = 38 (Vv+Vv )_2<V(6v) +V(5v))_2<8FF +F SF) @.121)

using Equation 4.120, we reach:

1

SE = %6 (FTF—1) == (SFTF +F"5F) = %FT (V(6u)" +V (6u)) F =F"6¢eF (4.122)

N |

= Example 4.11

F= / (ere® + couu)* + csu” + cquv) dx (4.123)
We find that the above expression can be expressed as follows:

F = /¢ (u,u,u V) dx (4.124)

With variation:

_ _[(9¢s 99, 9O\, (99
5F—3Fu+5Fv_/(auéu—kau,&t—kau”&t +( 5, 0v ) dx (4.125)

= / <<2c1u +c (u')2 +C4v) Su-+ (2C2Lt u') Su' +C36u"> + (caudv)dx (4.126)
|

In structural problems, variational approach is used to find the displacement (dependent) function
that make the potential energy stationary value (principle of minimum potential energy).

»v
q
oo P
2 xu f" 7“
—————— - L - —
F
Figure 4.24

m Example 4.12 The total potential energy of a fixed beam shown in Figure 4.24 with length
L, bending rigidity E1, and axial rigidity EA subjected to axial load P, transverse load F at its
right end x = L, distributed axial load f and transverse loads ¢ is defined using Equation 4.95,
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Equation 4.35 and Equation 4.40 as follows:

1 1
[=u+Vv= / (2EAu’2 + 5Elzv”2 —qv— fu) dx—Fv(L)— Pu(L) (4.127)

The variation in the total potential energy will be:

L
oIl = / (;EAMI6MI + %Elzv"ﬁvl' —q5v—f5u> dx—Fo6v(L)— Péu(L) (4.128)

u
Up
ou=0
at GBC
Ua eou
_ Z&u Figure 4.26
= = T~ _ _ = .
Figure 4.25

Let us assume a beam with true (equilibrium) configuration u(x) needed to be evaluated. We
can get what is called an admissible configuration # by applying an infinitesimal variation € to the
true configuration in the direction du as shown in Figure 4.25 as follows:

U=u+edu (4.129)

€ is very small variation, such that it does not disturb the equilibrium. Ju is an arbitrary kine-
matically admissible function that satisfies the geometric boundary condition (GBC) as shown in
Figure 4.26. du is an assumed or imaginary (displacement) function field and does not have any
relation with the true configuration. We are not interested in all functions %, but the one that satisfies
the geometric boundary condition. These geometric boundary condition can be defined as follows:

Sul, =0 or s, =uls, (4.130)

Su

Where S, represents the location of restrained boundary. The above equation means that the
assumed displacements must be equal to the assigned displacements at this restrained boundary. As
shown in the Figure 4.26.

There is an infinite number of admissible configurations even for the same du via changing €.
Using Taylor series, the change AF in a functional F = [ ab ¢ (u,u') dx due to disturbance € in
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direction of du will be defined as:

b b
AF:/ ¢(u+85u,u'—|—85u')dx—/ ¢ (u,u')dx

8F 182F aF 182F
(4.131)
| oF oF  , 19°F 19%F .. 2|
= m5u+75 e+ 39 2(514) 8u’2(6u) e 4...
SF 52F
= 8Fe+8°Fe’+...

For a functional to be stationary or extremum (minimum or maximum) at a particular configura-
tion, the first variation of the functional F should vanish, while the second variation §F defines
if the function is minimum (maximum) at this configuration as follows:

SF =0, 8%F >0 (8%F < 0) (4.132)
So we get:

.. OF oF _ , 99 99

O_6F_a—6 ?5 / <8u8u+8 -Su ) (4.133)

Using integration by part for the second term, it follows:

" (99 29 29 s |"

0= -_— - Oudx 0
/a <8u dx<8 >> +8u’ ua
Generally, the last term 5~ ,5u vanishes at boundaries as for geometric boundary conditions du

vanishes, while for essential boundary conditions % vanishes (see the next example), so the above

equation will be:

bro¢ 20
[(%4(2)) w0 139

Using the following Lemma for any arbitrary function du:

(4.134)

b
If / Goudx =0, it followsthat G =0 at any point on the domain of integral [a,b] (4.136)
a

While, for two independent arbitrary functions du, and Ov,

b
if/ (Géu+ Hv)dx =0 <> Both G and H vanish at any point on the domain of integral |a,b]
a

(4.137)
As a result of this Lemma, it follows:
¢ ¢
- - — 0 4.138
Ju <8u ) (4.138)

This equation is Euler equation of functional. Of all admissible functions, there is only one solution
that satisfies the above equation which express the true function that minimize the functional F.
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y — »P
/ X, U EA
—— — L —

Figure 4.27

m Example 4.13 Let us assume a rod shown in Figure 4.27 with length L and axial rigidity EA
and loaded with axial load P and with distributed axial load g. Using Figure 4.27, the total
potential energy will be:

L
1
= / (ZEAMIZ — qu) dx — Pu(0) (4.139)
0
The equilibrium path that makes 6IT = 0 as follows:
L
0=20I1= / (EAU 8u' — q8u) dx — PSu(0) (4.140)
0

Using integration by part over the first term leads to:

L
0= 811 = EAu'Su|, — (EAu' + P)8u|, —/ (Zx (EAW) —I—q) Sudx (4.141)
0

At the left end x = 0, using Equation 4.32 and Equation 4.33 it follows:
EAW (0)+P=0 (4.142)

This condition is called the essential boundary condition, while Su|, vanishes to satisfy the
geometric boundary condition leading to finally:

L
d
/ < (EAU') —|—q> Sudx =0 (4.143)
0 dx
Using the above lemma, it follows:
4 (EAU')+¢q=0 (4.144)
dx )
The above equation corresponds to the Euler Equation 4.138. n

m Example 4.14 For a hinged-hinged beam shown in Figure 4.28 with length L, bending rigidity
EI and axial rigidity EA subjected to axial load P at the right end, Moments M, and M}, at its
ends, distributed axial load ¢, and transverse loads ¢, the total potential energy of the beam is



174 Chapter 4. Energy Principles and Introduction to FEA

»v q M]

x}y:: > ZO= 7P

———— e —

Y

Figure 4.28

defined using Equation 4.95, Equation 4.35 and Equation 4.40 as follows:
L
1 2 1 12
1= EEAM + EEIXV —qot—qv ) dx —My6y — M6y (4.145)
0
Its variation will vanish (see subsection 4.2.1) as follows:
L
ST = / (EAW' 8u' + ELV" 8V — q,6u— q6v) dx— PSu(L) — My656)— M 86, =0 (4.146)
0
Integrating once and twice by part for the first and second term, respectively.

L L
ol =— EAu" +q,) ud / ELV" —q) évd
/0( u+q) ux+o( Vv q) vdx (4.147)
+ (EAW') Suly — PSu(L) — (ELV" + PV') 8v|; + (ELV' — M) 8V

As 6u 6v and OV’ are arbitrary and independent so their coefficients vanish. This leads to the
following differential equations associated with simple beam.

(EAU"+q,) =0, x=[0,L](EL"—q) =0, x=[0,L] (4.148)
The boundary conditions at ends may be essential or geometric as follows:

(EAM/—P):O or 6u=0 at x=0,L

4.149
(EIZv”—M) =0 or &' =0 at x=0,L ( )
In this beam, the left end has two GBC and one EBC as follows:
Su=0|,_o, 6v=0|_y, (ELV'"—M)| _,=0—EL/(0)=M, (4.150)

Similarly, the right end has one GBC and two EBC as follows:

8v=0|,_,, (EAW'—P)| _, =0—EAd(L)=P, (ELY'—M)| _, =0—ELY'(L)=M,
(4.151)
For the same above beam, if we need to evaluate the buckling load P (Stability problem), term

u(L) should be split into two parts; part due to axial strain [ u'dx and other due to beam bowing
(shortening due to bending) % [ v2dx. The last part comes from the change in length of the

beam. For an infinitesimal beam ds, the change in its length will be ds — dx = \/dx* + dy? =
d 2 2 5 . . .
dxy/ 1+ <d—i> =dxv/ 1+Vv'* —dx. Using Taylor series and neglecting higher order effect, the
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change in length will be %v’ 2dx. Integrating this term over the length results in the bowing effect
as follows:

u(L) = % / V2dx (4.152)

Then the potential energy will be:

L

1 1 1

1= / <2EAu'2 + EEIZVHZ — EPVIZ —Pu' — qou— qv) dx— My6y — M, 6y, (4.153)
0

L
5H:/ (EAM'SM'—|—Elzv"6v"—Pv’5v'—P5u'—q05u—q5v) dx—Myb60y—M;006; (4.154)
0

Integrating once by part the first and third terms, and twice by part the second term leads to:

L L
ST = —/ (EAU" +q,) 5udx—|—/ (ELY"" — g+ Pv") Svdx
0 0

(4.155)
+ (EAW' — P) 8u|g — (EL" +PV') 8v|y + (ELV' — M) 8V/|;
As 8u, 6v and 6V are arbitrary and independent, so their coefficients vanish.
(EAu" +¢,) =0, x=1[0,L] (4.156)
(ELV" —g+PV') =0, x=[0,L] (4.157)

The second differential equation expresses the beam buckling (Eigen value problem). The
boundary conditions at ends may be essential (EBC) or geometric (GBC) as follows:

(EAW' —P)=0 or 6u=0 at x=0,L
(EIZV/” —I—Pv') =0 or 6v=0 at x=0,L (4.158)
(ELY'—M) =0 or 8/'=0 at x=0,L

In this beam, the left end has two GBC and one EBC as follows:

Su=0, v=0, (ELV'—M)| _,=0—EL/(0)=M, (4.159)
Similarly, the right end has one GBC and two EBC as follows:
8v=0, (EAW' —P)|_, =0—EAW'(L)=P, (ELY'—M)|_, =0— ELV"(L) =M (4.160)

Differential equation of motion associated with continuum body can also be derived from
variational principles as follow:

s Example 4.15 The total potential energy contains the stored strain energy and external loads
potential energy. The external loads include surface loads ¢t and body forces f as shown in
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Boundary S -~

Body V

Figure 4.29

Figure 4.29, so the total potential will be:
6H:6U+6V:/0':68 dV—/f*.au dV—/ .5u dA @.161)
v 1% Sr

To include the dynamic effect, we use fictitious body force f* = f — pii. Boundary Sr represents
the loaded (not constrained) boundary of the body. For symmetric tensor &, it follows using
Equation 1.100:

Vit VT
/o:éedV:/0':5(u+2u)dV:/0':6(Vu)dV:/G:V(éu) v (4.162)
\% %4 |4 \%

Using divergence theorem and Equation 1.198:
/ 6:V(ou) dv = | Su.(c.n)dAo+ | Su.(c.n)dAo— / Su.(V.0) dVy  (4.163)
14 Su Sr v
Then the variation in the total potential energy will be:
ST = [ Su(c.m)dAo+ | Su(c.n—t)dAg— / Su.(V.o+f) dVp=0  (4.164)
Su Sr 1%

Which leads to Euler equation of motion, and natural and geometric boundary conditions as
follows:

Vo+f=0 onV
t—n.c =0 onboundary St (4.165)
uls, =u onboundary S, as ou|s, =0
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= Example 4.16 For Lagrangian differential equation of motions P : F© are considered conju-
gate pairs as stated in Equation 3.256 where FO = F —WF

/P:FdVO:/P:FOdVO (4.166)
Vo Vo

511:5U+5V:/P:613dv0— ff;.éudvo—/ t0.8u dAg (4.167)
Vo Vo

Sro

Where f{; and ¢( are the body force per unit volume of the initial configuration and traction

L]
stress affecting the area of the same configuration, respectively, while SF is defined as

d(6x) - ox _8(5u)_5v ox

SF = OF — 6F =

0X X~ X X

(4.168)

Where g(i) = SRR and Sry initial boundary of stress

sFOqve— [ p. 20w
/VP.6F dVO_/VP. 5 Vo /V 5¢x7 dVy (4.169)

Using divergence theorem and Equation 1.198:

/ 90 o= [ Su(PN) dAo— / Su. (Vo.P) dVo (4.170)
v X St v

Where N is normal to body boundary surface Sy at initial configuration ForP=[ Ty T, T3 |,
and from Equation 1.205

/ (5(]) X ) dVp = /5¢ ( 7}) avy 4.171)
\4
STI= [ Su.(PN)dAo— / Su.Vo.P dVy — / 59. (ax T) vy 4.172)
Sro
f6.5udV0—/ to.0u dAy (4.173)
Vo Sro
= Su. (PN ) dAo—/Su V() P+f0 dVo /5¢ ( ) A%
Sto 0X;
(4.174)

Euler Equations or balance of linear momentum in the material form (balance of angular
momentum)

VoP+f=0 ( ;; X T} = o) on Vo (4.175)

Natural boundary condition
to—PN=0 on boundary St (4.176)
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Note that the variational approach produces the differential equations and natural (essential)
boundary conditions, but it does not provide the function shape that minimizes the functional
(potential energy). However, for some complicated systems, it is very hard to get the controlling
differential equation, and implementing variational principle will requires the help of other methods
such as Rayleigh Ritz or weighted residual methods which find an approximate solution to these
complicated problems (see the next sections).

Rayleigh Ritz method

This method uses an assumed solution for dependent function u such that it satisfies the boundary
conditions. This assumed function is generally polynomial as follows:

n
(uzZai¢i=ao+a1x+a2x2...> (4.177)

i=0
Which converts the variational functional IT to simple differential function of parameters a; as
follows:

I =11(ag,a,as,...) (4.178)
To make IT extremum, 811 should vanish as follows:
JaIl oIl oIl
0=0I1=—08ap+—=—0a;+—-—90ar+.... (4.179)
dag da; das
As da; are independent variables, it yields that their coefficients vanish as follows:
JaIl
=0 fori=0,1,2,... (4.180)
8a,~

The assumed solution may be approximate, but its accuracy can be increased with increasing
the order of polynomial function.
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Figure 4.30

s Example 4.17 Assume a beam shown in Figure 4.30 with flexural rigidity £/, and subjected
to uniform distributed load g, and its required to find the deflection function using Rayleigh Ritz
method.

