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1. Vector and Tensor Analysis

1.1 Vector analysis
1.1.1 Introduction

Any vector in a two dimensional plane can be defined by a linear combination of two linear
independent vectors. Independent vectors mean that they have different direction (not collinear),
while space vector need a combination of 3 independent vectors such that they do not share the
same plane (not coplanar). As shown schematically in Figure 1.1, vector vvv can be represented as
follows:

vvv = αaaa + βbbb (2D case) (1.1)

vvv = αaaa + βbbb + γccc (3D case) (1.2)

Note that bold small letters are used for vector while light letters are used for scalar values. Most
vectors are introduced in terms of a combination of three orthonormal basis vectors (a set of
three mutually orthogonal unit vectors). These basis vectors are defined as eee1, eee2 ,and eee3, and xxx3
coordinates axes forming what is so called reference frame (coordinates system) III = eee1;eee2;eee3 as
shown in Figure 1.2, such that vector vvv can be defined as follows:

vvv = v1eee1 + v2eee2 + v3eee2 =
3X

i=1

vieeei (1.3)

v1;v2; and v3 are the components of vector vvv resolved in the reference frame III. Also the components
of vector vvv and basis vector eeei resolved in coordinate system III can be written in the matrix notation
or column vector for i = 1;2;3 as follows:

[vvv]III =

24 v1
v2
v3

35 ; [eee1]
III =

24 111
000
000

35 ; [eee2]
III =

24 000
111
000

35 ; [eee3]
III =

24 000
000
111

35 (1.4)

Superscript III indicates the frame of reference in which the components of vector vvv are resolved.
For convenience [VVV ]III can be written in this form vvvIII . Bear in mind that we can choose any suitable
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a

b
a

b

x1

x2

v =
 αa+βb

2D case(a) 2D case x1

x2

x3

a

b

c

v 
= 

αa
+β

b+
 γc

3D case(b) 3D case

Figure 1.1

coordinates system in which vector vvv can be resolved as indicated in Figure 1.3, such that the
matrix components of vector vvv change with changing the coordinates system, while the vector itself
remains at its same position in space, e.g. vector vvv can be resolved in two different bases III and III�

with different components given in the matrix notation as follows:

[vvv]III =

24 v1
v2
v3

35 ; [vvv]I
�

=

24 v�1
v�2
v�3

35 ; vvvi = vvv�i f or i = 1; 2; 3 (1.5)

Also we use a right-hand set of orthogonal axes as shown schematically in Figure 1.4. From above,
we can conclude the vector properties as follows:

1. Commutative a+b = b+aa+b = b+aa+b = b+a
2. Distributive α(a+ba+ba+b) = αaaa+αbbb
3. Associative under addition (a+b)(a+b)(a+b)+ccc = aaa+(b+ c)(b+ c)(b+ c)

4. Vector length (magnitude) jaaaj=
q

a2
1 +a2

2 +a2
3

5. Unit vector along vector aaa (vector direction) âaa = aaa
jaaaj , it is also called the vector direction as

shown in Figure 1.5.
6. Identical vectors (a = ba = ba = b), if they share same length and direction illustrated in Figure 1.6.
Generally, vectors are considered free vector, if they are independent of a particular point of

application, such that if two free vectors share the same magnitude and direction, they are identical
as apparent in Figure 1.6, but in some cases, the location of application point is important for some
vectors like force vector. Changing its location induces an additional moment. In this case, the
vector is called localized vector.

1.1.2 Vector products
The first type of the vector product we are interested in to study is called Scalar (dot/ inner) product.
Scalar product of vector (aaa) and vector (bbb) is defined by these two forms:

aaa:bbb =
3X

i=1

aibi = a1b1 +a2b2 +a3b3 (1.6)
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x1

x2

x3

e1

e2

e3

v2

v1

v3

v

x

Figure 1.2

x1

x2

x1*

x2*

I

I*v

Figure 1.3

e1

e2

e3

e1

e2

e3

e1

e2

e3

e1

e2

e3

Figure 1.4

aaa:bbb = jaj jbjcos(θ) (1.7)

The result of the dot product of two vector is a scalar value. Angle θ represents the angle
bounded by the two vectors. Also, from expression above, the commutativity property achieves as
follows:

aaa:bbb = bbb:aaa (1.8)

It has many applications like finding the projection of a some vector on another, angle between
two vectors, and the projection of an area on a plane.

� Example 1.1 For vectors aaa and bbb defined as aaa = (3;4;5) and bbb = (1;0;1), calculate the
following:

1. The projection of vector (aaa) on vector (bbb).
2. Angle between the two vectors.
Projection of vector aaa on vector bbb is defined as the dot product of vector (aaa) and the unit

vector along vector (bbb) apparent in Figure 1.7.

b̂bb =
bbb
jbbbj =

(1;0;1)p
12 +12

=
(1;0;1)p

2
(1.9)



10 Chapter 1. Vector and Tensor Analysis

a

un
it

â
Unit vector of vector a

Figure 1.5

a

b

Vectors a and b are identical

Figure 1.6

The projection will be:

(aaa:b̂bb) = (3;4;5) :
(1;0;1)p

2
= (3�1+0+5�1)=

p
2 = 4

p
2 (1.10)

Angle between the two vectors can be obtained from:

aaa:bbb = (1�3+1�5) = 8 = jaaaj jbbbjcos(θ) (1.11)

aaa:bbb = jaaaj jbbbjcos(θ) (1.12)

jaaaj=
p

32 +42 +52 = 5
p

2 (1.13)

cos(θ) = 8=(5
p

2�
p

2) (1.14)

θ = 36:86o (1.15)

�

b

a

θ

^ b

Proj. of (a) on (b)

Figure 1.7

n2n1

Figure 1.8

� Example 1.2 Plane with unit vector nnn1 = (�2; 0; 1)=
p

5 normal to it. Another plane with
area A2 = 100m2 and normal direction nnn2 = (�1; 1; 1)=

p
3 , calculate the projection of this

area on plane (nnn1).
Generally area vector is defined as a vector with magnitude equal to its area and a unit vector
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normal to its plane, such that the area vector is given by:

AAA2 = nnn2A2 (1.16)

And, the projected area Ap shown in Figure 1.8 is defined as:

Ap = nnn1:AAA2 = nnn1:nnn2 jareaj= (�2��1 + 1�1)=
p

15�100 = 77:5 m2 (1.17)

�

� Example 1.3 Calculate the work done by constant force fff = (1; 5; 2) on an object after
moving a vector distance ddd = (�2; 1; 1).