First, assume a polynomial function for the lateral displacement as follows:

v:alx4+a2x3+a3x2—l-a4x+a5 (4.181)

As the assumed solution should follows the boundary conditions v(0) = 0 and v(L) = 0, it leads
to:

v=ay(x* —xL?) + ay (x> — xL*) + a3(x* — xL) (4.182)
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As the virtual axial and lateral displacements are independent we can neglect the potential of
loads in the axial direction, the total potential equation will be:

L 1 5
H:/ (Elzv” —qv) dx
0o \2

72
= (SLSa% +6L3a3 +2La3 + 18L%ayar + 6L aras + 8L3a1a3) EI (4.183)

3 1 1
—qL’a; + ~qL*ay + —qL’
+ 104 @ e e 3
As % vanishes for i =0,1,2,..., it follows:

JIl 144

— ——L’a; +18L%a, + 813 Lg=0
9a 5 - At iShatstiastapriid
on —18L% + 12L%ay + 6L c+ —L*q=0 (4.184)
8a2 4-EIZ
a—n —8L%a; +6L%ay + 4Las + L3¢=0
8a3 6E1Z
Or in matrix form
518t 8L? a - 103191Z Lg
18L* 1203 612 | | ay | = | —gzrliq (4.185)
8L 6L* 4L as — L7

Solving the above equation for a; leads to the following displacement function

qx(L3—2*L*x2—|—x3)
V=

4.186
24E1I, ( )
Which corresponds to the exact solution. "
v P
-
—————————- -
4 X P

Figure 4.31

Also Rayleigh Ritz method can be used to solve stability problems and determining the buckling
loads.

s Example 4.18 Assume beam shown in Figure 4.31 with assumed solution defined as follows:

V=a +a2x+a3x2 (4.187)

To satisfy the GBC (v(0) = 1'(0) = 0), the assumed solution will be v = a3x?, neglecting the
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potential of loads in the axial direction, the total potential energy will be defined as follows:

L1 1 L 1
= / —ELV? — —PV? ) dx = / —EL(2a3)* — =P(2azx)* ) dx (4.188)
o \2 2 o \2 2
2 2
= 2a3EIL — §a2L3P = (2 — ;) A3EIL (4.189)
2
Assume % =2
oIl oIl
SMI=0=—38ar > ~— =01 =3 (4.190)
dar day

While the exact solution is PE—LIZ = A = 2.47, using higher order polynomial equation v =
ay + arx + azx® + asx> increases the accuracy of calculated buckling loads. In this case, to
satisfy the GBC, displacement function will be v = asx® + asx> and using the same procedures
results in A = 2.49 which is very close to the exact solutions when using polynomial equations
with higher order.

—_ -~

Figure 4.32

s Example 4.19 For beam shown in Figure 4.32, assume a polynomial function for lateral
displacement of forth degree as follows:

v:ao+a1x—|—azx2+a3x3 (4.191)
Satisfying GBC:
v(0)=0,v(L)=0 (4.192)

This results in
— 2 3 2
v=ay (x —xL) +az(x” —xL%) (4.193)
Substituting into Equation 4.189 results in:
L 1 2 1 2 212
= / (zElz(az + 6azx)” — EP(az (2x— L)+ a3z(3x* —I?) ) dx
0

(4.194)

1 2 1
= (2La% +6L3%3 + 6L2a3a2) El + (6L3a% T gLSa% I 2L4a3a2) P
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Using Rayleigh Ritz principle results in:

oIl 1 1 P
—=0—>4La, + 6L2a3 = L3a2 -+ L4a3 — =0
8a2 3 2 El
(4.195)
M _ o, 612 + 1217 e+ iva) £ <o
- = a a3z — a a —_
das 2 ST\ TS B EI

. 2 s .
Assuming % = A result in this matrix form:

((64 ’f)); ((162?)1223 [Zi ] - [ 8] (4.196)

The non-trivial solution for above equation is that the determinant of the left matrix vanishes as
follows:

2

4—2\L (6-12)[2
((6’5))L2 ((1245))5. =0 (4.197)

Leadsto A; = PL =12; ’g = 7L2 = 60. While the exact solution A; = 72 =9.81; 1, =4n? =
39.24. Increasmg the order of polynomial function leads to more accurate results. "

Note 4.2 Rayleigh Ritz method gives upper bound value for calculated load P because assuming
a solution other than the exact one provides more constraint to the displacement which in turn
results in higher stiffness of the problem and higher load capacity. "

4.3.3 Weighted residual methods

These methods are used for the system of known governing differential equation. Let us assume a
system with known differential equation like beam defined as follows:

ELV" —g=0 (4.198)

Generally, the differential equation is called the strong form. If we choose an approximate
polynomial function

n
<v :Zai¢i:ao+a1x+a2x2...> (4.199)
i=0

That satisfies the GBC like Rayleigh Ritz method, for the above equation, it will produce an error e
gien by:

e(x) = ELV" — q¢0 (4.200)

The above error does not have to vanish as we substitute with an approximate solution. Integrating
error over the beam domain results in the total error E7 as follows:

Er = / e(x)? dx (4.201)

The error is squared to make sure that the internal error at any point on the beam domain; either be
positive or negative; contributes to the total error. This method represents one type of weighted
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residual methods called least-square method. We are concerned in Minimizing the total error as
follows:

0=0Er = /e(x)Se dx (4.202)
Generally, weighted residual methods are obtained through this general expression:
/e(x)ﬁw dx=0 (4.203)

Where w is called the weight function. One of the weighted residual methods that is generally
used in the structural analysis is called Galerkin method, in which weight functions w equal to
the functions used to approximate the solution 8v, but 8V can be evaluated from variations of its
parameters da; from Equation 4.199 as follows:

ow=06v= ﬁSa,- (4.204)
8(,1,-

For independent parameters da; and using Equation 4.203 and Equation 4.204, we get the following:

/e(x)a&; dx=0, fori=0,1,2,.... (4.205)

To include the natural boundary conditions, Galerkin variational equation can be written in this
form:

> / e(x)8vdx+>  j(x)6v=0 (4.206)

Where j(x) represents the natural boundary condition.

YV

ANNN
=
<
A

Figure 4.33

s Example 4.20 Solve the differential equation
Vi(x)+v(x)=0 onx=][0,1] (4.207)

With these geometric boundary conditions v(0) = 0 and v(1) = 1. First, we assume the
polynomial function for the solution v = a; + apx + azx?. Satisfying geometric boundary
condition leads to:

v=x+a; (x> —x) (4.208)
e(x) =V"(x) +v(x) =2a3 +x+az (x* —x) (4.209)
dv )

=) (4.210)
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Applying Galerkin method results in:

1 v 1
0= / e(x) o2 dx = / (2a3 +x+a; (* —x) ) (x* —x) dx =0 (4.211)
0 da; 0
Solving the above equation leads to a3z = —1% Also the Galerkin can be applied to structural
systems. u

m Example 4.21 Let us us assume the beam shown in Figure 4.33. Substituting the differ-
ential equations into Equation 4.148 and natural boundary conditions in Equation 4.149 in
Equation 4.206 results in:

L L
/ (EAU" +q,) Sudx+ / (ELY" — g+ Pv") 6vdx (4.212)
0 0
+ (P—EAW') 8u; + (EV' — M) 8V|; =0 4.213)

As ou and 6V are independent variables, we could neglect the coefficients of variational axial
displacement Su as follows:

L
/ (ELV" — g+ Pv") §vdx+ (EDV" —M)&V | =0 (4.214)
0

The chosen equation must have a derivative up to 4" order to be used in evaluating (v'""') as
follows:

v=a+axyx+ a3x2 + asx® —|—a5x4 (4.215)

For the beam satisfying GBC, it follows:

y(0)=0—a;=0,y(0)=0—a=0 (4.216)
y(L) =0— a3 = — (asL +asL?) (4.217)

Also we can use essential boundary condition” (y” (L) = 0) as the moment vanishes at this
end (see Equation 4.38) which results in:

y' (L) = 0— 2a3+6asL+ 12asL> =0 — v = % (3L%* — 5L +2X*) (4.218)
e(x) = ELv" — g+ Pv'=EI (48as) + P (6L* — 30Lx + 24x*) * as (4.219)
dv 1 2.2 3 4

— = — (3L“x" —5Lx° +2X 4.220
das 2 ( . u ) ( )

Applying Galerkin method using Equation 4.206 results in:

L = L
0= / e(x)aa: dx=as / (EI (48) + P (6L* — 30Lx +24x%)) (;(3L2x2—5Lx3+2X4)>dx
0 i 0

(4.221)
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Which results in:

36 12 21E1
—PElI-—=PL® =0—>P= 4.222
( 5 35 ) =0T P (4.222)
While the exact solution P = 20:2E1 m

12

“Using essential boundary conditions is not necessary, but we can implement them to simplify the problem

4.3.4 Weak form

The above example required the solution to be 4" order differentiable, but we can elevate this
condition using what is called the weak form corresponding to the differential equation.

m Example 4.22 Let us assume this differential equation defined as:
Vix)+v(x)=0 (4.223)

This above form is called the strong form. Using Galerkin method, it follows:

/ (V' (x) +v(x)) Svdx=0 (4.224)
Using integrating by part for the first term results in:

v'5v‘z - / (= (x)8V +v(x)8v) dx=0 (4.225)

The above equation is called the weak form corresponding to the differential Equation 4.223. If
we integrating the above expression again by part, it leads to:

/(v (x) 6" +v(x) 6v) dx+ v'5v‘Z— v5v"z =0 (4.226)
|

The first term of expressions Equation 4.223 and Equation 4.225 need the function v to be 2"¢
differentiable, while expression Equation 4.224 requires this function to be only 1* differentiable
which alleviate the condition required for the assumed solution chosen. Generally, in Galerkin
method, it is preferred to use the weak form in which the function 6V’ and the weight functions
V' (x) have the same order of derivative. We also note that the weak form is identical to the first
variation of the potential energy, so the weak form is also called the variational form. For the two
hinged beam in Figure 4.28, using the Galerkin method (see Equation 4.206), we reach to the same
result in Equation 4.147. Using integration by part leads to the following weak form:

L
ST = / (EAW 8u' + ELY"8V'—PV 8V —Pu' — q,6u— qv) dx—Mo86y — M. 56, (4.227)
0

Note that integration by part is used twice for the bending strain energy such that v"'; and 6v"
have the same degree of differentiable equation degree, so it reduce the requirement for using high
order polynomial approximation solution (just polynomial of second order). Also we note that
using the weak form in Galerkin method or Rayleigh Ritz method leads to identical results for
the same polynomial function used for the assumed displacement, but Rayleigh Ritz method is
better used for problems with known formulations for the total potential energy, while Galerkin
method is used for problems with available governing differential equations. Using variational
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methods when solving geometrically complex structures to get an approximate solution is not a
proper way, as there will be a large number of dependent variables, which is impossible to find a
suitable differential equation or a formulation for the total potential energy. In this case, we are
force to use finite element method through dividing the body into small parts and applying the
variational principles over each part.

Using energy principles in dynamic problems
Introduction

We will first introduce the linear momentum L, angular momentum H . about point ¢ and their rate
of change with time defined as

L:/vdm %L:/adm:ZF (4.228)

H.= | x.xvdm %ch/xcxadm:ZMc (4.229)

Where v and a are velocity and acceleration of infinitesimal point with mass dm. The last
equality in the two above equations represents the Newton’s second law of motion in which » F
and ) M, define the resultant forces and moment about point c¢. Angular momentum of body about
an arbitrary point ¢ can be calculated in terms of angular momentum about its center of gravity
(point o) as follows:

H.=H,+x,xL or H.=H,+x., XL (4.230)

where H, = [x, xa dm is the angular momentum around mass centroid and X, represents a
position vector from point ¢ to point x as shown in Figure 4.34.

= Example 4.23 Assume a rigid body shown in Figure 4.35 rotating about point ¢ with center of
gravity o with angular velocity @ and angular acceleration @. As it is a rigid body, the velocity
of point 0 is v, = @ X X, then L, L, H. and H,. are defined as follows:

L=mv,—L=mv,=m(@® XX, +® XxXz,) (4.231)
=m(® X Xco+ O X (O XXc)) (4.232)
= m(@® X X — O°Xc,) (4.233)

¢ Where v, and m are the velocity of its mass centroid and the total mass of the object. If point
o is located on the c, the net force on the body (L) vanishes and it rotates to infinity.

H.= xxvdm:/xx(a)xx)dm:/((x.x)l—xxT)a)dm“

1 00 x% X1X2  X1X3
:/ (G4+B5+x3) [0 1 0| —| xix2 23 xx @dm
0 0 1 XoX3  X1X3 x% (@.234)
x%—l—x% —X1X2  —X1X3
= / —X1X2 x%—i—x% —X)X3 ®dm
—X2X3  —X1X3 x%—l—x%
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Figure 4.34 Figure 4.35

- ‘ a4

Figure 4.36 Figure 4.37

For rigid bodies, m has the same value over the body volume which results in:

2 2
X5 +Xx3  —X1X2  —X1X3
H = / —xix; ¥+x3 —xovn | |dne=I,0 (4.235)
—XpX3 —X[X3 x% —l—x%

“The last equality comes from this expression (a X b) x ¢ = ((a.c)b— (b.c)a)

» Example 4.24 For line element like beam“ as shown in Figure 4.36, the angular momentum
around its mass centroid o (using x = (0,x;,x3)) will be:

L X% —X1X2 0 L
H, = 0] / —X1X2 x% 0 pdA »dx = / Ig o dx
0 0 0 xi+x3 0
5 (4.236)
X3 —X1X2 0
Where I = / —xix2 X} 0 p dA
0 0 x+x
Where p is the beam density at point (x1,x2) located on the cross section. n

¢ Assuming that the plane section remains the same after deformation, so it can be considered rigid in section
direction
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For planar elements subjected to angular velocity perpendicular to its plane as shown in
Figure 4.37, the magnitude of angular momentum around its mass centroid will be:

H. = a)/ (x% —i—x%) mdA = I, ® where m is mass per unit area. (4.237)
A

With direction perpendicular to the element plane. Figure 4.38 shows values of mass moment of
inertia I, for some planer elements around its mass centroid. To evaluate the 7, around other point
than the mass centroid, we use parallel axis theorem which states:

I= 1 +md (4.238)

where I, and [ are the mass moment of inertia around the point of interest and centroid point,
respectively. m and d are the total mass of the element and the distance between point of interest
and centroid point.
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Figure 4.39

Figure 4.40

» Example 4.25 Assume rectangular rigid plate shown in Figure 4.39 with mass m and dimen-
sions shown supported with hinge and cable, we need the force induced in the hinge after cutting
the cable.

For angular momentum about hinge (point c); using Equation 4.237 and parallel axis theorem
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results in:

. 2 b2 25

12 3
(4.239)
From linear momentum:
R+ (Ry = mg)ez = ZF = ma (4240)

Velocity of rotating plate is defined as v = @ x x, where x is a position vector from hinge
location to plate centroid, so the acceleration will be @ = @ X x + @ X (@ x x), but its initial
angular velocity is zero at the time of releasing the plate, so forx = (2,1.5,0), ® = (0,0, ®),
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the acceleration will bea = @ xx = (1.5,—2,0) @, then the above equation will be:
Rie;+ (Ry+mgley =Y F =ma=mdxx=mai(l.5e —2e) (4.241)

From the Equation 4.239, R| = %mg and R, = —g—gmg.

m Example 4.26 Assume a massless rigid bar with properties shown in Figure 4.40. If the
system is in static equilibrium in this condition, the spring stretch A = % = 0'5%. The mass
m is pulled down a distance y then released to produce free vibration for the mass, as a result,
the angular momentum time rate of change around point o will be:

mg

ZMozHC—> (mgL—k(2y+ .