As schematically shown in Figure 1.9, the work done by force on an object moving distance
d is equal to distance length times the force component in distance direction, and consequently,
it follows:

work = fff :ddd = (1��2 + 5�1 + 1�1) = 4 (1.18)

�

F

θ
d

|F | cos (θ)

Figure 1.9

Also the components of vector vvv in Figure 1.3 can be conceived as the projection of the vectors
on bases vector eeei, such that vector vvv can be defined as follows:

vvv = v1eee1 + v2eee2 + v3eee3 = (vvv:eee1)eee1 +(vvv:eee3)eee3 +(vvv:eee3)eee3 =
3X

i=

(vvv:eeei)eeei (1.19)

Note also that if (aaa:bbb === 0) ; it means that either the magnitude of aaa or bbb is zero or vector (aaa) is
normal to vector (bbb).

Another type of vectors product is called cross (skew/ outer/ vector) product. The cross product
of vector (aaa) and vector (bbb) is given by:

ccc = aaa�bbb (1.20)

With a magnitude jcccj = jaaaj jbbbj sin θ and a unit vector normal to vectors (aaa) and (bbb) formed by
turning a right hand screw to bring (aaa) to (bbb) as schematically shown in the Figure 1.10. The
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expression used for calculating the cross product of vectors aaa; and bbb is obtained from:

aaa�bbb = (a2b3�a3b2)eee1 +(a3b1�a1b3)eee2 +(a1b2�a2b1)eee3

= det

0@24 eee1 eee2 eee3
a1 a2 a3
b1 b2 b3

351A (1.21)

b
θ

a

c
n

Figure 1.10
r

θ
F

d

M= r ´ f

O

Figure 1.11

Where ai, and bi are components of vectors aaa and bbb, respectively. Symbol “det” indicates
calculating the determinate of matrix. From above expression, cross product can achieve the
distributive property, but it is not commutative as follows:

aaa� (((bbb+ccc ) =) =) = aaa�bbb+aaa�ccc

aaa�bbb= �= �= � bbb�aaa (commutative propery fails)
(1.22)

Note that last relation can be proven using right hand rule shown in Figure 1.10. As cross product
of vector bbb and vector aaa results a vector identical to vector (c = a
bc = a
bc = a
b) in magnitude, but opposite
in the direction. We also note that if cross product of two vectors aaa and bbb vanishes (aaa�bbb = 000), it
means that either the magnitude of aaa or bbb is zero or vectors aaa and bbb are parallel. Vector product
includes many applications like evaluating the moment induced by some force about a particular
point, area bounded by two vectors, velocity of an object attached to rigid body rotating about fixed
axis, plane projection, etc. These applications are illustrated below as follows:

� Example 1.4 — Moment MMM induced by force FFF about point O. As schematically shown
in Figure 1.11, If force FFF passing through a particular point with position vector rrr and located at
normal distance jdddj from point O, the resulting moment MMM of force FFF about this point O will be
obtained from:

jMMMj= jFFF j jdddj= jFFF j jrrrjsinsinsinθθθ (1.23)

With direction normal to rrr and FFF so it follows that:

MMM = rrr�FFF (1.24)

�
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� Example 1.5 — Area bounded by two vectors. As stated before in 1.2, area vector is
defined as a vector with direction normal to its plane nnn and magnitude equal to the area. As
shown in Figure 1.12, the magnitude of rectangular area formed by two vectors aaa and bbb equals
to:

ccc = jaaaj jbbbjsinsinsinθθθ (1.25)

And consequently, area vector is obtained from:

ccc = aaa�bbb (1.26)

�

b

θ
a

n

Hatched area

Figure 1.12

ω

x
x

r
.

α

P

n

Figure 1.13

� Example 1.6 — Velocity of an object P attached to a rigid body rotating about fixed
axis nnn. As shown schematically in Figure 1.13, time rate of rotation of a rigid body rotating
about fixed axis is described by the angular velocity (ωωω) which is equivalent to 2π times number
of cycles rotated in one second. It is also called spatial spin about axis nnn . This rotation makes
object P with position vector xxx to rotate in circle normal to axis nnn. The object P has a velocity ẋ̇ẋx
tangent to this circle in direction normal to vectors xxx and nnn with a magnitude equal to the angular
velocity times the radius of the circle as follows:

jẋxxj= jωωωj jrrrj= jωωωj jxxxjsinsinsinααα (1.27)

So that, the velocity vector is obtained from:

ẋxx =ωωω�xxx (1.28)

Where ωωω is spin vector in direction of nnn and vector dot (̇) denotes the time rate of change of
vector.

ωωω = jωωωjnnn (1.29)
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Note that position vector xxx is a line passing through fixed point located on axis of rotation and
point P. �

n
a

b=n ´ a

P=n ´ (n ´ a)

n
a

a.n
(a.n)n

P=a-(a.n)n

(a)

n
a

b=n ´ a

P=n ´ (n ´ a)

n
a

a.n
(a.n)n

P=a-(a.n)n

(b)

Figure 1.14

� Example 1.7 — Perpendicular projection (plane projection). Assume we need to evalu-
ate the projection of vector aaa on a plane with unit vector nnn (axis normal to it) defined by vector
PPP as indicated in Figure 1.14. There are two ways to evaluate it. As shown in Figure 1.14a, we
can use an additional vector (bbb = aaa�nnn) with magnitude equal to the area bounded by vectors aaa
and unit vector nnn as follows:

jbbbj= jaaaj jnnnjsinsinsinθθθ = jaaajsinsinsinθθθ (1.30)

Where θ is the angle between vector aaa and unit vector nnn. As nnn is a unit vector (jnnnj= 1). From
above equation the magnitude of the area is identical to the length of the projected vector PPP and
we need to find its direction P̂PP to fully describe this vector. The direction of vector PPP is normal
to nnn and bbb obtained as follows:

n�bn�bn�b
jnnn�bbbj =

nnn�(((aaa�nnn)))nnn�(((aaa�nnn)))nnn�(((aaa�nnn)))
jnnnj jbbbj =

nnn�(((aaa�nnn)))nnn�(((aaa�nnn)))nnn�(((aaa�nnn)))
jbbbj (1.31)

As nnn is normal to vector bbb, jnnn�bbbj= jnnnj jbbbj, then vector PPP will be:

PPP = jPPPjP̂PP = nnn�(((aaa�nnn))) (1.32)

Also another way is schematically shown in Figure 1.14.b. Defining an additional vector PPP1
as a projection of vector aaa on a unit vector nnn which is equal to the dot product of vector aaa and nnn
with direction parallel to unit vector nnn as follows:

PPP1 = (= (= ( aaa:nnn))) nnn (1.33)

So subtracting vector PPP1 from vector a vector PPP yields the required vector PPP as follows:

PPP = aaa� (aaa:nnn)nnn (1.34)
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Both methods are identical in results, so that we can conclude from these two methods that:

bbb� (aaa�ccc) = (= (= ( bbb:ccc)))aaa�(((aaa:bbb)))ccc (1.35)

Last expression will be proven using index notation in subsection 1.1.3 Equation 1.66. �

Scalar triple product Scalar triple product of vectors aaa;;; bbb; and ccc is defined as (aaa�bbb) :ccc. As
illustrated in Figure 1.15, the cross product of vectors aaa and bbb defined by (aaa�bbb), provides the area
A of the rectangular bounded by vectors aaa and bbb with direction nnn normal to them

b

a

n

 A (area)

c
h

Figure 1.15

(aaa�bbb) = A nnn (1.36)

And consequently, the scalar triple product of the (aaa�bbb) :ccc is obtained from:

(aaa�bbb) :ccc = A (nnn:ccc) (1.37)

But (nnn:ccc) defines the projection of vector ccc on direction nnnwhich is identical to the height h of the
parallelogram formed by three vector aaa, bbb and ccc. And consequently, the Scalar triple product of
vectors aaa;;; bbb, and ccc yields the volume V of parallelogram as follows:

(aaa�bbb) :ccc = A (nnn:ccc) = A h =V (1.38)

Where h and A are the height of parallelogram, and the magnitude of the area bounded by vectors aaa
and bbb, respectively.

If (aaa�bbb) :ccc = 000, it means that aaa, bbb and ccc share the same plane (coplanar vectors). As the
parallelogram volume is constant, the scalar triple product follows the following relations:

(aaa�bbb) :ccc = (bbb�ccc) :aaa = (ccc�aaa) :bbb

(aaa�bbb) :ccc =�(aaa�ccc) :bbb
(1.39)

Vector triple product (aaa�bbb)�ccc
As schematically shown in Figure 1.16, after getting first (aaa�bbb) as a vector normal to vectors

aaa and bbb, vector (aaa�bbb)�ccc will be normal to (aaa�bbb) and ccc yielding a vector laying on the plane
containing vectors aaa and bbb. This product is evaluated as follows:

(aaa�bbb)�ccc= (= (= ( aaa:ccc)))bbb�(((bbb:ccc)))aaa (1.40)

The above expression will be proven in details using index notation in the next section. It is
easy to prove schematically that the vector triple product is not associative (aaa�bbb)�ccc 6= (aaa�ccc)�bbb
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a ´ b

a

b
c

(a ´ b)´c

Figure 1.16

1.1.3 Index notation
The components of vector vvv in Equation 1.3 can be written using index notation by omitting the
summation sign as follows:

vvv = vieeei; i = 1; 2; 3 (1.41)

The repeated index (i) in vi and eeei is called a summation or dummy index, so that the above
expression can be expanded as follows:

viei =
3X

i=1

viei = v1eee1 + v2eee2 + v3eee3 (1.42)

In the same manner, dot product can be represented as follows:

aaa:bbb = aibi = a1b1 +a2b2 +a3b3 (1.43)

Another type of index we would like to address is free index. This index appears once in each term
of the equation and translates this equation into three equations, so for:

aaa = αbbb+βccc (1.44)

It can be written in index notation as follows:

ai = αbi +βci (1.45)

Index i appears once in each term of the equation nd is considered free index which translate the
above equation into three independent equations as follows:

a1 = αb1 +βc1

a2 = αb2 +βc2

a3 = αb3 +βc3

(1.46)

Some equations include a combination of free indices and dummy indices, for example:

ai = Ai jc j (1.47)
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For dummy index ( j), it yields that:

ai = Ai1c1+ Ai2c2 + Ai3c3 (1.48)

While, for free index (i), it can be translated to three equations as follows:

a1 = A11c1+ A12c2 + A13c3 (1.49)

a2 = A21c1+ A22c2 + A23c3 (1.50)

a3 = A31c1+ A32c2 + A33c3 (1.51)

There are some rules to follow in using index notation:
1. Any index cannot appear more than twice.
2. The free index appears once in each term of the equation and dummy index appears twice in

only one term of the equation

� Example 1.8 Explain the validation of the following equations:
(a) ai = bic jd je j

The expression is wrong as index j is repeated three times in one term.
(b) f j = aibic j + α m j

It is right as index j is used in each term of the equation as a free index, and dummy
index i is used only in one term and it cn be translated to three equation (free index
j = 1;2;3) as follows:
f1 = aibic1 + α m1
f2 = aibic2 + α m2
f3 = aibic3 + α m3
Where aibi = a1b1 +a2b2 +a3b3 for the dummy index j.

(c) ai = αbi +βc j

It is wrong as free indices i and j are not used in all terms of the equation.
(d) f j = aibic j + α dieim j

it is a wrong expression as dummy index i is repeated in more than one term.
�

3. Dummy index can be replaced by other index not used in the rest of the equation, e.g. aibic j

and akbkc j are identical, while the following expression is not:

aibic j +dkekm j 6= aibic j +dieim j (1.52)

The reason is that replacing dummy index k with index i used in other term in the equation is
not allowed her.

4. We also have the freedom to flip between two scalar elements in one term of the equation as
follows:

f j = aibic j = aic jbi (1.53)

While flipping between vector elements is incorrect for most cases as follows:

a�ba�ba�b = aieeei�b jeee j = aib jeeei�eee j = aib jeeei�eee j 6= aib jeeei�eee j 6= b�ab�ab�a (1.54)

as (eeei�eee j 6= eeei�eee j), while b jai = aib j

We shall introduce an operator called Kroneckor delta δi j defined as

δi j =

�
1 f or i = j
0 f or i 6= j

(1.55)
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It contains nine elements and it can be represented in index notation as a dot product of two bases
vector eeei and eee j as follows:

δi j = eeei ::: eee j (1.56)

Where eeei represents three orthonormal bases, e.g.:

eee1 ::: eee1 = eee2 ::: eee2 = eee3 ::: eee3 = 111

eee1 ::: eee2 = eee2 ::: eee3 = eee3 ::: eee1 = 000

Also differentiating the components of some vector resolved in a particular basis of reference with
each other yields this operator:

xi; j =
∂xi

∂x j
= δi j (1.57)

For i and j = 1;2;3, as xi represents independent components of vector xxx e.g.:

∂x1

∂x1
=

∂x2

∂x2
=

∂x3

∂x3
= 1

∂x1

∂x2
=

∂x2

∂x3
=

∂x3

∂x1
= 0

Kroneckor delta can be used to contracts or flips indices as follows:

δi jv j = vi (1.58)

Which can be proven by expanding the above expression with dummy index as follows:

vi = δi1v1 +δi2v2 +δi3v3

The free index i can translate the above equation into three equations as stated before to:

v1 = δ11v1 +δ12v2 +δ13v3 = v1

v2 = δ21v1 +δ22v2 +δ23v3 = v2

v3 = δ31v1 +δ32v2 +δ33v3 = v3

That is why it also termed as a substitution operator.