) L) ez =rxmy— my—4ky =0 [Equation of motion]
(4.242)

4.4.2  Virtual work in dynamic analysis

We will use the same principles used in section 4.2. In addition, we will add the virtual work
resulting from inertia forces as shown in the following example.

s Example 4.27 Let us us assume two rigid bars shown in Figure 4.41 connected with an
internal hinge supported by hinge at A and roller at B subjected to axial load P and excited with
varied lateral loads varied with time 57 f(¢) and it is required to write the equation of motion.
Applying virtual lateral displacement 8v added to the the true lateral displacement v as shown
in Figure 4.42 leads to virtual work defined as:

B 2. _ vov  m2L) [ ¥ ov
oW =—m <3v> ov—m(2L) 35 "1 <2L> <2L) —kvov

n (f(’)z(ZL)) (23‘”> +NSu(D) =0

The first two terms represent the virtual work resulting from the inertia forces for mass m and
bar mass 7, while the third one represents the inertia couple resulting from rotation of the bar by
angle 57. From Equation 4.152 and Figure 4.43, the variation of axial displacement at end D is

(4.243)

ou(D)=>] fo_"i, where the sum is done over each rigid element with length L; and difference
in lateral displacement between its ends v;, so du(D) = "2‘%" T V;S—LV and the resulting equation of

motion will be:

24\ 5N 2
(3ma—|— 9m) V- <k— 6L> v = gf(t)L (4.244)

4.4.3 Hamilton’s principle

Let us assume a particle with mass m moving along a real path shown in Figure 4.44 from point A at
time #; to point B at time f,, such that the particle position at any time # is x(r) = (x;(¢),x2(¢),x3(¢))
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and subjected to force F varied with time F(¢) = (Fi(t),F>(t), F3(t)). During this real path, the
inertia forces, structural forces and external forces are in equilibrium (d’ Alembert’s principle). If
the particle path is subjected to virtual displacement 0x(¢), the virtual work of these forces must
vanish as follows:

[F —mi(t)].0x(t) =0 (4.245)
Integrating the above equation over the path results in:
/tz (F.0x —mi.0x)dt =0 (4.246)
n
Using integration by part over the second term leads to:
/ ’ (F.8x+ mx.6%)dt — mxdx| =0 (4.247)
n

The last term vanishes as dx = 0 at #; and ;. The second term equal to

1% %) 1 (5]
/ (mx.8%) dt = / 5<n1)'c2) dr = / STdt (4.248)
151 1 2 151

Where T is the kinematic energy of the particle, while force F(¢) may be conservative F.(t) or
nonconservative F,.(¢) or both as follows:

F(t)=F (t)+F,(t) (4.249)
We can define a potential energy I1 for the conservative forces using Equation 4.12 as follows:

om_ —F,— F..8x=8II (4.250)
ox

From above, Equation 4.247 will be:

%) 5]
/ 5(H—T)dt—/ Wy =0 (4.251)
151 1

Where the total potential energy Il = U + V includes stored strain energy U in elastic bodies
and potential energy of external conservative loadsV, while 6W,,. = F,,..0x represents the virtual
work done by nonconservative forces like friction, damping, external forces varied with time, etc.
Hamilton’s principle can be used to solve linear and nonlinear, static and dynamic problems.
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= Example 4.28 Assume a rigid block shown in Figure 4.45 with mass m vibrating in x direction
under the influence of external dynamic loading f(¢) and tied with linear elastic spring with
stiffness k. We can use Hamilton’s principle to solve for the equation of motion as follows. The
total potential energy results from the spring (%kxz), the kinematic energy 7" equals to (%mxz),
while the variation in work done by non conservative (external dynamic) force W, is f(r).0x,
so applying Hamilton’s Equation 4.251 results in:

/25 (1kx2— 1mx2)dt> —/zf(t).ﬁx: 0 (4.252)
151 2 2 151

(5]
/ kx.0x —mx.0% — f(t).6xdt =0 (4.253)

141

Using integration by part for the second term yields:

15}
/ S A b D = (4.254)

1

The last term vanishes yielding the equation of motion as follows:
mi+kx = f(t) (4.255)

It can also be applied to static analysis as shown in the next example. In this condition, the kinematic
energy 7' vanish and Hamilton’s equation reduces to:

OIl—6W,. =0 (4.256)
which reduces to the virtual work principle for static problems.

m Example 4.29 Let us assume a mass m rested on the ground as shown in Figure 4.46 (state
1), then lifted a distance L (state 2) by a rigid tie (change in its length is negligible), and put
on a linear elastic spring with stiffness K and unstressed length L very slowly (to neglect the
developed kinetic energy) until the force in the tie vanishes and the mass weight entirely rested
on the spring (state 4).

In state 2, the body acquires gravitational potential energy AIT from lifting the weight, while
the tie force (external source) exerts work AW,,. defined as:

Al = AV =mgL, AW, = mgL (4.257)

From above equation, Hamilton’s principle is achieved (AIl— AW, = 0).

State 3 is an intermediate state between state 2 and state 4 when the spring carries a part of
the weight (kx) when compressed distance x. At that position, there is a reduction in gravitational
potential energy of the weight by (AV = —mgx) from state 2, but another potential energy is
stored in the spring (%kxz), so the change in total potential energy from state 2 to state 3 is:

1
ATl = 5kx2 — mgx (4.258)
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The work done by the tie force F;is the area of force-displacement history for the tie as shown in
Figure 4.47. The force in tie in state 2 and state 4 is mg and zero, respectively, while, in state 3,
the force in tie becomes (F; = mg — kx) (mg minus the force carried by the spring), so the work
done by the tie force is the hatched area in Figure 4.47 defined as follow:

kx?
AW, e = —area = | — —mgx (4.259)

The negative sign is used as the force direction and mass displacement have different directions.
From Equation 4.258, the variation in total potential energy and work done by non conservative
force (tie force) are identical which prove the validation of Hamilton’s principle AIT— AW, =0.
At state 4; the spring carries the weight of the mass and compressed to (A = %), so the variation
in total potential from state 2 to state 4 will be:

1
Al = EkA2 —mgA = —0.5mgA (4.260)
While the work done by tie force will be:
AW, = —area = (—0.5mgA) — AW, = AIl (4.261)

The last equality can be derived directly using Hamilton’s principle without need to evaluate the
work done by non-conservative forces AW,,.. For structural systems with complicated loads, it is
hard to find the work done by external loads, so we can use Hamilton’s principle (AW, = AIT)

in the static problems. =
Fy

State (1) State (2) State (3) State (4) ) State (2)

F=mg Ft mg (1 -B) mg /

" P Work done by tie
MEN /" State (3)

% —F g S ﬁxzﬁr e
% % _ State (4)
/

R= ﬂmg R=mg? I " »%

Figure 4.46: The reaction is defined as R = Bmg, where 8 = =, Figure 4.47: The hatched area ex-

A = "8 and k is spring stiffness presses the work done by the tie
force F; from state 2 to state 3
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Figure 4.48
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= Example 4.30 Assume a beam shown in Figure 4.48 with length L, mass 7 per unit length
and bending stiffness EI, subjected to distributed dynamic load g(¢), it is required to evaluate
the equation of motion, its total potential, kinematic energy and variation in nonconservative
work are defined as:

1 L 1 L L
M=U=; / ELV"dx, T= / vidx, SW. = / q(t)Svdx (4.262)
0 0 0

Applying Hamilton’s Equation 4.251 results in

1y L
/ {/ (ELY"8V" —mv8v — q(t)6v) dx} dt =0 (4.263)
n 0
Using integration by part twice for the first term as follow:
L L
/ (ELY' V") dx = ELY" 8V |§ — ELY" 6v|§ —I—/ EIV" §vdx (4.264)
0 0

The first and second terms (boundary terms) generally vanishes as the left and right moment
vanishes (0 =M = EIV"), also (6v) vanishes as each end is restrained from lateral displacement
(GBC). Using integration by part once for the second term in Equation 4.263 results in

/: </OL (v V) dx) d;:/OL (/: (v V) dt) de/OL (mvsvﬁ—/: (mvév) dt) dx

(4.265)

The first term in the last equality vanishes. Using the above expressions, the Hamilton’s
Equation 4.263 reduces to:

153 L
/ { / (ELY" +mv—q(t)) 5vdx} dt =0 (4.266)
151 0
which yields the beam equation of motion as follows:
ELV" +mi—q(t) =0 (4.267)
|

4.4.4 Lagrange equations of motion

Assuming a displacement function that satisfies the geometric boundary conditions like the one
used in subsection 4.3.2 (u = Z?:o ai9 =ap+ax+ ax’ ... ), the kinematic energy and potential
energy will be converted to functions of parameters a; and d; as follows:

T =T(a;,a;), T=TI(a;) (4.268)

And their variation will be:

oT = al5a,' + aiEdi, oIl = 8—H5a,~ (4.269)
8a,~ 8al~ aai

While the variation in the nonconservative work can be defined as follows:

W = F{*8a; (4.270)
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Using Hamilton’s Equation 4.251, it follows:

Cr(am 9T N 9T 1,
/ (Go 5 F) b= 51 6a] ar=0 @271)

Integrating by part the forth term results in:

DI/l T d (9T oT . |”
_ adl —F* ) Saldt— =—8a;| =0 4.272
/,1 _<8ai 8a,~ + dt (adi) ! ) al:| ad,‘ ai f ( )
The last term vanishes as Ou at t; and #, is null as follows:
Il dT d (0T
YV _Fr=0 4.273
8a,~ 8ai + dt <8d,~) ! ( )
This equation is called Lagrange equations of motion.
, vV
g q(t)
) ) ) \ ) )
4 e | P
7 X El;
’—— - L —
Figure 4.49

m Example 4.31 Let us assume a beam fixed at the left end, while the right end is subjected to
axial load P and lateral dynamic uniform distributed load ¢(¢) as pictured in Figure 4.49. The
beam mass per unit length is 7. Assuming a suitable displacement function that satisfies the
GBC as follows:

V= a1x2 + a2x3 (4.274)

Using virtual work method or Hamilton’s equation and Equation 4.152 results in the weak form
of equation of motion for the beam as follows:

L
/ (ELY"8V" — pv' 8V — q(t)6v +miidv) dx =0 (4.275)
0

From the displacement function, v/ = 2a;x + 3apx%, V' = 2a; + 6arx and V = d1x* + x>,

Substituting these functions into the above equation results in:

|[a]

+[ 8a; ba | {ElZ

[ 6a1 6az ]m[

NPT
~[2e

ST 4L 6L ai
s | TP a2 113 a

=[ 6a; ba> ]q(t)[i%]
4

(4.276)
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Sa.M"i+ 8a.(K* +K?)a = Sa.f(1)" 4.277)

Where M*, K*, K3, and f()* represent the generalized mass, generalized elastic stiffness,
generalized geometric stiffness matrix, and generalized force vector, respectively, defined as:

L L
M*:m[ X 8 ] (4.278)
6 7
43 3Lt
K*=EL| 3. 2 (4.279)
2 5
. AL 6L?
K= —P[ 2 1003 ] (4.280)
L
)" =q(t) [ B ] (4.281)
4

Introduction to finite element method

This method implements the same idea used for variational methods through using approximate
functions, but these functions are used for subdomains of the body or finite elements with simple
shapes that allows us to use a simple approximate polynomial function for it (not all domain).
Generally, the subdomains are chosen to be similar in shape, so we can use the same calculation
procedures for each subdomains making the solution systemic. Also, when using Rayleigh Ritz
or Galerkin method, the undetermined parameters are a; (coefficients of assumed polynomial
function), while, in finite element method (FEM), they are in terms of a common property between
the adjacent elements in the domain at prescribed points, e.g. the displacements. As these elements
share the same nodes and from continuity, they have the same displacements at these nodes. In
this case, undetermined parameters are known property like displacements which is considered an
advantage to reduce the time of post-processing analysis. We will provide how to use FEM in 1-D
elements in the following sections.

Finite element analysis (FEA) of simple bars
Shape function

Let us assume a bar with uniform axial distributed load (f) divided into subdomains, each one of
length L. If the prescribed points for each element are three, the number of degree of freedom DOF
for each element will be the number of (DOF) associated with each node times the number of nodes
per element which shall be three. Similarly, like Rayleigh Ritz, we will define an approximate
solution of polynomial function over the element as follows:

w=> uNyx) (4.282)
i=1

In FEA approximate function, the parameters used will be in terms of the nodal displacement u;
of the element associated with the DOF (i), while n the number of DOF per element and, in this
case, N; represents what is called the shape function. For example, Let us assume a bar element of
2 nodes, so the number of DOF, local displacements, and shape function per element shall be two.
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Using the following approximate linear solution for axial displacement:

2
u=> aiy=a\d +a¢s = a +ax (4.283)
i=1
applying the boundary condition using u(x1) = u; — u; = a; and u(x;) = up — up = a; + axx
results in the approximate solution in terms of displacement at ends as follows:

n
X X
"= <1 . Z> w+ T = E;M,N,-(x) (4.284)
1=
So the shape functions associated with each DOF for two-node element will be:
X X
N :(1—7),N X 4285
1(x) I 2(x) 7 ( )

The shape function is shown in Figure 4.50, from above equation the properties of shape function

X X
y — — — L —_— — —
U, S — 0 aq — —7 — — 7
1
—— L= — % % X
X X7 X3
m N X % X
P —— G =1 (=0 G5l
Figure 4.51
N
—— L - —
Figure 4.50
are:
N; (xj) = 6ij — N (xl) =N ()Cz) = 1, N (XQ) = 07 Ny ()C]) =0 (4.286)
We can us what is called normalized or natural coordinate with range & = [—1, 1] instead of using

the local coordinate x = [x1,x;], such that & = % — 1 and the shape function in terms of natural
coordinates will be:

Mi(E) =3 (1-8), Na(&) = 5 (148) 4.287)

If we need to use larger number of nodes per element, we can follow the same above procedures or
use Lagrange interpolation formula defined as follows:

n—1
N = I (x:);f> (4.288)
J

X
=g N
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And in terms of natural coordinate, it will be:

N; (&) = ]:[1 (g:?j) (4.289)

j=1j#

=

Figure 4.52

= Example 4.32 Assume a line element of 3 nodes not equally spaced as shown in Figure 4.51¢.
If the local coordinates of element nodes are x;, x, and x3, the corresponding natural coordinates

are & = —1, & =0 and & = 1, respectively with shape function defined for each node in
Figure 4.52 as follows:
o= 1 (58)-(68) (5)- b
2 _£. _ _
wo- T () -(a78) (5) -+ @20
wo= 11 (328)- (%) (B25) -z

“The distance between any two subsequent nodes a or b should not be less than or equal to % the element length
to avoid singularity problems
Stiffness matrix and load vector

m Example 4.33 For n-node element shown in Figure 4.53 with axial stiffness (EA), length L
and distributed axial load ¢, and from Equation 4.140, the variation of total potential energy or
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the weak form for the bar problem is defined as follows:

/L iL n
61’12/ (EAu'Su'—qo5u)dx—P15u1—P25u2---—Pn5un:/ (EAu'Su'—qoﬁu)dx—ZPi5ui
0 0 —

(4.291)

W' =" u;Nj(x) Su=_SuNj(x) Su' =" Su;Nj (x) (4.292)
j=1 i=1 i=1

L n n n n
ol = / (EA Z ujN} (x) Z 5uiNi/ (X) — 4o Z Ou;N; (x) | dx— ZPi5ui (4.293)
0 Jj=1 i=1 =il

i=1

Using index notation

ST = Su; (/OL (EAN] (x) N; (x)) dx> uj— Ou; (/OL (goNi (x))dx+P,~) = Su;. (kj.u;— FY)

~~ ~~

K, Ft
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(4.294)
Where k{; and F{ are called the stiffness matrix and load vector, respectively, defined as:
L L
kij = / (EAN] (x)N;(x)) dx, Ff = / (goN; (x)) dx + P, (4.295)
0 0

we not that the stiffness matrix is symmetric as kj; = k%;. For two-node element shown in
Figure 4.54, the stiffness matrix and load vector are defined as:

Ni@]=[ (1-7) § ] (4.296)
Vi@l =[-7 1] (4.297)
k5] = [ /O " (EAN] (x)N; (x))dx] = % [ _11 _11 ] (4.298)
[EE]Z/OL(qui(x))dxz %[ i ]+ [ g ] (4.299)

While, for three-node element shown in Figure 4.55, it will be:

2x 2dx
=== =— 4.30
g=F-1ag== (4.300)

N:(§)]=[3E(E—1) 1-&* 3&E(E+1) ] (4.301)

M@ =[E-} —2& E+} IeSofet 2z g1 ]s2 @)

[k] = [ /O " (EAN ()N, (x))dx] _ [ /_ (EANL(E)N.(®)) (’5 dé)] (4.303)

1

7 -8 1
_Ea [ -8 16 -8 ] (4.304)

L 1 p1
[F]= /0 (qoNi (x)) dx = % { 4 ] + [ 2 ] (4.305)
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Assembly of elements and applying boundary conditions
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Figure 4.56
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WJH}S SJ_1§

N

m Example 4.34 Let us assume three two-node bars subjected only to joint loads P; as shown in
Figure 4.56. Using Equation 4.294, the resulting variation of potential energy for element e will

be:

OI1® = Su; kfj.uj— Sui Y = Suy. (k§yur + kfyua) +6u. (kg uy + kyua) — Suy FY — Suy . Fy

(4.306)

Summing this variation of three elements, such that the total variation of body potential energy

should vanish as follows:

0= ZSH" = Ou. (khul +k%2u2) +0u. (kélul —i—kézuz) = 5u1.F11 = 5u2.F21

e=1

+ Suy. (k%ll/tz —l—k%zug,) +Ous. (k%luz +k§2u3) = 5u2.F12 = 5u3.F12

+ Sus. (ki us + kiyus) +Sus. (k3 us + kayus) — Sus. Fy — Sug. Fy

ki ki, 0 0
ky  ky ki kT 0
0 k3, ke + ki ki
0 0 kgl k%z

:[5141 5142 5143 5144]

= [ 51,{1 5142 5143 6144 ] (KM—Pex[) =0

(4.307)
w | | B +F?
u3 F22 o F13
Uy F23
(4.308)
(4.309)

Note that F21 + F12 gives the sum of the forces over node 2 coming from the both elements
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sharing this node with external load P, as shown in fig , so the total external loads will be:

P F}
Py — Z = %; j: ifj 4.310)
Py F}
So we reach finally
= 6ur Sup OSus Sus | (Ku—Poy)=0 (4.311)

As Ou; is an arbitrary displacement for i = 1, 2, 3, 4, we get the following equation (equilibrium
equation):

Ku =P,y (4.312)

The above equation can not be solved directly, as shown in Figure 4.56, the deflection vector u
includes known geometric boundary condition u; , while the rest displacements (u;, for i =2,3,4)
are unknown. Similarly, the load vector P,,;, P, is unknown, (P;, for i = 2,3,4) are known. As a
result, we shall divide the degree of freedom into two parts; free DOF (f) and restrained DOF (r)
at which GBC is defined and reactions needs to calculated. Similarly we will divide the stiffness
matrix, load and displacement vector in the same manner as follows:

K., K,f U, P. K, u, —f—Krf up= P,
- | = = 431
[ Ky Kpp | | uy by T Kpeup+Kppup = Py (4.313)

The underlined terms are known like the restrained displacement u, and loads at free points Py.
Using the second equation in above equation, uy will be:

Kffuf:Pf—Kfr ur—>uf:K]?f1 (Pf—Kfr Ltr) 4.314)

After calculating the uy, we can evaluate the reaction at restrained nodes P, form the first equation
in Equation 4.313.

u u u
Ly 2N =
/
EA 2EA —
/ 10N
/
/2 L (/ L 7
Figure 4.57

m Example 4.35 Let us assume a bar with properties shown in Figure 4.57 with % = 100N /m.
The right end is subjected to force 10N, while the left end has initial axial displacement



202 Chapter 4. Energy Principles and Introduction to FEA

(4.315)

[k?,-]zzoo[_l _ll]zzoo[ _1] % 4316)
—1 1

B 1 —1 0

k=100 | 1700 % (4.317)
©),

[k?,-]zzoo[_1 _ll]zzoo[ _1] % 4318)
—1 1

@ ® O
wiow 53] 8 wem V] §

P = [ 100] % ., =0.01 (4.320)

(4.319)

Kyup = Pr—Kpr ur — up = K} (Pr— Ky uy) (4.321)
3 2 0 ~1
_1/200[ - ] ([ @ ] —100[ . ] ><0.01> (4.322)
0.11
= [ il ]m (4.323)

Euler Bernoulli beam

The shape functions defined in Lagrange interpolation use one type of degree of freedom, e.g
displacements at nodal points or their derivatives like rotation in beams not both. There is another
type of interpolation that uses both types. For example, Let us assume two-node Euler Bernoulli
beam shown in Figure 4.58 with four DOF (lateral displacement and rotation for each node), with
approximate solution for lateral deformation defined as follows:

4
v(x) =ap+arx+ax’ +as’ = wii (x) (4.324)
i=1
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The displacements associated with each DOF are defined as follows:
T
ui:{ vi 61 v 6 }
Using the following boundary condition:

vi =v(0) = ag, va = v(L) = ap+ a1 L+ a,L* + a3 L%,
0=V (0)=a;, 6=V (L)=a;+2aL+ 3a3L?

which results the following shape functions:

Ni@)=[1=3r7 427 x(1—r) 32=2P x(r?=r) ]

(4.325)

(4.326)

(4.327)

Where r = 7, and these shape functions above are called Hermite cubic interpolation functions as
shown in Figure 4.59.

————
—_

M,(HHHHHHHHH‘>M2
—_———————— lLI-——— — ’,/

- /
T T N4 ————— J
: 3 1 rad

Figure 4.58 Figure 4.59

L
ol = / (ELV"8V'—q6v) dx— Q16vi — 028v) — M 8v) — M6V,
0

i=1

4 4 4
V' =) "uiNY (x) Sv=">"8uNi (x) ' =3 SuN! (x)
j=1 i=1

L 4 4 4 4
Sl = / ELY uiN} (x) Y 8uiN! (x) —qo ¥ 8uiN; (x) | dx—>>_ Pdu;
0 . . . .
j=1 i=1 i=1 i=1

1
M(x)//:ﬁ[6+12r L(4—6r) 6—12r L(6r—2) |

(4.328)

(4.329)

(4.330)

(4.331)
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Using index notation

L L
OIl = bu; (/ [EIXN,-" (x)N}' (x)] dx) uj—ou; (/ [qoNi (x)]dx—l—B) = Su;.kf;u;— Ou;. Ff
0 0

2

~ ~"

K, Ft

(4.332)

The stiffness matrix

12 6L —12 6L
L EL | 6L 4L*> 6L 27
e __ 1" 1" _ z
k,.j_/o (ELN/ ()N} (1)) dx=—=1 70 “or 15 e (4.333)

6L 2> 6L 4L2

The load vector

gL
T 01
L _ ql? M,
Ff = / (@Ni()dx+P= | 7 |+ | (4.334)
0 7 2
i M.

Beam torsional stiffness matrix

As stated in section 4.1.5 and section 4.1.5, there are two types of torsion; pure torsion and warping
torsion. For a two-node beam element with torsional rigidity GJ and length L shown in Figure 4.60,
if we neglect the warping torsion and assume a linear interpolation for angle of twist as follows:

o GI[ 1 -1
[kij]_L[_l ) ] (4.335)

which is similar to bar stiffness subjected to axial load in Equation 4.298 If we take into account
the warping rigidity EC,,, the angle of twist can be represented by a cubic polynomial similar to
beam interpolation function as follows:

4
0, (x) = ao+ aix+axx* +azx’ = Z u;N; (x) (4.336)
i=1

Using two degree of freedom 6,, 6, for each end shown in Figure 4.61 as follows:

C A ECw D
M GJ \/M x2 M x1 B x1 GJ M XZ\/ B x2

x1
Hx] HxZ 9x1 elx] 9x2 e,xZ
——— L ———— ————— L - ———
Figure 4.60 Figure 4.61
w=1{ 64 6o 60, 6,1} (4.337)

Using Equation 4.327, the shape functions will be:

Nix)=[ 1-32427 3722 x(1-r)? x(P—r) ] (4.338)
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Ni(x)' = [ SOri6rt 66| _4p 432 322 (4.339)

Using Equation 4.46 and Equation 4.55, the variation in stored potential energy will be:
L
SU = /O GJ6/56! + EC, 056! dx = uski,.u; (4340)

So, the resulting stiffness matrix will be:

L
ki; = /O (GJN; (x) N} (x) + EC,N;' (x) N} (x) ) dx (4.341)
12 1.2 0.1L 0.1L 12 —12 6L 6
[K]:g -1.2 1.2 -01L  —0.I1L +Lg -12 12 —-6L —6L
L | 0.IL —0.1L 2/15L —1/30L? 3 | 6L —6L 4I1* 2I?
0.1L —0.1L —1/30L> 2/15L 6L —6L 21> 417
(4.342)

Warping resistance using the above stiffness leads to a good approximation to the exact solution.
Sufficient number of elements can converge to the exact solution. Warping resistance can be used
for open section with sufficient warping resistance like wide steel I-section, while we can neglect it
for open section with component elements meeting at a point like angles and tee sections. Also
the above stiffness matrix can apply for a number of finite element beams that form a straight line,
such that beam ends can be warping fixed or free as shown in Figure 4.9a and Figure 4.10a, while
taking the effect of the corner beam-column connection is beyond our scope of study.

4.5.2  Flexibility matrix D;;, and Forced based FEA

The flexibility matrix D;; is equivalent to the inverse of stiffness matrix K;; for element formulation
defined as follows:

K,’j.uj =F — Dij-Fj = U; (4343)

We can reach the flexibility matrix in another form. Suppose if we have a beam with fixed right
end and free left end subjected to M, Q) shown in Figure 4.62, the shear force and moment at any
section x, lying from the left end as shown in Figure 4.62 will be:

0=0 (4.344)

01

M=M1—xQ;=| —x 1 ][M]

] = N;F; (4.345)

At the right end, the shear force and moment will be O = —Q;, M, = LQ| — M, or:

[ AQg ] = [¢] [ A%l ] (4.346)

[9] = [ o ] (4.347)
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M
— e
&
Figure 4.62
Also
O |_| -1 0 0>
[ M | =] —L -1 M, (4.348)
Using principle of virtual work, using virtual force instead of virtual displacement results in:
L
SIT = / (ELY"8V") dx— 8Q1vi — MV, (4.349)
0
Substituting v/ = 2 T o' = 1nto the above equation results in:
M 5M
SIT" = dx—8Q v — MV, (4.350)
N;N;joM
=0F / ( ) dx.Fj — 5F,~.ul~ (4.351)

SIT" is called complementary virtual work.
5F,' [D,‘ij - l/ti] =0 (4352)

Where D;; is the flexibility matrix corresponding to forces Q1 and M, defined as:

L L3 L2
N;N;oM 1 L _ L
[D;)] :/ ( / )dx: — 3 2 (4.353)
LA EL EL| -L L
So we get:
D;;Fj = u; (4.354)
So the stiffness matrix is:
2 6
[K]=[D] ' =EL [ b4 ] (4.355)
2 L
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This is the stiffness matrix for the left two DOF (compare it with Equation 4.333). To get the total
stiffness matrix of the beam, it can be divided into two parts; part associated with the left two DOF
and another associated with the right two DOF.

RETaH
or

Ji = kyu + kjyuy (4.357)

Jr = ke + kyyuty (4.358)
Where

I R R

In this case, k;; refers to K in Equation 4.355. From Equation 4.346, we get f, = [¢] f;. Substituting
it into Equation 4.358 results in:

(9] fi = ki + ki (4.360)
Multiplying Equation 4.357 by [¢], and subtracting it from the above equation results in:

0= (@k; —kpr) u; + (9ky — k,.,.) uy (4.361)
As uy, u, are independent terms, their coefficients vanish for nontrivial solution as follows:

k= 0ky,  Oki =k (4.362)

From symmetry of stiffness matrix, it will be

[ Ku ko
K= [ Ok Pkuo” ] (4.363)

With k;; = K, we get the total stiffness as follows::

26 12 6

K=EL| L, L § L (4.364)
T S T &
2 L 2 L

The above method used in formulating the stiffness matrix is called forced-based finite element
method, while the traditional method described in subsection 4.5.1 is called displacement-based
finite element method. There is another method that combine using these two previous methods
called Mixed finite element which is described in subsection 4.5.5.