� Example 1.9

aia jδi j = aiai = a ja j

δi jδik = δk j

Ai jδ i j = Aii

�

In the same manner, dot product of two vectors aaa and bbb can be rewritten as follows:

aaa:bbb = (aiei) :(b je j) = aib j (ei:e j) = ai:b jδi j = aibi = a1b1 +a2b2 +a3b3
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Another operator we would like to introduce is called Permutation symbol εi jk which is given by:

εi jk =

8<:
1 f or ε123; ε231; ε312

�1 f or ε213; ε132; ε321
0 f or i = j or j = k or i = k

(1.59)

It is sometimes convenient to write the cross product of two vectors using permutation symbol as
follows:

eeei� eee j = εi jkeeek (1.60)

Where eeei and eee j are orthogonal bases. The above expression can be verified through the following
examples:

� Example 1.10

eee1 � eee2 = ε12keeek = ε121eee1 + ε122eee2 + ε123eee3 = eee3

eee1 � eee1 = ε11keeek = ε111eee1 + ε112eee2 + ε113eee3 = 000

eee1 � eee1 = ε11keeek = ε111eee1 + ε112eee2 + ε113eee3 = 000

eee2� eee1 = ε21keeek = ε211eee1 + ε212eee2 + ε213eee3 =�eee3

�

In the same manner, the vector product aaa of two vectors bbb and ccc can be evaluated from:

aaa = bbb�ccc; akeeek = (bieeei � c jeee j) = bic j(eeei � eee j) = ε i jkbic jeeek (1.61)

From which we can obtain

aaa = bbb�ccc$ ak= ε i jkbic j (1.62)

From above we can conclude some rules as follows:

εi jk = εki j= ε jki (1.63a)

εi jk =�εik j (1.63b)

εi jkεimn = δ jmδkn�δ jnδkm (1.63c)

Also we can rewrite vector triple product in index notation as follows

(aaa�bbb)�ccc =
�
εi jkaib jeeek

�� cneeen

= εi jkaib jcn (eeek�eeen)

= εi jkaib jcn εknmeeem

(1.64)

Using the above rules in equations Equation 1.63c yields:

εi jkεknm = εki jεknm = δinδ jm�δ imδ jn (1.65)

And substitute back in equation Equation 1.64 and remembering that the scalar elements can be
flipped with each other results in:

(aaa�bbb)�ccc = aib jcn (δinδ jm�δ imδ jn)eeem

= (aicibm�bncnam)eeem

(aaa�bbb)�ccc = (aaa:ccc)bbb� (bbb:ccc)aaa

(1.66)
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As εi jk; ai; and b j are scalar quantities, they can be flipped while vectors eeek and eeen can not.
The above expression is implemented in the previous sections without proof. Following the same
above procedures, it can be easy to verify the following expression:

(aaa�bbb) :(ccc�ddd) = (aaa:ccc)(bbb:ddd)�(((aaa:ddd)()()(bbb:ccc))) (1.67)

1.1.4 Matrix notation
Matrix AAA with coefficient element Ai j (i and j = 1;2;3) can be written as follow:

[AAA] = [Ai j] =

24 A11 A12 A13
A21 A22 A23
A31 A32 A33

35 (1.68)

The diagonal elements include A11;A22; and A33, while the remaining elements are called
off-diagonal elements. Diagonal matrix is defined as a matrix with off-diagonal elements of zero
value. Trace of matrix AAA (Trace(AAA)) is known as the sum of its diagonal elements A11 +A22 +A33
termed in index notation as (Aii) which can be defined using substitution operator δi j as follows:

Trace(AAA) = Ai jδi j = Aii (1.69)

Identity matrix 111 is a diagonal matrix with diagonal elements of unit value given by:

[111] =

24 1 0 0
0 1 0
0 0 1

35 (1.70)

Another operation we want to introduce is the product of two matrices AAA and BBB termed as (A:B).
Sometimes, dot product may be dropped for convenience. It can also be defined in index notation
(AikBk j) such that the element of the resulting matrix laying in ith row and jth column results form
the dot product of ith row of matrix AAA and jth column of matrix BBB.

� Example 1.11 Let us assume matrix CCC is given by product of two matrix AAA and BBB defined as:

[AAA] =

24 1 2 3
0 1 2
4 0 1

35 ; [BBB] =

24 1 2 0
5 6 0
0 �3 1

35
If we need to evaluate, e.g. element C12, it will be equal to the dot product of the first row of
matrix AAA and the second column of matrix BBB as follows:

C12 = A1kBk2 = (A11;A12;A13):(B12;B22;B32) (1.71)

= A11B12 +A12B22 +A13B32 = 1�2+2�6+3��3 = 5 (1.72)

In the same manner, matrix CCC will be:

[CCC] =

24 11 5 3
5 0 2
4 5 1

35
�

While multiplying a matrix AAA with a vector ccc yields a vector as follows:

b = A:cb = A:cb = A:c or b = Acb = Acb = Ac dot product symbol is dropped for convenience (1.73)
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And it can be written in index notation as follows:

bi = Ai jc j (1.74)

the ith element of the resulting vector results form the dot product of ith row of matrix AAA and vector
ccc.

� Example 1.12 Let us assume vector bbb is given by product of matrix AAA and vector ccc as follows:

[AAA] =

24 1 2 3
0 1 2
4 0 1

35 [ccc] =

24 1
2
0

35

b = Acb = Acb = Ac =

24 (1;2;3):(1;2;0)
(0;1;2):(1;2;0)
(4;0;1):(1;2;0)

35=

24 5
2
4

35
�

Also the above expression indicates that matrix A defines a linear mapping of vector c into vector
a.

Note 1.1 From above, we can conclude the following properties of matrices:
1. Matrices do not commute under multiplication:

A:B 6= B:A (1.75)

2. Associative property achieves as follows:

AAA:(B+CB+CB+C) =A:B+A:CA:B+A:CA:B+A:C (1.76)

3. Multiplication with scalar means that each element of the matrix is multiplied by this
scalar given by:

BBB = αAAA! Bi j = αAi j (1.77)

�

The transpose of matrix AAA is termed as AAAT which is obtained by swapping rows of the matrix AAA
with its columns and defined in index notation as follows:

AT
i j = A ji (1.78)

The transpose operation flipped the indices of the above matrix.