Timoshenko beam

For thick beams shown in Figure 4.63, the angle between section normal n and the tangent to beam
centerline changes after deformation. This change is defined as shear deformation (%, =V — 6)
and the deformation field follows this expression:

u(x,y) = —yo (x) (4.365)
v(x,y) =v(x) (4.366)
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Figure 4.63

Such that the axial and shear strains and stresses and their resultants are defined as follows:

Ex =0 — O = E€ — My = — / OnydA = EL0’ (4.367)
A
Yoo =V =0 =Ty =Gy —> Q0= / TydA = GAy Yy = ksGAYsy (4.368)
A
And the corresponding variations in strain energy are defined as
L
5Hbending = / (Elzel59/) dx (4.369)
0
L L
S hear = / (ksGA Yy Yry) dx = / (ksGA(V' —0) 8 (' —6))dx (4.370)
0 0

Such that the total variation in potential energy will be:

L
ST = / (EL6'660'+ksGA (V' — 0) 8 (V' — 6) — gv) dx— Q16vi — Q28v2 — M 56, — M»56,
0
(4.371)

Where Q1, Q», M| and M, are beam end forces. Using linear Lagrange interpolation function for
lateral displacement v and section rotation 6 in terms of the two ends DOF as follows:

V:zz:v,-Ni(X) =[(-7) ] [ :; ] (4.372)
6=> 6N =[(1-%) ] [ S; ] (4.373)
Or generall; 1the lateral displacement will be:
Vi
v:Zu,-N} W=[(1-%) 0 % 0] f; (4.374)

i=1
0,
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'With variation:
4 !
8V =Y " SuN!" (x) (4.375)
i=1

Similarly, section rotation 6 and its derivative with respect to beam length x (8") will be:

Vi
6
2 X X 1
9:Zul~Ni @W=[0 (1-%) 0 %] " (4.376)
i=1
6,
L 6
2 1 1 1
9':;uij =[0 -1 0o 1] o (4.377)
j= 0,
And variations defined as:
4 4
56 =Y SuN? (x) 56" =" uN? (x) (4.378)
i=1

i=1

For end beam lateral displacements vy, v, and section rotations 0y, 6, , the linear interpolation for
lateral displacement and section rotation forces the beam to displace as shown in Figure 4.64.
The resulting variation in total potential energy will be:

4 4
ELY. u;N¥ (x) 3 8u:N? (x)
L J=1 i=1 .
4 4
11 :/ +ksGA Y- u; <N}/(x)—N]2 (x)> 8 Su; (Nil’(x)—Nl-Z (x)) dx—3" Pdu;
0 j=1 = 2
—4o Z 61/liNil (X)
&

1

(4.379)

Substituting with the interpolation functions in Equation 4.372 to Equation 4.378 results into the
following stiffness matrix:

12 6L —12 6L
_ EL | 6L 4L*(14+31) —6L 2L*(1—6A)
1AL | —12 —6L 12 —6L (4.380)
6L 2L7(1—61) —6L 4L>(1+34)
Where
EI
A= KA 4381
K,GAL? (4.381)

But the above formulation and the assumed deformed shape in Figure 4.64 can not be used for thin
beams (Bernoulli beam theory). As thin beam exhibit zero shear deformation as follows:

O:yx},:v'—6—>v':9 (4.382)
2
/ Vi —V2
= N (x) = 4.
v ZVN (x) i (4.383)
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I ! I I I
F A — 4 —+ —+ —
| |

Undeformed configuration

Figure 4.64

The tangent to beam centerline in the above equation is constant which contradicts the linear
interpolation function assumed for the lateral displacement in Equation 4.374, so assuming a linear
interpolation for lateral displacement and section rotation produces inconsistent beam element.
The linear interpolation for lateral displacement forces section rotation to be constant all over the
beam which leads to zero curvature (change in section rotation 8’ = 0). Zero curvature means
no bending deformation or bending strain energy ( fOL (EI,6'66")dx = 0) and the beam exhibits
only shear deformation, as shown in the beam deformed shape at the lower part of Figure 4.65.
This deformed shape shows that, for zero lateral displacement, the rotation is varied linearly
(6 = (1—x/L)6; + (x/L)6,), while V' is horizontal. This shape is different from the expected shape
of deformation for Bernoulli beam as shown in the upper part of Figure 4.65. This problem is
called shear locking. We remark that for any bending element like beam or shell element, using
Lagrange interpolation function of the same order for deflection and rotation produces shear lock,
especially for thin elements. To solve this problem, we need to choose a consistent interpolation

Expected shape

/ T T 1 \
— === — -
M A R R W M

Shear locking

Figure 4.65: Shear locking is expected when using linear interpolation functions for both lateral
displacement and section rotation in Bernoulli beam theory
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91 ® @ ® 92

Vi V3 V)

Figure 4.66: Consistent interpolation element

for both v and 6, such that lateral displacement derivative v and section rotation 6 should have
the same interpolation function. For example, if we choose a linear interpolation function for
section rotation, we need to assume a quadratic interpolation function for lateral displacement.
We need to an additional node (e.g. at beam element mid-span) with lateral displacement as an
undetermined parameter and the beam element will have five degree of freedom as shown in
Figure 4.66. This element is called consistent interpolation element with interpolation functions
defined using Equation 4.290 as follows:

2 V1
v=> wN(x)=[36(E-1) 1-E JEE+1) ]| vs |, (4.384)
i=1 1%

2
ezzeizvi(x)z[ (1-¢) é][g;] (4.385)

Where £ = 7, and the stiffness matrix can be evaluated like the same above procedures using
Equation 4.379, but the element will have five DOF (two rotational at ends and three lateral
displacements)

Another way to solve shear locking is to make both v' and 6 to be constant instead of being
linearly varied as stated in the previous five-DOF element. Using an average section rotation
0" = M as a constant value in evaluating shear stiffness, the variation in total potential energy
will be:

L
6H:/ (ELO'66"+ksGA (v — 0%) & (V' — ") —qbv) dx— Q18vi — Q26v, —M 1660 — M, 56
0

(4.386)
And the interpolation function is defined as:
4 Vi
X X 6
v=> uN/(x)=[ (1-%) 0 £ 0 ] v; (4.387)
i=1 92
4
&' =" 8uN,' (x) (4.388)
i=1
4 5
£ _ N3 (x) — 1 1 I
0" => wN (x)=[0 5 0 } ] " (4.389)

i—1
0,
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Vi
4
o= uN'(x)=[0 L 0 L] fl (4.390)
=1 922
4 V1
0
0=> uN(x)=[0 (1-%) 0 % ] v; (4.391)
i=1
6,

6* can not be used in Equation 4.386, as for constant value for 8*, it results that (8"* = 0) will
vanish resulting no bending stiffness.
The resulting variation in total potential energy in Equation 4.386 will be:

4 4
86" =" SuN; (x) 56" =" uN? (x) (4.392)
i=1 i=1

4 4
ELY u;N?' (x) 3 8uiN? (x)
j=1 i=1

L 4
4 4
ST = / +ksGA S (N}’ (x) — N3 (x)) 53 Su; (N,.l’ (x) — N} (x)) dx—Y " Péu;
0 j=1 i=1 i=1
4
—qo Y, Su;N} (x)
i=1
(4.393)

Substituting with the interpolation functions in Equation 4.387 to Equation 4.390 results into the
following stiffness matrix:

12 6L —12 6L
_ EL 6L 3L*(14+41) —6L 3L*(1—4A)
T AL | —12 —6L 12 —6L (4.394)

6L 3L2(1—44) —6L 3L*(1+41)
These findings can be achieved through evaluating the integral corresponding to shear deformation

1

4 4
in Equation 4.393 [fOLksGA Su; <N}' (x) —Nj3. (x)> 0y, Ou; (N.ll (x) =N} (x)) dx] using one
=1 i=1

Gauss integration point (at mid-point) and the interpolation functions defined in Equation 4.372 to
Equation 4.378 without the need to define a separate interpolation function for section rotation 6*,

as the rotation at beam mid-point from Equation 4.391 is 0 (%) = %91 + %62 is equivalent to using

an average value for rotation (6* = M). This type of integration used in evaluating the finite

element stiffness is called reduced integration.

For a beam free of body forces, this element does not lock but does not also yield the exact
displacements as the section rotation 6 is assumed to be varied linearly, while the curvature and
moment have to be linearly varied for Bernoulli beam (see Hermite cubic interpolation functions
in Equation 4.324 and Equation 4.327). This lower polynomial interpolation function used effect
solution accuracy. Using reduced integration with finer mesh (by increasing the number of finite
elements for each beam), solution will converge to more accurate results.

Another way to evaluate the stiffness matrix free of shear locking is to use forced-based
finite element procedures (see stiffness matrix derived for Bernoulli beam from Equation 4.343 to
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Equation 4.364). The complementary virtual work of shear force is defined as:

L Q2
IrF=II= d 4.395
, 2GA, " (4.395)
With variation:
L
060 L
SITF = dx = ) 4.396
. GA, X GA. 0,0, ( )

As seen in Figure 4.62, Q = Q;, 60 = 6Q,. Adding the resulting shear flexibility to bending
flexibility in Equation 4.355 yields:

L’ L? 1 3 L’
— i ?2 T2 L [ L0 ] — i (§+AZ)L -2 (4.397)
EL | -L L GA, | 0 O EI -L L
Where A = % The stiffness matrix corresponding to the first DOF at the left end of the beam.
_ EI 12 6L
K=D"'=_—"“F* 4.398
L3(12/1+1)[6L 4L2(3),+1)] (4.398)

Using the same procedures from Equation 4.357 to Equation 4.363, we get the total stiffness as
follows:

12 6L —12 6L
| 6L 4L*(1+3A) —6L 2L?(1—64)
k=1 _1n —6L 12 —6L (4.399)

6L 2L>(1—6A) —6L 4L>(3A+1)

For a beam free of body forces, this formulation for stiffness matrix gives the exact solution for
displacements and section rotations even if we use one finite element for each beam of the structure,
unlike using reduced integration in which it requires a finer mesh for structure to force the solution
to converge to the exact solution.

For very thin beam (4 — 0), the stiffness matrix in the above equation will be identical to the
one used for the Bernoulli beam element in Equation 4.333.

Formulation of continuum mechanics incremental equations of motion

Total and updated Lagrangian formulation

As stated in chapter 3, we use Lagrangian description in solid bodies especially when they are
subjected to large displacements and rotations. Consider a body shown in Figure 4.67 with initial
configuration Cy and then subjected to some external forces yielding configuration C;. Assume that
the deformation is known until this configuration C;, while the deformation in configuration C; is
unknown, such that a material point P attached to this body has coordinates Py = (OX 1 OXz, 0X3),
P = ('X1,'X,,'X3) and P, = (2X1,%X>,%X3) in configuration Cy, C; and C,, respectively. If the
coordinate system used remains constant during body motion, the coordinates of point P in different
configurations are related through following:

X =%+ u;
ZX,' = OX,' + zu,- (4.400)
ui =" —u;

Where !u;,2u; and u; represent the incremental displacements from configuration Cy to C,, Cy to C;
and Cj to Cy, respectively. The superscript is used generally to define the configuration at which the
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Configuration corresponding to the

variation in displacement u on *u

e

/—— ~§>/ du

2, 2, 2
P( X1, X2, X3)

Configuration C,
~®—— Surface area %S
Volume 2V

Configuration C,
Surface area 'S
Volume 'V

P(OXIaOX2 90X3)

Configuration C,
Surface area ’S
Volume Vv

]
]X i :OX l-+]u,-
o e X=X,

_2 1 .
e Ui="U;i- U; fori=I, 2, 3

Figure 4.67: Body motion

property is measured. Applying virtual (variational) displacement du on the unknown configuration
C, that satisfies the boundary conditions to get an admissible configuration shown in Figure 4.35.
These virtual displacements undergo virtual strain denoted by §%€ and virtual work defined using
Equation 4.161 integrated over the unknown configuration C, as follows:

2811 = 2811, — 2810,y = / 20;;8%¢; d*V — / 2 8%u; d*V — / 1;6%u; d*A =0 (4.401)
2y 2y 28p

Where 26 is Cauchy stress at configuration #, and 5°€ defines the infinitesimal virtual strain referred
to configuration C, defined as follows:

=5 5% T (4.402)

In Equation 4.401, we face two problems. First, we can not evaluate the integration over unknown
volume 2V and second, Cauchy stress can not be used in an incremental analysis as its rate is not an
objective (see section 3.4), such that there is no direct expression for the increment in stress Ao
from configuration C; to C, that satisfies the following equation:

6=+ /0o (4.403)

Therefore, we should use an alternative expression for the internal virtual work. We can write the
internal virtual work in the material form as follows:

2810, = Av §Si;85E; d°V (4.404)
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Where (Z)S ;j represents second Piola-Kirchhoff stress tensor and and %Ei ; 1s Green-Lagrange strain
tensor. The superscript 2 indicates that they are measured at configuration Cy, while subscript 0
signifies that they are referred to configuration Cy. Green-Lagrange strain tensor is defined as:

1 d "u;
2E;; = 5 (Ui +5U)i+5Uki §Uxj),  where MU ;= TXJ (4.405)
‘While its variation will be:
1
80Eij = 5 (86Uij + 86U i + 86Uk Uk, + Uk 83Uk ;) (4.406)

From above equations, the alternative virtual work is expressed in terms of a known configuration.
Also the displacement U in Equation 4.405 is differentiated with respect to known configuration.
In addition, we can decompose second Piola-Kirchhoff stress and Green-Lagrange strain tensors
because of their objective rate as follows:

387 = Sij+0Sijs  3Eij = §Eij+oEij (4.407)
Where
1
0Eij = 5 (0Usj +oUji +0Uki Uk ) (4.408)

Substituting Equation 4.405 and the above equation into Equation 4.407, we get the increment in
Green-Lagrange strain as follows:

1 1
oEij = 2 (OUi,j+0Uj7i+(1)Uk,i 0Ur,j +oUk,i (I)Uk7,,') + 2 (on,i oUk ;) (4.409)

The above increment can be decomposed to two parts as follows:

oEij = oeij +oMij (4.410)
1
0€ij = 5 oUij+0Uji+ 0Uki oUk,; + 0Uki (I)Ulw; (4.411)
initial disple:crement effect
1
oMij =5 0Uk,i 0Uk,j (4.412)

With the variations §ge;; and 0¢n);; defined as:

1 1
Ooeij = 3 (80Uij+ 80Uji+ (Ui 80Ur,; + 80Uk (Us.;) , Somij= 5 (80Uk,i 0Uk,j + 0Uk,i60Uk ;)
4.413)

Also from Equation 4.407, the variation 0¢E;; is defined as:
83Eij = 80Eij + 8oE;; = 8oE;; (4.414)

The first term in Equation 4.410 (pe;;) defines the linear incremental strain in oU; ; (see Equa-

tion 4.411) as (1)Ul-7 = % is known and considered constant through applying u; or U; ;, while the
second term (o7);;) is noniinear incremental strain denoted as seen in Equation 4.412.

As shown in Figure 4.67, the displacement field 'u; can be interpolated in terms of nodal
point variables (degree of freedom) which may be displacements or rotations or both. For body

undergoing large rotation, '»; will be a linear function in nodal point displacement and a nonlinear
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one in nodal point rotation (see Equation 2.179), which in turn makes a part of e;; associated with
nodal point rotation to be nonlinear and (1);; is not the full story of all nonlinear strain increment.
Also we need to note that the external forces are assumed constant during displacement increment.
Some loads like pressures are deformation dependent and it will add additional stiffness to the total
stiffness (see Appendix 4.5.5). The resulting principle of virtual work is:

A 0Si;80Eij d°V + A 0Sii8omij d°V =281,y — A 0Sii8oei; d°V (4.415)
Vv 14 Vv

For given variation du;, the right hand side in the above is known, while the left hand side contains
unknown displacement increments which is responsible for the stiffness matrix. Deriving the
stiffness matrix requires that neglecting all higher-order terms in Uj, such that all linear terms in U;
remain. This process is called linearization which leads to:

(6K oU) 80U; = (*R—"F) 8oU; — (K oU =*R—"'F (4.416)

Where (K, oU, 2R and 'F are the stiffness matrix, incremental displacement, external applied
force at configuration C, and internal forces at configuration Ci, respectively. The following term
})Si j5077i ; 1s linear in oU; as })Si ; 1s known from the configuration Cy, while the term 7);; is linear in
oU;i and 8¢U; as seen in Equation 4.413. The term (S;;00E;; is non-linear in oUj;, as the first part
0S;j is generally nonlinear function in §¢E;; according to the constitutive relation, so neglecting
higher order will make §(E;; a linear function in oU; as follows:

0Sij
86Ers

oEys + higher order terms (4.417)
11

0Sij =

The above equation can be expanded using Taylor series. The term oE,s = ge,s + o1y 1S quadratic
function in gU; because of the nonlinearity of g7, as stated in Equation 4.412, which requires

. .S ) . .
neglecting ¢1,s. By equating agE'i B with (Cjjs, the resulting linear term (S;; will be:

0Sij = 0Cijrso€rs (4.418)
while the second part §oE;; contains linear and non-linear terms as follow:

00Eij = Opeij +060m;; (4.419)
—~—

constant linear

As the first part of is linear, second part is needed to be constant by neglecting the second term in the
above equation, such that term (S;;80E;; can be linear only through the following approximation:

OCijrsOers SOeij = OCijrsOers(sOeij (4.420)
—_—— e ——
linear  constant linear

So the final linearized equation of Equation 4.415 can be written as follows:

/ QC,‘jrS oers(S()e,'j a’OV +/ (I)S,‘j60nij dOV = 26Hext — / (I)Sijéoeij dOV (4.421)
oy oy oy
li;;\r Co;sftant

The left side of the above equation is responsible for the material and geometric stiffness matrices,
while the right side represents out of balance virtual work term. This term, the difference between
the external virtual work and internal virtual work, can be reduced by performing some iterations in
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which the solution step is repeated until this difference can be neglected within a certain convergence
measure as follows:
A 0Cl ek Boey d°V + / 581y sonnl dv =28T. / o8y gte v @422
The superscript k indicates the iteration at which the term is calculated.
The last term ( fo,, %ng_l) 5%8[(;(_1) d°V) corresponds to the current internal stresses in th element at
configuration C;. Although, we are forced to use linearization (approximation through neglecting
higher order terms) to get the stiffness matrix in the predictor phase of the finite element analysis,
we can achieve the exact solution as long as the unbalance force is evaluated accurately in the
corrector phase. These exact results can be guaranteed through calculating accurately the last term
of the unbalance virtual work equation ( ﬁ)v %Sg-c_l) 5(2)8,-8{6_1) d°V) . This term is an essential quantity
that controls the final results of the finite element analysis that we have to calculate accurately, as
our ultimate goal is equilibrating this term with 28T1,,. If we mistake in calculating this term, the
analysis will converge to a wrong solution. However, the approximation used in evaluating the
stiffness matrix has no effect on the solution results and just increases the number of iterations to
for solution to converge or reach the equilibrium state in the loading step.

Equation 4.421 can be simplified using the symmetry property of second Piola Kirchhoff stress
tensor (using Equation 1.100) and Equation 4.413 as follows:

0Sii80Mi; = 0Si; (80Uk.i 0Us,;) (4.423)
0Sij80€ij = 0Sij (80U j + Ui 80Uk )

The above formulation is called Total Lagrangian (TL) Formulation in which the initial config-
uration Cy is used as a reference configuration. We can use instead the last converged configuration
C as a reference configuration which leads to so-called Updated Lagrangian (UL) Formulation. In
this formulation, the internal virtual work will be defined as:

281y = / 18;,01E;; d°V (4.424)
oy
Which %S,- ; and %E,- ; are conjugate pairs defined as follows:

— T
iS=det(iF)iF~' (o) IF

1 T (4.425)
E= (%F %F—l)
With
’°X;  du
2 i i
Fj=ole 20 L5 = U+ 6 (4.426)
1 )
T Tx; T aix, "o T 1T
We get
2 1
1Eij = 3 (1Uij+1Uji+ Ui 1U ) (4.427)
2E;; can be split into two terms as stated before:
1 1
1Eij=1ejj+1mij = 3 (1Uij+1Uj) + 3 (1Uki 1U ) (4.428)
1
16 =5 (Ui j+1Uj3) (4.429)
1

1Mij = 5 (1Ui 1U) (4.430)
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'With variation define as:

1

01E;; = 3 (81U j+ 61U} +81Uk; 1\Ux,j+ 1Uk; 81Uk ) (4.431)
1

O1e;j = 5(51Ui,j+51Uj,i) (4.432)
1

o01Mij = > (81Uki 1Uk,j+1Uk,i61Uk ) (4.433)

Second Piola Kirchhoff stress tensor at the current configuration can be resolved into two compo-
nents:

185 = 18ij+18;j = ' 01+ 15;) (4.434)

As from Equation 4.425, }S,- = lo; ;. Virtual work equation will be:

/VlsijalE,-j dlv+/v‘o,~,-6m,-j d'v = Zanext—/v‘oi,-sle,-j d'v (4.435)
Linearization of the above equation results in:

[Vlc,-j,s 1e,581e;) d1v+/vlo,~j51n,-j d'v zzanex,—/vloij&e,-j d'v (4.436)
With incremental form defined as:

/ 2C D 26l 8reiy PV + / 265V 8omY dPV =261, — / Y
2y (k1) 2y(k=1) 2y/(k=1)

(4.437)

The difference between updated Lagrangian (UL) and total Lagrangian (TL) formulations is that
TL formulation includes initial displacement effect as stated in Equation 4.411 which makes the
stress-displacement matrix more complicated than UL formulation, but they gave the same results.

Lagrangian formulation of displacement-based finite elements
For a general body described in the previous section, the linearized virtual work Equation 4.421
can be written in terms of the nodal point variables (displacement rotation) as follows:

% 0Cijrs 0ersOoe;; d°V = Sit (% oBL” oC (B doV) i
v v

[ ; 0Sii6omij d°V = Sia ( [ ; BT \SSBNL dOV) i (4.438)

/ (])Sijaoeij dOV = 5ﬁ (/ BLT (1)§ dOV)
oy oy

Where (1)BL and (I)BNL is the linear and nonlinear strain-displacement transformation matrices. Term
oC defines stress-strain constitutive relation. (I)S and § are matrix and vector of second Piola
Kirchhoff stress. While vectors & and 8 signify the nodal point variables nodes and their variations,
respectively, defined as follows:

0= [u% whooud bl sl u"m]T (4.439)

oi = [5u{ Sub ... 8ul ... 8ul | Sul Sus ... | Sul... 5uﬁ1]T (4.440)

Where m is the number of DOF associated with each node of the finite element, while 7 is the
number of nodes in the finite element, such that u] defines the displacement at node j associated with
DOF i at this node. Generally, m = 3 for continuum finite element (three nodal point displacement
at each node) and m = 6 for structural element (three nodal point displacement and three nodal
point rotation at each node).
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G

Figure 4.68

m Example 4.36 Assume a three-node curved truss element shown in Figure 4.68. As the only
stress considered in truss element is the normal stress on its cross section, we are interested in
the corresponding longitudinal Green Lagrangian strain E7;. Assume an infinitesimal vector
ds of the truss element at the initial configuration Cy along its centroid and is deformed to d's
in the deformed configuration Cy, such that £ is defined using its expression in chapter 3 as
follows:

d's* —d’s* = 2)Eyd°s* (4.441)

Where d’s and d's represent the arc length of undeformed and deformed infinitesimal vectors
d’s, d's, respectively. If the truss has initial position °X and is subjected to displacement vector
'u reaching to position !X in the deformed configuration Cy, the length square of d’s and d's
can be defined as follows:

(d°s)? = d%.d" = d°X,;.d°X ;
(d's)? =d's.d's=d'X;.d'X;

0
X‘
d°X; = do “d’s
51; A% d! (3442
d'x, = L2 0 — A PR
408 (dOS + d°S>

dOXidlui dlu,- dlu,-
d’S d°S ~ d°S d°S

(d's)? — ()% = (2 ) (d%s)? = 2E;(d%)?

Then, we get the axial strain as follows:

A% d'u;  1d'u; d'u;
1 . i i i i
of11 = "o o5 T2 a0s avs (4.443)
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In the same manner, the element is deformed to the final configuration C;, through additional
displacement u;, such that the Green-Lagrange strain will be:
2 _dOXid(lui—i—u,-) 1d(1ui+ui) d(lu,-—i-u,-)

E - 4.444
oE11 =05 T s T3 aos d0S ( )

The incremental in this strain gE; = (Z)E 11— (I)E 11 will be:

dOXi dui dlui dui + l dui du,'
d’S d°S ~ d°S d°S  2d°Sd°S

(4.445)

The increment in strain can be decomposed into linear ge;; and nonlinear part ¢1;; as follows:

dOXi du,- dlui dui dIXi dui

=—— = 4.446
01 = 05 205 T 405 s S dos £459)
1 dui du,-
=_—°L 4.447
0N = 5 5¢ Jog ( )
Where the arc length at the initial configuration °S(&) can be defined in terms of natural
coordinate § = [—1, 1] using Lagrange interpolation functions as follows:
n .
0S(&) =) "N;(£)°s (4.448)
j=1

N;(&) is the interpolation function defined for three-node element (see Equation 4.290). In the
same manner, the following vectors can be interpolated as follows:

%,(8) = SN ()X =N.R
j=1

X&) = N;(&)'x/ =N.'% (4.449)
j=1

ui(§) =Y N;(§)ul =N
j=1

With N;(&) defined in Equation 4.290 and N defined as:

100
N=[N(E)L [ N(E)s | .. INJ(E)B], B=|0 10
00 1
U= B Bl L O O U (4.450)
2= ['x! ') x} . %P %G %3]
4= [u% wh ul w3 ug]T

Where °X, 'X and 4 represents the initial and final position, and displacement at point j in i



4.5 Intfroduction to finite element method

221

direction, such that

d'X; d& d'X
d’s  d°S d&j
dOSZ 15
_4dsy
= pse X
Similarly:

T;* dOSZ el

(4.451)

(4.452)

(4.453)

(4.454)

Note that subscript (,&) in N ;¢ signifies the derivative of N; with respect to the natural coordinate

&. Equation 4.446 and Equation 4.447 can also be interpolated as follows:

le,- du,-
d’s d°s

_ (ﬁ)z (N:'R). (N a)
— (;ﬁi)z (U?TNENg u)

oM = (5()&5) <"TN5 & ﬁ)

With variations defined using Equation 4.438 as follows:

0€11 =

_ (96N (1gr N g so
Soern = (dOS> ('R7NN ; 50) = BLoa

dEN? /. N1 .
507]11 = (doés> ( TN €N7§ 5u> = EuTBNLTBNLSu

Where By, and By, are defined as:

B = (;ﬁ) ('R"NN)

= () g

While second Piola Kirchhoff stress vector is defined as:

16 _lal 12 13717
OS_[OSII 0311 0511]

(4.455)

(4.456)

(4.457)

(4.458)

(4.459)

(4.460)

(4.461)

(4.462)



222 Chapter 4. Energy Principles and Introduction to FEA

Where (I)Slil is the second Piola Kirchhoff longitudinal stress tensor at node i. The corresponding
NONZEero stress (I)SU can be a function of strain (I)E 11, such that the tangent stress-strain relation is
defined as follows:

3(1)511
0 En’

oCiin = or AYS1E = oCiini AEN (4.463)

For linear elastic material, ¢C;1y; will be identical to Young’s modulus. As the axial stress is
constant over the cross section A, volume integration in Equation 4.464 can be simplified to a
line integral as follows:

A 0Cijrs 0€rsOoei; d°V = A 0oCii11 oen1Soerr d°V = i (ﬁ oBL" oCA By dOS) ]
v % 5
AV(I)S“S()T]U d°Vv = /)V })Sijéonij d°V = i (AS(I)BNLT (I)SA (I)BNL dOS) i

/ (I)Sijg()el‘j dOV = / (1)5115()611 dOV = 512 (/ BLT (1)§A dOS>
oy oy 08

(4.464)
The integration of above expressions is generally performed using Gauss integration. "
Known
Configuration

Initial
Configuration
€

Figure 4.69
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Newton Raphson linearization

Assume a body shown in Figure 4.69 with initial configuration Cy, and it is required to find its
equilibrium configuration under the applied external forces. The principle of virtual work in terms
of second Piola Kirchhoff stress tensor states that:

6W(u,5u):/S:6E dV—/f*.5udV—/ t.6udA =0 (4.465)
\% % St

Assuming a trial solution u; and using Taylor series to evaluate incremental solution Au that makes
variation in total potential vanish as follows:

OW (uy + Au, du) = SW (uy, Su) + DSW (uy, du)[Au] + higher order terms =0 (4.466)

Where DSW (uy., 6u)[Au] represents the directional derivative of virtual work in direction Au.
We need to note that, in the first term of the above equation (W (u; + Au, du)), u is changed to
u; + Au, while solution variation du is not as shown in Figure 4.69. See 4.7 and 4.8 for further
explanation. Linearization means neglecting higher order terms and the above expression reduces
to:

OW (u,6u) +DSW (u, du)[Au] =0 (4.467)

Assuming the external forces is deformation independent during incremental displacement Au, the
directional derivative of virtual work in direction Au will correspond only to the internal virtual
work defined as:

Wi (u, Su) = / S:8E dV (4.468)
%

With directional derivative defined as:

DWW, (u, 0u)[Au) = /

DS[Aul:SE dV + / S:DSE[Au] dV (4.469)
\% Vv

Using Equation 4.118 and Equation 4.122, we can get the following
1
OF = > (V0(5u) TF L FTV, (Su))

D (SE) [Au] (V0(5u)TAF +AFTV, (6u)) (4.470)

_1

S 2
1

- (V0(5u)TV0 (Au) + Vo (Au) 'V, (5u))

In the above expression, we used A (du) = 0 as the variation Su remains the same after incremental

displacement Au as state before in Figure 4.69. From symmetry of second Piola Kirchhoff stress
tensor and using Equation 1.100, it results in:

1
S: (2 (V0(5“)TV0 (Au) +Vo(Au)'V, (5u))> — §:Vo(Su) Vo (Au) 4.471)
Using constitutive stress-strain relation DS[Au] = C : AE and Equation 4.469 results in:
DEWini (u, Su) | Lu] = / AE[Au]:C: SE dV + / S :Vo(8u) Vo (Au) dV (4.472)
v 1%

The first term [, AE[Au] : C : E dV signifies the source of material stiffness, while second one
fS: Vo(5u)TV0 (Au) dV represents the geometric stiffness of the body. The above expression
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gives identical findings to the one used in Lagrangian formulation Equation 4.421 in the previous
section. If the external force is deformation dependent (changes with body deformation), it
will contribute to the directional derivative and produce what is called load stiffness matrix (see
Appendix 4.5.5).

Also, virtual work principle can be rewritten in terms of first Piola Kirchhoff stress tensor as follows:

OW (u,0u) = /P:SF dV—/f*.Su dV—/ t.oudA=0 (4.473)
1% 1% Sr
In this case, the direction derivative of internal virtual work in direction of Au will be:
DSWa (1, 50) [ ] = / DP{AW]:5F dV + / P-DSF[Au] dV (4.474)
1% 1%

Using constitutive stress-strain relation DP[Au] = C : AF and Equation 4.118, the above equation
will be:

DSWi (1, 8u)[Att] = / AFC: 5F dv + / P: D(V,(8u)) [Au] dV (4.475)
\% \%

As stated before, the virtual displacement du does not change during the incremental displacement
Au, it yields D (6u) [Au] = 0 which forces the second term to vanish and the above equation
reduces to:

DWW (u, 0u)[Au) = / AF:C:0F dV (4.476)
v

Co-rotational approach
The main purpose of co-rotational formulation is to decompose the body displacement into a rigid
body and pure deformation parts. The pure deformation part is responsible for the internal forces.
It is measured with respect to element triad as stated in subsection 2.3.1. The merit of using
co-rotational approach is to separate material and geometric nonlinearities in deriving formulations
for internal forces and tangent stiffness.