� Example 1.13 If we have matrix A equal to:

[AAA] =

24 1 2 3
0 1 �1
4 0 1

35
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Its transpose will be:

[AAA]T =

24 1 0 4
2 1 0
3 �1 1

35
�

A matrix AAA is considered a symmetric matrix, if it achieves the following condition

A = AT (1.79)

while skew-symmetric matrix follows this condition:

A =�AT (1.80)

� Example 1.14 For example, matrix AAA and BBB given by:

[AAA] =

24 1 2 3
2 1 4
3 4 1

35 ; [BBB] =
24 0 �2 �3

2 0 �4
3 4 0

35
These matrices are considered symmetric and skew-symmetric matrix, respectively. �

We notice that skew-symmetric matrix includes zero value for diagonal elements and three
different element with general form as follows:

[AAA] =

24 0 �w3 w2
w3 0 �w1
�w2 w1 0

35 (1.81)

Note that vector www =
�

w1 w2 w3
�T is called the axial vector of the above skew-symmetric

matrix AAA termed as:

w = axial (A) (1.82)

While skew- symmetric matrix AAA can be written using tilde sign over the axial vector as follows:

A = ewww (1.83)

From above property of skew-symmetric matrix, it can be easily proven that

ewwwT =�ewww (1.84)

Matrix AAA is defined as a normal matrix, if it follows the following expression:

A:AT = AT :A (1.85)

While matrix AAA is considered orthogonal matrix, if it follows this equation:

A:AA:AA:AT = AAAT :AAA = 111 (1.86)

Where 111 is identity matrix.
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The transpose of matrix multiplication is obtained by reversing the order of multiplication with
transpose operation for each element, e.g.:

(A:BA:BA:B)T =BBBT :AAAT�
AAA:BBBT :CCC

�T
= CCCT :B:AB:AB:AT

(1.87)

We can also notice that AT :A and A:AT are symmetric matrix as:�
AAAT :AAA

�T
=AAAT :AAA (1.88)

Any matrix can be decomposed into two parts; symmetric part and skew- symmetric part given by

A = S+W

S = sym(A) =
�
A+AT �=2

W = skew(A) =
�
A�AT �=2

(1.89)

The inverse of matrix AAA is defined as AAA�1, such that A:AA:AA:A�1 = 111. The transpose of inverse of
matrix is equivalent to the inverse of its transpose as follows:�

AAA�1�T
=AAA�T (1.90)

The determinate of matrix AAA is termed as jAAAj or det(AAA) and defined as follows:

jAAAj= εi jka1ia2 ja3k (1.91)

� Example 1.15

[AAA] =

24 2 2 �1
5 6 2
4 �3 1

35 (1.92)

= 2(6x1+2x3)�2(5x1�2x4)�(�5x3�4x6)= 69 (1.93)

�

With expression written above, the following results can be concluded:

jAAAj=
�

AAA(1)�AAA(2)
�
:AAA(3)

det (AAA:BBB) = det (AAA) det (BBB)

det (AAAT ) = det (AAA)

(1.94)

Where AAA(i) represent the ith column of matrix AAA. For any nonzero vector vvv (jvvvj 6= 0), a positive
definite matrix AAA is defined as:

vvvTAvAvAvAvAvAvAvAvAv > 000 (1.95)

Which is important property for stiffness matrix of stable structures. While, for any nonzero vector
vvv (jvvvj 6= 0), semi-positive definite is defined as follows:

vvvTAvAvAv� 000 (1.96)
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Another operation called Double dot product of two matrices AAA and BBB, termed by (A : BA : BA : B) is defined
as the trace of the dot product of one matrix and transpose of the other as follows:

A : BA : BA : B = Trace
��

A:BA:BA:BT �
i j

�
= Trace(AimBT

m j) = AimB jmδi j = AimBim (1.97)

Indices i and m are dummy indices as they are repeated twice which leads to the following expression
for A : BA : BA : B

A : BA : BA : B = A11B11 +A12B12 +A13B13

+A21B21 +A22B22 +A23B23

+A31B31 +A32B32 +A33B33

(1.98)

From above we can conclude the commutative property of the double dot product as follows:

A : B = B : AA : B = B : AA : B = B : A (1.99)

� Example 1.16 Let’s us evaluate double dot product A : BA : BA : B of two matrices AAA and BBB defined as
follows:

[AAA] =

24 1 2 3
0 1 2
4 0 1

35 [BBB] =

24 2 �2 0
5 6 0
7 �3 1

35
A : BA : BA : B = 1�2 + 2��2 + 3�0 + 0�5 + 1�6 +2�0 + 4�7 + 0��3 + 1�1= 33

Or we can evaluate

A : BA : BA : B = Trace
�
A:BA:BA:BT �= Trace

0@ 24 1 2 3
0 1 2
4 0 1

35 :
24 2 5 7
�2 6 �3
0 0 1

351A

= Trace

0@ 24 �2 17 4
�2 6 �1
8 20 29

351A=�2+6+29 = 33

�

For any symmetric matrix AAA and skew symmetric matrix BBB, the relation below holds:

AAA : BBB = 0 (1.100)

And consequently, for any matrix BBB and symmetric matrix AAA we get:

AAA ::: BBB =AAA ::: symsymsym(BBB)+AAA ::: skewskewskew(BBB) =AAA ::: symsymsym(BBB) (1.101)

Dot product of two vectors aaa and bbb can be defined using matrix operations as follows:

(aaa:bbb) = aibi = [a]T [b] (1.102)
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� Example 1.17 Let us calculate the dot product of two vectors aaa and bbb defined by:

[aaa] =

24 2
1
�3

35 ; [bbb] =

24 1
5
2

35

[aaa:bbb] = [aaa]T [bbb] =
�

2 1 �3
�24 1

5
2

35= 2x1+1x5+(�3x2) = 1

�

While the cross product (aaa�bbb) takes this two forms:

aaa�bbb = det

0@24 eee1 eee2 eee3
a1 a2 a3
b1 b2 b3

351A (1.103)

Which can be evaluated using skew-symmetric matrix eaaa multiplied with vector bbb shown as follows:

[aaa�bbb] = [eaaabbb] =

24 0 �a3 a2
a3 0 �a1
�a2 a1 0

3524 b1
b2
b3

35=

24 (a2b3�a3b2)
(a3b1�a1b3)
(a1b2�a2b1)