For a two-node beam element Figure 2.44 as stated in subsection 2.3.1 variation in the natural
deformation measured with respect to the moving (element) triad E is defined as

[6d)) = B[5d,] (4.477)

The natural deformation is responsible for the internal forces in the local coordinate system f;
and local tangent stiffness K;, while the internal forces calculated in the global coordinate system
[, can be calculated through equating the variational work performed by two forces through its
corresponding displacement as follows:

8W = 8d,f) = 8d,f, (4.478)

We note that rotations in dd; and 8d, are incremental spin (non-additive rotation 6¢), as the
moment is work conjugate to the incremental spin not the change in rotation vector (additive
rotation vector) 60. From Equation 4.477, the local and global internal forces are related through:

f.=B"f (4.479)

The global tangent stiffness K, will be defined from the variation of the global internal forces with
respect to the global displacement as follows:

8f,=B"5f1 =K;8dy+ 8 (B f1) |constant 1, (4.480)
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Where
of =K;6d, =K,Bdd, (4.481)
d (BT
0 (BTfl) |constant fi = (adfl)adg (4.482)
8

So the resulting general stiffness matrix will be:

o (BT
K,=B'K;B+ M (4.483)
ad,

constant f

Two dimensional beam element
If we have two dimensional beam element as mentioned in subsection 2.3.1, using Equation 2.319
and Equation 2.319 and for , the second term of tangent stiffness will be:

8 (B" £1) |constant f, = Sb1 71— 8b} (g + 12 /1) (4.484)

Where the local internal forces f; include the beam axial force 77 and end moments 77 and 77; and
defined as follows:

fl=[n m m ] (4.485)

The variation in b and b, can be evaluated as follows:

bl =blSB = libg b, 8d, (4.486)
T T 1.7 8bg 1.7 T
6b2 == _bl 6[3 = —rbl b2 6dg+ W6ln == —rblbz 6dg —bzb] 5dg (4.487)
So, we get:
T Lfor, T T4y (71 +72)
8 (B £1) | constant £, = - (b2bon+ (b1b>+b3b) — 5d, (4.488)

And the resulting stiffness matrix will be:

K,=B'KB+ ll (sz byni+ (blby +blb)) (’"1;”"2)) (4.489)

n

Three dimensional beam element
As stated in Equation 2.355, the variation in natural deformation is related to the variation of the
global displacement through the following:

[8d)] = PE}[8d,)! (4.490)

So the following term will be:

EE

6 (BTfl) |constant fi— 0 E4[rT P{ Pg]

(e |1 PT P FEL (5 (') + 8 (Plm) + 5 (PLm))

o3
EE

3

(4.491)
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Where
§(r'a)y=0 (4.492)
SP! = 6P} = —6AT (4.493)

As A is function only of the beam length, we get:

0AT 0AT

SAT = =51, = = rET [8d,]! 4.494
Where

oA 1 00 0 000 O O 0O0O0O

j:—200—1000 0 0 1000 (4.495)

n LTl 01 0 000 0 10000
So we get the following:
T— y— L T
8 (Pimy) +6 (Pymy) = W(ml +my)rE, [6d,) (4.496)

As 81, =rE] [8d,] is a scalar term it can be flipped with any vector or tensor terms. assuming that:

N, -
Ilivll _ ([rT P! PI] [ N ]) (4.497)
2 _
M, "
And from
[8E4]! = [6¢., E4s =E4[8¢.,JFETE, = E4[8¢.,]F (4.498)
Where
5. 0 0 0
~ 0 6¢., O 0
0Py = — 4.499
Py 0 0 5. 0 ( )
0 0 0 69,
and from Equation 2.351, We get
N1 Nl
| M| _ ~ | M
[OE 4] N, =E4[00.,) N, (4.500)
M, M,
C N
— B, | M| (50, (4.501)
N,
| M, |
C N
M
——E, N; AE![5d,) (4.502)
| M, |
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So the stiffness matrix will be:

N,
0AT 7
K,=E, PTK,P+W(WI+W)r— %1 A |El =E,(K,)ET (4.503)
n 2
M,

Where P, and A are defined in Equation 2.358 and Equation 2.343, respectively, and K; defines the
total local stiffness as follows:

N

AT M
KL:PTKZP—i—W(rWH—nTQ)r— Nzl A (4.504)

M,

Mixed finite element

For a linear elastic body subjected to body force f2 with constrained boundary at S;. The remaining
free boundary Sr is subjected to traction forces F5T, such that the total potential energy is defined
as:

1
M= / e'Cedv — / u fBav — / uS” F5r A (4.505)
\% |4

Sr

with strain-displacement relation and displacement boundary conditions:
€=0:u, uls,=u (4.506)

where J; ia a differential operator on displacement u to get the strain components €, u represents
the vector of prescribed displacements at Syy. In displacement-based finite element solution, the
stationary of potential energy (with respect to the displacements) makes its variation on u that
achieves the prescribed displacements to vanish. Also it should be noted that the solution variables
are only displacements, while other variables like strains and stresses are evaluated in the post-
processing stage. There are other extended variational principles that use not only displacements
but also other variables such as stresses and/or strain as a primary variables so-called mixed finite
element method. In this method, the variational principle is rewritten using Equation 4.505 and
Equation 4.506 as follows:

n:n—/AeT(e—asu) dv— | A" (u¥ —u)dv (4.507)
v Su

Where A¢ and Ay are considered as Lagrange multipliers which are implemented to insure the
conditions Equation 4.506. To make sure that each term of the above equation has the same units,
Lagrange multipliers A¢ and Ay can be considered, respectively, as the stresses 6 and traction stress
vector over boundary Sy, f37, so the extended potential energy will be:

O,y =1- / o’ (€ —deu)dVv —/ fSUT (uSU —g) dv (4.508)
14 Sy
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This potential functional is called Hu-Washizu functional. Stationary of this functional requires
Ol = 0 as follows:

O:5HHW:/V5£T (Cs—r)dV—/V50'T (s—aeu)dVJr/V(aeSu)To

-~

Stiffness terms

—/SquBdV—/SquBdV— 5uSFTfSFdA—/ <5uSUTfSU+5fSUT (uSU—g)>dA
v v

Sr SU
Body force terms Bound;r,}; terms
(4.509)
1 3 2
[ 4 L
L)x, u
Figure 4.70

m Example 4.37 Assume a three-node truss element shown in Figure 4.70. Consider a parabolic
approximation for displacement and linear approximation of stress and strain as follows

u(x) =N(x)a (4.510)
o(x) =N(x)é6 (4.511)
£(x) =N(x)& (4.512)
Where
N= [1(l+x)x 1(x—l)x 1—x2] (4.513)
2 2
1 1
N= [2(1+x) 2(1—x)] (4.514)
a=[u uy us)’ (4.515)
6=[o o) (4.516)
é=[g & (4.517)

The stiffness part of Equation 4.509 will be: ~ 8& [ [, NTCNaV]&— 8&" [[,N'NdV]é
~T

While the second term will be: ~86" [[,N'N dv]&+56" [[,N"Bav]a
The third term is: sa’ [[,B'N dV]é
(4.518)
Where

(39 (-2)
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The stiffness part of Equation 4.509 will be:

0 0 Ku i
[6a 68 66 || O Kee Keo > (4.520)
Kis' Kes! O 6
Where

Kee = / NTCNdv (4.521)
\%4

Ky = / B'Nav (4.522)
1%

Keo = / NT'Nav (4.523)
14

substituting for B and N in Equation 4.523 results in

Wl

5 1
2 1 2 1
Kee—%‘[l 2], Kuo‘_% _411 —45 : Keo = [1 2]

By eliminating the stress and strain degree of freedom (€, 6), Equation 4.520 becomes:

7 1 =87 [ m 7 1 -8
EA EA
[6uy Suy Sus)” <6> 1 7 -8 | oK=-—| 1 7 =8| (4524)
-8 —8 16 u3 -8 —8 16

The stiffness matrix obtained above is identical to the one obtained from displacement-based
truss element Equation 4.304 as it assumes a parabolic interpolation for displacement Equa-
tion 4.301 and consequently a linear strain distribution in Equation 4.302.

The degree of interpolation for each degree of freedom should be ’wisely’ chosen. "

» Example 4.38 If we assume a parabolic displacement, linear strain, and constant stress
assumptions, the interpolation functions will be:

u = Nii; e(x) =N(x)& where N, N are as stated before 4.525)
e(x)=T(x)&;, 6 =o3; T =1] '
with
Kee = [,N"CNaV, Kus = [,B"Tav, Keo = [,N'Tav
A
2 1 —A
Kee = % ,  Kue = —A |, Keo =
1 2 —A
0
And the resulting stiffness will be:
1 -1 0
EA
K= - -1 1 0 (4.526)
0 0 O
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The resulting element reduces to a two-node truss displacement-based element Equation 4.298
which is not sufficient for a three-node truss. n

The extended variational principle can include only displacements and strains as primary
variables unlike Hu-Washizu functional which includes stress as unknown variable in addition to
displacements and strains. This functional is called Hellinger-Reissner proved from Equation 4.508
and using € = C~! o as follows:

1
= /V (—2O‘TC_10'+0'T9£u—qub> av — /S S uSrdA — /S fS“T(uS“—g) dA (4.527)

'

Boundary terms

Applying divergence theorem on the second term results in:

/ 01 deudv = / eu’ (on)dv — / 0:6 " udv (4.528)
Vv S Vv

Where S = St + Sy. Including the stationary of potential functional leads to:

0 =8I0, = /V (667 (—C '+ du) — u” (dec +f*)| av

(4.529)
— [ sus’ (T —on) dA —/ [SuS"T (f5v —on) + 5fSUT (u —g)] dA
St U
We get:

Stress-strain relation du=C'c onV

Equilibruim equation 0:6+f=0 onV

prescribed tractions fSr =on on St (4.530)

Boundary equilibruim f =on on Sy

prescribed displacements w=u on Sy

w w
A Zw A’

20 L. Y

0, X, U

L2+ L2~

Figure 4.71

» Example 4.39 Assume a two-node Timoshenko beam shown in Figure 4.71. Consider the
transverse displacement and beam rotation are distributed linearly, while shear strain is constant
over the beam %,

w=Nw 6=N8; N=[ (1-%) (1+%)] (4.531)

u=—z0=—zN0 (4.532)
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The assumed strains are:

du A
Ex = a =< [ _% % ] = —zB0 (4.533)

Yo =7 (4.534)
While applying operator on displacement # results in:

_ du _ Ju ow a .
Exx = a = —7B = &y; Yie = 372 + g =NO6 —Bw (4.535)

Neglecting the boundary terms in Equation 4.527 to be:

/V<_;[8xx %cz][g g][i’i:]Jr[S” yxz][g g][z])d‘/:/‘/qude

(4.536)
Taking the variation of above equation results in
/ 8uE€y+ 87,,GYxe + 8%::G (T, — %e) dV = / su” foav (4.537)
14 14
substituting Equation 4.535 into the above equation results in:
/ (667B7EBb + 367N Gy — 5w BTGy -+ GNO — 9" GB# —§7 G ) dv
v
= / su’ foav
v
0 0 -B'G W
[ 6w 66 &7 ] / 0 B'EB N'G |av ]| (4.538)
V| -GB GN -G ¥
: 0
=[éw 60 &y ]| M
0
The resulting stiffness will be:
0 0 0 0 —GA
0 0 -B'G 0 0 0 0 GA
K:/ 0 B'EB N'G |dv=| 0 0 EI/L —EI/L GAL/2
V1 -GB GN -G 0 0 —EI/L EI/L GALJ2

—GA GA GAL/2 GALJ2 —GAL
(4.539)

Applying static condensation on ¥ in Equation 4.538, the resulting stiffness matrix will be:

GA _GA  _GA GA
L 2 2
6 Gk _c éa
_ L L 2 2
K=1 ¢ 6r caL L El GAL_EI (4.540)
2 > 4 T 4 L
GA  GA GAL _E1 GAL  EI
2 2 i L 4 t1L
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If we assumed a linear variation in transverse shear strain %, instead of the constant one assumed
in Equation 4.534 and repeated the above equations with new assumed %, it results in:

GA _GA  _GA GA
L 7 7) 7)
_6a ok _c cA
_ L L 2 2
K=1 6 _‘ta GAL | EI GAL”_EI (4.541)
2 > 3 "L & L
A Gk G_fk G B
2 2 6 L 3 T1

Which exhibits a stiffer behavior. This behavior exaggerates for thin elements (beam depth <<
its length), so this previous assumption results in shear locking as stated in subsection 4.5.2. Also
the same stiffness matrix in Equation 4.541 will be obtained if we use the displacement-based
finite element formulation.

Using last row of Equation 4.539 in conjunction with Equation 4.538 result that

Wy — W 0,+06 R . Wy — W 0,+06
GAL | 12 1+ 1 2_%6Z 0o —f, = 2L 1 12 h

4.542
3 5 (4.542)

The resulting assumed constant shear strain is equal to the shear strain at the beam midpoint if
evaluated from Equation 4.535 at x = 0.

e w

Figure 4.72

s Example 4.40 Assume the same above beam with only end moments M, M, and its cor-
responding rotations 01,8, as shown in Figure 4.72. If the applied moments and rotations at
beam ends are equal, the shear stresses and consequently shear strains vanish. Through theses
displacement and based on the mixed finite element formulation in Equation 4.540, the resulting
nodal forces F = Kit = [0 %6 0— %G]T, while using pure displacement-based element results
inF=[0 (“4+£Y9 0 — (%L +£)9]” which results in erroneous shear contribution or

6
shear locking Figure 4.65 n

Also mixed formulation is much more powerful than the traditional displacement-based finite
element in constructing plate or shell finite element formulation and the analysis of incompressible
media.
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(Appendix A: Derivation of T

As the axis of rotation is not effected by rotation

RO =0
ARO +RAO = A0

As AR = AR

APRO +RAO = AO
APO +RAO = AO
AP x 0 = (1—R)AB

But, if ¢ = a X b, it follows thata = %{- + Ab, similarly:

0(1-R)Ab

From Equation 2.54 formula, the trace of rotation tensor is:

R:1=1+2cos0
0.A6

AR :1=-2sin6AOB = —2sin0

The last expression results from

0.A0

0°=0.0 —20A0 =0.A0 +A0.0 =20.A0 — A\ = ———

0

(4.543)
(4.544)

(4.545)

(4.546)
(4.547)

(4.548)

(4.549)

(4.550)
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. . . A x __ sin®
From expressionEquation 2.89 and Equation 2.54, AR = A¢R and skew (R) = *3>0

AR:1=A¢R:1
:&/]):RT
:Ep 1 sym (RT) —i—ﬂ) : skew (RT)
:&/P:skew(RT)
= A skew (R) : 1
=sin @ (Epﬁ:l)

(4.551)

Aa :sym (RT) vanishes as double product of skew symmetric and symmetric tensor is null.