35 (1.104)

In the same manner, we can prove the following:

eaaabbb =�ebbbaaa (1.105)

Note 1.2 We would like to mention some useful relations as follows:
Using Equation 1.66, we get

eaaaebbbccc = aaa� (bbb�ccc) = (aaa:ccc)bbb� (aaa:bbb)ccc = aaaTcbcbcb�aaaTbcbcbc (1.106)

Terms aaaTccc or aaa:ccc is considered as a scalar quantity, so it can be flipped with vector bbb as follows:

eaaaebbbccc = bbbaaaTccc�aaaTbcbcbc =
�
bbbaaaT � (aaaTbbb)111

�
ccc (1.107)

And consequently, it follows:

eaaaebbb = bbbaaaT � (aaaTbbb)111 (1.108)

Where 111 are identity matrix.
Another expression we would like to introduce is:

eeaaabbbccc = (aaa�bbb)�ccc =�ccc� (aaa�bbb) =�eccceaaabbb =ecccebbbaaa (1.109)

The last expression results from the fact that
�eaaabbb�ebbbaaa

�
. Using expression in Equation 1.108

results in:

eeaaabbb = eaaa ebbb�ebbb eaaa = bbb aaaT �aaabbbT (1.110)



26 Chapter 1. Vector and Tensor Analysis

For unit vector nnn, we can conclude the following:

ennnennnennn= �= �= � ennnennnnnn = 000
(1.111)

�

1.2 Tensor analysis

1.2.1 Introduction

Any physical quantity can be expressed using tensors. For examples, scalar value like temperature,
length, etc. is considered as zeroth order tensor. Vector (vvv) contains three elements and is represented
by first order tensor (31 = 3), whereas second order tensor generally called tensor or dyad with nine
elements (32 = 9) like stress tensor σi j and strain tensor εi j. There are higher order tensors like
fourth order tensor Ci jkl with 81 elements which used in the constitutive relation between stress and
strain σi j =Ci jklεkl .

e1

e2

e3

e3 Ä e3e3 Ä e2e3 Ä e1

e1 Ä e1 e1 Ä e2 e1 Ä e3

e2 Ä e2 e3 Ä e1e2 Ä e1

Figure 1.17

Dyad or 2nd order tensor is defined by 2 vectors standing side by side and acting as a one unit.
For example eeei
eee j represents a 2nd order tensor as shown in Figure 1.17 where eeei is the basis i of
the reference frame, such that any spatial tensor can be resolved in this reference frame as follows:

TTT = TTT i jeeei
eee j (1.112)
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Note that bold capital letter are used for tensors of second tensor. Tensor TTT also contains nine
components by expanding the dummy indices i and j as follows:

TTT = TTT111111eee1
eee1 +TTT121212eee1
eee2 +TTT131313eee1
eee3

+TTT212121eee2
eee1 +TTT222222eee2
eee2 +TTT232323eee2
eee3

+TTT313131eee3
eee1 +TTT323232eee3
eee2 +TTT333333eee3
eee3

(1.113)

TTT i j includes the nine components of second order tensor (TTT ) resolved in frame of reference III, while
eeei
eee j is defined as a dyadic product of two orthogonal bases (dyadic pair). Dyadic product eeei
eee j

can be understood as a vector product of vectors eeei and eee j with matrix representation eeeieee j
T , such

that:

[eee1
eee2] = eee1eee2
T =

24 111
000
000

35� 000 111 000
�
=

24 000 111 000
000 000 000
000 000 000

35

[eee2
eee3] =

24 000 000 000
000 000 111
000 000 000

35
Each component TTT i j is associated with dyadic pairs eeei
eee j and second order tensor can be written
in matrix form as follows:

[TTT ] =

24 TTT111111 TTT121212 TTT131313
TTT212121 TTT222222 TTT232323
TTT313131 TTT323232 TTT333333

35 (1.114)

Or using matrix composed of three vectors columns as follows:

[TTT ] =
�

TTT 1 TTT 2 TTT 3
�

(1.115)

Where TTT i is called tensor vectors defined by:

[TTT 1] =

24 TTT111111
TTT212121
TTT313131

35;;; [TTT 2] =

24 TTT121212
TTT222222
TTT323232

35;;; [TTT 3] =

24 TTT131313
TTT232323
TTT333333

35
And consequently, second order tensor can follow this definition:

TTT = TTT 1
eee1 +TTT 2
eee2 +TTT 3
eee3 (1.116)

TTT = TTT i
eeei (1.117)

Where

TTT i = TTT jieee j (1.118)

The transpose of tensor TTT can be understood as a mapping of coordinates basis into tensor vectors
TTT i for (i = 1;2;3).

Identity tensor can be defined as:

111 = δi jeeei
eee j (1.119)
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This expression can be verified easily through expanding the tensor in matrix form to be:

[δi jeeei
eee j] = δ111111 [eee1
eee1]+δ121212 [eee1
eee2]+δ131313 [eee1
eee3]

+δ212121 [eee2
eee1]+δ222222 [eee2
eee2]+δ232323 [eee2
eee3]

+δ313131 [eee3
eee1]+δ323232 [eee3
eee2]+δ333333 [eee3
eee3]

= [eee1
eee1]+ [eee2
eee2]+ [eee3
eee3]

=

24 1 0 0
0 0 0
0 0 0

35+

24 0 0 0
0 1 0
0 0 0

35+

24 0 0 0
0 0 0
0 0 1

35= 111

(1.120)

Note 1.3 We also need to remark some of dyadic product operation in these following relations:
1. uuu
vvv 6= vvv
uuu as uuuTvvv 6= vvvuuuT

2. (uuu
vvv)T = vvv
uuu

3. uuu
 (vvv+www) = uuu
vvv+uuu
www

4. (uuu
vvv) :www = (vvv:www)uuu

As (uuu
vvv) :www = uuuvvvTwww = vvvTwuwuwu = (vvv:www)uuu due to the fact that vvvTwww is scalar and can be
flipped with any element.
In this equation,tensor uuu
vvv maps any vector to another in direction parallel to vector uuu.