AP =n®AP — (Ad.n)1 (4.552)
APfi:1=(n®Ad):1—(Ap.n)1:1=Ap.n—3Ad.n=—2A¢.n= —2%9 (4.553)
0.A6 = 0.A¢ (4.554)
6.A6 = 6. (WMO) —A0% A= 0.9A29 (4.555)
Ap = o ;?Me + eéAzee =T(6)A0 (4.556)



(Appendix B: load stiffness matrix

Rotation-dependent moments
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Figure 4.74: Induced moment due to rotation /A ¢,

Figure 4.73: Pseudo tangential moment .
around axis e,

Ziegler presented three types of conservative moments named pseudo tangential moment, quasi
tangential moment and semi tangential moment. They are elaborated by Argyris through using
mechanical devices including conservative forces like gravity forces. Assume we have two equal
gravity loads M/2 applied through two parallel strings tied at the end point of rigid levers, each of
unit length, attached to a vertical shaft along axis e; and hanging from a fixed pulley as shown in
Figure 4.73. The distance between the pulleys and the corresponding lever ends is infinitely long,
such that the strings direction remain the same after shaft rotation. For small rotations A¢; around
axis ey, the induced (change in the) moment is negligible and vanishes for rotation A¢3 around

axis e3, while the induced moment due to rotation A¢, around axis e, as shown in Figure 4.74 is

defined as
(4.557)

AM = —MApes
This moment is named pseudo tangential moment, while quasi tangential moment is generated



238 Chapter 4. Energy Principles and Introduction to FEA
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Figure 4.75: Quasi tangential moment Figure 4.76: Semi tangential moment
u M
2 M -~
=
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M —
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Figure 4.77: Pseudo tangential moment Figure 4.78: Quasi tangential moment

through the same strings stated above but wrapped around a disk of unit radius attached to the
vertical shaft as shown in Figure 4.75. The induced moment is approximately same as the one
induced in pseudo tangential moment for small rotation, but the difference appears for finite rotation,
e.g. a rotation around the shaft axis shown in Figure 4.77 and Figure 4.78 shorten the couple arm
of pseudo tangential moment resulting a reduction in the moment around axis e, while it remains
the same for quasi tangential mechanism. The third conservative moment introduced by Ziegler
or semi tangential moment is generated by four equal forces (M/4) distributed at each quarter of
the disk of unit radius as shown in Figure 4.76. Due to small rotation or incremental spin around
axis ej, the induced moment is negligible, while, for incremental spin A¢, [A¢3] around axis
e> [e3], the induced moment will be —3MA¢e3 [SM Agse], so the resulting moment due to spin
(AP = Agre) + Aprer + Adses) will be:

1 1
AM = EMA¢382 - 5MA¢283 (4558)
For moment around a general axis M, the induced moment due to spin A¢ will be:
11—
AM = EA‘PM (4.559)

We will introduce another mechanism with conservative moment generated by four equal forces
M /4 attached to a rigid arm of L shape with unit length and width a as shown in Figure 4.79. We
will called it forth kind conservative moment. In the plane view in Figure 4.81, the induced moment
due to incremental spin A@; around axis e; will be:

AM = —A¢ae; (4.560)
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“=

Figure 4.79: Forth kind moment

Figure 4.80: Induced moment due to rotation A¢, around axis e,

while, for incremental spin (A ¢, [A@3]) around axis e; [e3] as shown in Figure 4.80, the induced
moment will be

1 1
AM = _EMA%% — EMA(;}Z ae due to spin A¢, (4.561)

1 1
AM = +§MA¢3e2 - EMA% aes due to spin A@s (4.562)
So the total resulting moment due to spin will be: (A¢ = Ade; + Aper + Adses) will be:
1 1 1 1
AM = —A(})la el — EMA(PZ ae) — 5MA(P3 aez — 5MA(])382 — 5MA¢2€3 (4563)

For a general moment initially defined as My, the induced moment due to spin (A¢ = A¢ie; +
A¢2ez + A¢3e3) will be:

11—
AM = —-ANAM, + §A¢M0 (4.564)
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Figure 4.81

Where matrix AA is defined as follows:

Ay 309 AR
M=a| 0 Ap 300 (4.565)
003 A9 Ags

Also it can be defined as follows:
1~ N
AM = (—B— 2Mo) AP =BAO (4.566)

Where B is symmetric matrix defined as:

My +M;y/2+Ms/3 0 0
B=a 0 My +M;/2+M;/3 0 (4.567)
0 0 M3+M1/2+M2/3

Generally, the change in a conservative moment due to small rotation follows Equation 4.566

77

Figure 4.82: Axial moment Figure 4.83: Follower moment
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with symmetric B under small rotations. In other words, the skew symmetric part of matrix B is
— %ANI .The symmetry condition of matrix B will be proven in the next sections. There are other types
of moment that are considered non conservative such as the axial moment as shown in Figure 4.82
which remains the same after rotation (no induced moment) and follower moment that follows
completely the rotation applied at its point of application as shown in Figure 4.83, such that the
induced moment due to joint rotation A¢ is defined as:

AM =R(A9)M —M (4.568)
Which can be approximated for small rotation using Equation 2.1.7 as follows:
AM = NoM (4.569)

From above the induced moment in axial and follower moment, applying equation Equation 4.566
results un-symmetric B matrix.

Work performed by moment

Assume a moment My applying on a point subjected to incremental spin A¢, such that the change
in point spatial rotation is defined through:

AR = AQ1R(0) (4.570)
Where A¢ is defined using Equation 2.90 as follows:

Ao =T(0)/ 6 (4.571)
Work performed by a moment My through a spin A¢ is:

AW =M.[N¢ (4.572)

Spin A¢ is not a total differential as there is no ¢ to derive. Also, AW does not has to be a total
differential either. From previous section, we can assume the moment change from through the
following:

M= AM+M,=0(Lo)M, (4.573)

For example, for semi tangential moment mentioned in the previous section, Q =1+ %A(P. From
above equations, the resulting work can be rewritten in this form:

AW =My.Q"T(0)A0 =M. a (4.574)

From above, initial moment M, is work conjugate to (Aa = Q' T (0)/\8).

Required condition for conservativeness

Assume that Aa(0) is a total differential and initial moment M is constant, such that there is a
moment potential V' as follows:

AV(a) = —-AW with AV(a) = —My.Na (4.575)

If a two successive incremental rotations 60 and A are applied on moment, initially M, we find
that the second variation (directional derivative) of V(6) is defined as:

v

O(AV(8)) =98 75573 A0)

NG =—-My.5(Q"T(0))AO =560 KN (4.576)



242 Chapter 4. Energy Principles and Introduction to FEA

Due to existence of moment potential V, the tangent load stiffness matrix defined as the second
partial derivative of V is symmetric and the order of differentiation is not important.
9%V 9%V

3500900 — 9n@0a50) O K=K (4.577)

So symmetry of stiffness matrix ensure the conservativeness of the applied moment. Assume a
semi tangential moment M (Q =1+ %6). Using Equation 2.95 and neglecting second order terms,
we get that:

(1 —%5)(1 +50)=1 (4.578)

Q'T(6) = (1+16)"(1+ 56)
So the resulting load stiffness matrix will be:
S(AV(0)) =—-M,.5(Q"T(6))A0 =0 oo K=0 (4.579)
For the forth kind moment My, the Q matrix is defined through Equation 4.564 as follows:
QZI_AJF%g (4.580)
Where A defined through Equation 4.565 as follows:
6 161 16
A=a| 16, 6 16 (4.581)
563 165 6
and [@] = [0) 6, 6] is the angle rotated, So
Q'T(0) = (1—A+%5)T(1+%5) ~1-AT (4.582)
So using Equation 4.564 and Equation 4.566 results in:
S(AV(0)) = —M.5(Q'T(0))A0 =M,.6AT 1O = 56.B/O or  K=0 (4.583)

Matrix B has to be symmtric for a conservative moment as stated before.

Work performed by off-axis force
Assume a force F linked through a rigid bar (1X) to point O at configuration C; as shown in
Figure 4.84, such that it produces a moment around point O defined as follows:

M, ='XxF=I1XF=_F'Xx (4.584)

If a small rigid body rotation with spin A¢ is induced on the arm 'X to produce configuration C,
with new arm 2X defined as follows:

2X =R(¢)'X = (1+29)'X (4.585)

The last equality assumes small rotation for A¢. If the force is constant in magnitude and direction
during the rigid body rotation, the resulting moment in configuration C, will be:

M,=—FX=_F (1 n ZTp) X (4.586)
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/77X
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€
Figure 4.84
With incremental moment AM defined as:
AM =My —M; = —FX = —FA$'X = FIX 1\ (4.587)

The above load type is changing with rotation called deformation dependent load. This load type
produces load stiffness matrix.

In Figure 4.85, if the known configuration C; is formed through rotation of th initial configuration
by angle 0, then subjected to virtual rotation 60 with corresponding spin 0@y, such that the final
rotation is defined as:

R(0+56) =R (5¢1)R (8) (4.588)

For small rotations 6 and infinitesimal spin 6@y, ¢, can be approximated using Equation 2.1.7
and Equation 2.66, such that the above equation will be resolved to the following:

1+ (e + 69) +5 (e + 59) (e n 59) - (1 v 8¢1) (1 1O+ 200) (4.589)
Which results in:
51 (1 + ;5) - (1 + ;5) 50 (4.590)
Which can approximated for small rotations as follows:
— 1\ = 1<\
oP = 1—1—50 00 1+§9 (4.591)
~(1+'9)50(1-8 (4.592)
= 5 5 :
~(1+19)50(1+10 ' (4.593)
N 2 2 ’
Which leads to

5S¢y = (1 + ;6) 56 (4.594)
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Unknown
Configuration C,

00 or spin &¢,

00 or spin 3¢,

Known
Configuration C,

Initial
e; Configuration C,

Figure 4.85

Comparing the above equation with Equation 2.95, we get the same results.
The corresponding virtual work in configuration C; will be:

Wy =M,.5¢, (4.595)

If the configuration Cj is subjected to an incremental spin A¢ to form configuration C, with rotation
defined as:

R(0+216)=R(A¢)R () (4.596)

Where A is an additive incremental rotation vector corresponding to incremental spin A@. If this
formed configuration is subjected to virtual rotation @ with corresponding spin 8¢, such that the
final rotation is defined as:

R(0+10+508) =R (5¢2)R (0 +56) (4.597)

Using Equation 2.90 and from Figure 2.20a, we will define spin 0@ as follows:

562 =T (0+10) 50 (4.598)
—T(A$) 56y (4.599)
~ (1 N ;g@ 51 (4.600)

And the corresponding virtual work to configuration C; is defined as:

SWs = M>.85¢2 = (M) + AM) . (1 + /Avcp) Sty 4.601)



4.5 Intfroduction to finite element method 245

The increment virtual work will be:

5 (AW) = (M, + AM). (1 + Z&) St —M,.5¢ (4.602)
Neglecting second order terms results in:

§(AW) = AM.5¢, + %Ml. (Z&a«pl) (4.603)

The above equation can be concluded through linearization of Equation 4.595 (A(0W)) = AM.6¢ 1+
M, .A(5¢1)). Using Equation 4.584 and Equation 4.587 results in:

S(AW) = 5. (ﬁfimp) + %&pl. (EA(})) (4.604)
— 50, (FBEM) + %5¢1. (—/ﬁ\&Aq;) (4.605)

As b = ab — ba, the above equation reduces to:
1 ra~ —~~
5(AW) = 59, (2 [FIX + lXF] A¢) (4.606)

The symmetry of term % [f' IX +IXF ] is due to the mechanism used to create moment is applied
through conservative force So the resulting load stiffness matrix is:

1 /o~ ~—

§(AV)==8(AW) or  K=—3 (le +le) 4.607)
For force F and arm X resolved in the same frame of reference e; as follows:

F = Fe;, X =X, (4.608)

The above load stiffness will be:

! 0 -FB B 0o -'x3 Ix,
K] = ) F; 0 -F X3 0o -'x (4.609)
-F F 0 X%, X 0
) 0 -'x3 Ix, 0 - B
) '€ 0o -'x; F; 0 -—F (4.610)
X%, 1x 0 -F F 0
B'X+R'XY, —J(R'X%+ER'YX) —-1(FA'X%+HX)
= B'X+R'XY, —3(B'X+kR'Xs) (4.611)

Symmtric B'X+FR'X
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Co-rotational approach, 224

co-rotational frame, 129, 138, 141, 142 equilibrium equation of motion, 120, 131

co-rofational rate,. 141 essential boundary condition, 172
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Compound Rotation, 51, 56 ’

configuration, 99, 140
Conservation of angular momentum, 120
Conservation of energy, 152

energy principles, 185
entry, 35

Euler equation, 172
Eulerian description, 100
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Conservation of linear momentum, 119 field function, 33, 34, 36

conservative force, 151, 166, 190 finite element method, 195

conservative moment, 237 Finite rotation, 59

Constitutive relation, 132, 133, 138 first Piola Kirchhoff stress tensor, 122, 127—
Convective derivative, 102 131, 224

Cross product, 11 Forced based FEA, 205

curl of vector, 36 free index, 16

Curvature, 74, 76, 79, 82 free vector, 8

. ) Functional, 168
Deformation gradient, 102, 104-106, 111, 115

deformed configuration, 99 Galerkin method, 182
degree of freedom, 195 Gauss theorem, 39
directional derivative, 34 geometric boundary condition, 171, 182, 193
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Hamilton’s principle, 189
Hellinger-Reissner, 230

Hermite cubic interpolation functions, 203
Hu-Washizu functional, 228

Index notation, 15-18, 20, 21
Induced moment, 237
infinitesimal rotation, 59, 62, 63
Infinitesimal strain tensor, 112

Jamann stress rate, 139

kinematically admissible function, 171
Kroneckor delta, 18

Lagrange equations of motion, 193
Lagrange interpolation function, 208
Lagrange multiplier, 227
Lagrangian description, 100
Laplacian of a scalar field, 36

left Cauchy-Green tensor, 109

Lie group, 60

linearization, 163, 216, 223

local curvature, 81

Local derivative, 102

localized vector, 8

Manifold, 60

mass moment of inertia, 187
Material description, 102, 103
Mixed finite element, 207, 227

Natural deformations, 84, 88
nodal spin, 79
non-additive rotation, 76, 78

objective stress rate, 133
objectivity, 133
observer, 133, 139

Permutation symbol, 19

Polar decomposition, 106
Potential energy, 175, 184
principle of virtual work, 206, 216
Pseudo tangential moment, 237

quasi tangential moment, 237

rate of deformation , 112, 121, 133

Rayleigh Ritz method, 178
Reduced integration, 212
reference frame, 7

Rigid body motion, 99

Rigid body rotation, 103

Rigid body translation, 104
Rodrigues’ rotation formula, 53
rotation matrix, 47, 49

Scalar product, 8

Scalar triple product, 15

second Piola Kirchhoff stress tensor, 122, 130—
133,217, 218, 223

semi tangential moment, 238

shape function, 195

Shear locking, 232

Spatial description, 102

spatial spin, 60

Spectral decomposition, 32

Stationary potential energy, 166

stationary value, 168

Stiffness matrix, 165, 209

Strain energy, 152, 158, 166

stretch tensor, 106

Timoshenko beam, 207

Total Lagrangian formulation, 213
Total potential energy, 180
transformation matrix, 47, 49

undeformed configuration, 102
Updated Lagrangian formulation, 213

Variational approach, 167
Vector calculus, 33
Velocity gradient, 112
Virtual work, 158, 189

weighted residual methods, 181
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