5. Using the same procedures, we can prove that:
(uuu
vvv) :AAA = vvv
 (AAATuuu) where AAA is a second order tensor.
As (uuu
vvv) :AAA = (uuu
vvv)TAAA = (((uuuvvvT)))

TAAA = vuvuvuTAAA = vvv
�
uuuTAAA

�
= vvv
�
AAATuuu

�T
= vvv
(((AAATuuu)))

�

The trace of dyadic product is defined as:
Trace(uuu
vvv))) = uuu:vvv Double dot product of two tensors AAA and BBB can be obtained from:

AAA ::: BBB = Ai jBi j = trace(AT B) (1.121)

And consequently, double dot product satisfies the following relation:

(eeei
eee j) ::: (eeek
eeel) = (eeei:eeek)(eee j:eeel) = δikδ jl (1.122)

Such that AAA ::: BBB can be rewritten in index notation as follows:

AAA ::: BBB = Ai j (eeei
eee j) ::: Bkl (eeek
eeel) = Ai jBklδikδ jl = Ai jBi j

aaabbbT ::: cccdddT = (= (= ( aaa:ccc)()()(bbb:ddd)))
(1.123)

We also need to introduce the Inner or dot product of two tensor AAA, BBB termed as AAA:BBB. Likewise
matrix multiplication, it can be defined as:

(eeei
eee j) :(eeek
eeel) = δk j (eeei
eeel) (1.124)

such that

AAA:BBB = Ai j (eeei
eee j) :Bkl (eeek
eeel)

= Ai jBkl (eeei
eee j) :(eeek
eeel)

= Ai jBklδk j (eeei
eeel)

= Ai jB jl eeei
eeel

(1.125)
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It follows that:

(aaa
bbb) :(ccc
ddd) = aaabbbTcccdddT =
�
bbbTccc
�

aaadddT = (bbb:ccc)(aaa
ddd) (1.126)

For dot product of tensor and vector, it can follow:

eeei:(eeek
eeel) = δikeeel (1.127)

Which can be proven in matrix form as follows:

eee2:(eee2
eee3) = δ22eee3 = eee3

�
000 111 000

�0@24 000
111
000

35� 000 000 111
�1A=

�
000 111 000

�0@24 000 000 000
000 000 111
000 000 000

351A=
�

000 000 111
�

eee3:(eee2
eee3) = δ32eee3 = 000

�
000 000 111

�0@24 000
111
000

35� 000 000 111
�1A=

�
000 000 111

�0@24 000 000 000
000 000 111
000 000 000

351A=
�

000 000 000
�

And consequently, the relation bbb =AAA:ccc means in index notation that:

b j = Ai jc j (1.128)

It can follow different expression as follows:

bbb =AAA:ccc = ccc:AAAT (1.129)

Which can be proven using matrix or index notation as follows:

Ai jc j = c jAi j = c jA ji
T (1.130)

Likewise matrix multiplication, tensor multiplication does not follow the associative property:

AAA:BBB 6=BBB:AAA (1.131)

The cross product of vector aaa and tensor BBB can follows this relation:

aaa�BBB = εi jkaiB jmeeek
eeem (1.132)

So the above cross product is performed between vector aaa and each column of tensor BBB indepen-
dently resulting a second order tensor, such that ith column of tensor of the resulting tensor is the
cross product of vector aaa with ith column of tensor BBB.

For second order tensors BBB, PPP and vectors aaa, ccc, useful relations can be proven as follows:

ccc:(aaa�BBB) = cmeeem:(aaa�BBB)nkeeek
eeek

= cm(aaa�BBB)nkδmneeek

= cm(aaa�BBB)mkeeek

= cmaiBm jεi jkeeek

= aiB jmcmε i jkeeek

= aaa�(�(�(BBB:ccc)))

ccc:(aaa�BBB) = aaa�(�(�(BBB:ccc)))

(1.133)
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PPP ::: (aaa�BBB) = Pmk(aaa�BBB)mk = PmkaiBm jεi jk = aiBm jPmkεi jk = a:(Bm jPmkε jklel) (1.134)

For which vector fAg j represent the jth column of tensor AAA such that its elements will be fAAAg j
i = Ai j.

From above expression it follows that

PPP ::: aaa�BBB = aaa:(:(:(fBBBgm�fPPPgm))) (1.135)

Where fBBBgm�fPPPgm =
P3

mmm=111 fBBBgm�fPPPgm

1.2.2 Eigen value analysis
For a matrix AAA, a particular set of scalars λ and a set of vectors u can satisfy the following equation:

AAA:uuu = λλλuuu (1.136)

The set of λ and uuu is called Eigen values and Eigen vectors, respectively. Rewriting the above
equation as follows:

(((AAA�λλλ111):):):uuu = 000 (1.137)

The above equation contains trivial solution uuu = 000 and Non-trivial solution det(((AAA�λλλ111) = 0. Non-
trivial solution forms characteristic equation λ 3 � I1λ 2 + I2λ � I3 = 0 where I1, I2, I3 are the
invariants of matrix AAA.

I1 = trace(AAA)

I2 = det
��

a22 a23
a32 a33

��
+det

��
a11 a13
a31 a33

��
+det

��
a11 a12
a12 a22

��
I3 = det(AAA)

(1.138)

Where ai j are elements of matrix AAA. Characteristic equation yields three roots for λ . One solution is
always real where other two roots may be both real or may be complex and conjugate to each other.
For each λ , we can solve homogeneous linear system of equations (((AAA�λλλ111):):):uuu = 000 for Eigen vector
u. The set of λ can form Eigen pairs; (λ 1, u1), (λ 2, u2), and (λ 3, u3). If matrix AAA is symmetric,
Eigen value analysis yields three real Eigen values, while symmetric and positive definite matrix
results in three real positive Eigen values.

� Example 1.18 If AAA is defined as

A =

24 7 2 �1
2 3 4
�1 4 1

35
Then

I1 = trace(AAA) = 11

I1 = det
��

3 4
4 1

��
+det

��
7 �1
�1 1

��
+det

��
7 2
2 3

��
=�13+6+17 = 10

I3 = det(A) =�114
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Characteristic equation

λ
3�11λ

2 +10λ +114 = 0

λ1 =�2:5546; λ2 = 7:9199; λ3 = 5:6347

Or solving the following equation

det(AAA�λλλ111) = 0

det(AAA�λλλ111) = det

0@24 7�λλλ 2 �1
2 3�λλλ 4
�1 4 1�λλλ

351A= 0

Solving for Eigen vectors for λ1 =�2:5546

000 = (AAA�λλλ111) :uuu =

0@24 7 2 �1
2 3 4
�1 4 1

35+2:5546

24 1 0 0
0 1 0
0 0 1

351A24 u1
u2
u3

35

=

24 9:55 2 �1
2 5:55 4
�1 4 3:55

3524 u1
u2
u3

35=

24 9:55u1 +2u2�u3
2:0u1 +5:55u2 +4u3
�u1 +4u2 +3:55u3

35=

24 0
0
0

35
Assuming u1 = 1 and solving any two equations we get u2 =�2:97; u3 = 3:62

Normalizing vector [u] = [u1 u2 u3]
T = [1 �2:97 3:62]T to be a unit vector yielding:

uuu1 =
[uuu]
juj =

�
0:209 � 0:62 0:756

�T
Using the same above procedures, we get

For λ2 = 7:9199; we get; u2 =
�

0:45 0:626 0:637
�T

For λ3 = 5:6347; we get; u3 =
� �0:868 �0:474 �0:148

�T
Assuming matrix P =

�
u1 u2 u3

�
, we can reach matrix P with three vector columns,

each column is represented by u1 as follows:

PPP =

24 0:209 �0:45 �0:868
�0:62 0:626 �0:474
0:756 0:637 �0:148

35
Note that PPP is an orthogonal matrix with

�
PPPTPPP = 111

�
Note also that for symmetric matrix AAA with Eigen vectors ui, the following expression yields

a diagonal matrix:

PPPTAPAPAP =PPPT [[[AAAu1;AAAu2;AAAu3] === PPPT [[[λ1u1;λ2u2;λ3u3]

=PPPT � u1 u2 u3
�24 λ1 0 0

0 λ2 0
0 0 λ3

35=PPPTPPP

24 λ1 0 0
0 λ2 0
0 0 λ3

35=

24 λ1 0 0
0 λ2 0
0 0 λ3

35
�
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1.2.3 Orthogonality of Eigen vectors for symmetric matrix A
If we have two pairs (λλλ 1;;; uuu1), (λλλ 2;;; uuu2) associated with the Eigen value analysis of symmetric matrix
AAA, orthogonality of Eigen vectors can be proven as follows:

AAA:uuui = λλλ iuuuiAAA:uuu j = λλλ juuu j (1.139)

Pre-multiplying both above equation by uuu j
T , uuui

T , respectively and subtracting both equation.

uuu j
TAAAuuui = λλλ iuuu j

Tuuui (1.140)

uuui
TAAAuuu j = λλλ juuui

Tuuu j (1.141)

(λλλ i�λλλ j)uuui
Tuuu j = 000 (1.142)

As for any symmetric matrix A and any two vectors uuui, uuu j, the following identity can be achieved:

uuu j
TAAAuuui = uuui

TAAAuuu j (1.143)

Equation 1.142 leads to λλλ i = λλλ j or generally uuui
Tuuu j = 000 (uuui is normal to uuu j), so the Eigen vectors

associated with different Eigen values are orthogonal to each other. Also this identity is proved in
the previous example.

1.2.4 Spectral decomposition
Let us assume a known tensor TTT operating on another unknown tensor LLL using the following
expression:

TTT = Operator (LLL) = O(LLL) (1.144)

Assuming a one-to-one mapping, the inverse of this operation yields:

LLL = O�1(TTT ) (1.145)

Evaluation of the unknown tensor LLL requires following these procedures. First step is to transform
tensor TTT into its principal coordinates, by finding its Eigen values and Eigen vectors, such that
using the matrix notation, it can be written as follows:

TTT =AAA

24 λ1 0 0
0 λ2 0
0 0 λ3

35AAAT (1.146)

Which AAA, λi are the Eigen vectors matrix and Eigen values of matrix TTT . Tensor LLL can be evaluated
by reverse the operation on the principle values of the tensor TTT such that tensor LLL will be defined as
follows:

LLL =AAA

24 O�1(λ 1) 0 0
0 O�1(λ2) 0
0 0 O�1(λ 3)

35AAAT (1.147)

� Example 1.19 Assume a known matrix CCC following this expression:24 1:2 0:3 �0:2
0:3 1:3 0:4
�0:2 0:4 1:4

35=CCC =BBB2

And we need to evaluate matrix BBB

CCC =AAAbλieAAAT
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Calculating Eigen values, and Eigen vector of matrix CCC

λi = (0:69; 1:45; 1:76)

[AAA] =

24 �0:58 0:81 �0:12
0:63 0:35 �0:7
�0:52 �0:48 �0:71

35
O�1 (λi) =

q
λi (U2)

BBB =

24 �0:58 0:81 �0:12
0:63 0:35 �0:7
�0:52 �0:48 �0:71

3524
p

0:69 0 0
0

p
1:45 0

0 0
p

1:76

3524 �0:58 0:63 �0:52
0:81 0:35 �0:48
�0:12 �0:7 �0:71

35

=

24 1:08 0:14 �0:1
0:14 1:12 0:18
�0:1 0:18 1:16

35
�

1.3 Vector calculus

Any function like temperature T (xxx; t), velocity of fluid occupying some space vvv(xxx; t), or stress
tensor distributed over a body σσσ(xxx; t) that, at any specific time t, varies with position xxx we need to
understand its properties xxx, is called a field function. Every position occupied with a particle has
its own properties which probably change with time. Vector calculus studies variation of this field
with position and time.

Differenting with time
Velocity field vvv(xxx; t) is defined as the rate of change particles position with time at some position xxx
at time t as follows:

dxxx
dt

=
dxi

dt
eeei =

dx1

dt
eee1 +

dx2

dt
eee2 +

dx3

dt
eee3 = ẋxxieeei (1.148)

Where xxx is the position vector and t indicates the time of recording the velocity. Similarly,
acceleration can be evaluated as the time rate of change of velocity of particle yielding:

dvvv
dt

=
d2xi

dt2 eeei = ẍieeei (1.149)

From differentiation properties, we can conclude that:

d
dt

(a:b) =
d
dt

(a) :b+a:
d
dt

(b) (1.150)

d
dt

(a�b) =
d
dt

(a)�b+a� d
dt

(b) (1.151)

d
dt

(a
b) =
d
dt

(a)
b+a
 d
dt

(b) (1.152)

Differentiating with coordinates
Differentiation with coordinates is done using Nabla operator ∇ given by:

∇ =
∂

∂xi
eeei (1.153)
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While the matrix form is defined as:

[∇] =
h

∂

∂x1

∂

∂x2

∂

∂x3

iT
(1.154)

Gradient of scalar field Φ with a continuous partial derivative is obtained from the following
expression:

∇Φ =
∂Φ

∂x1
eee1 +

∂Φ

∂x2
eee2 +

∂Φ

∂x3
eee3 (1.155)

Which can be written in the matrix form as follows:

[∇Φ] =
h

∂Φ

∂x1

∂Φ

∂x2

∂Φ

∂x3

iT
(1.156)

Figure 1.18: Scalar field function f (x1;x2) = x1
2 +0:25x2

2

� Example 1.20 Calculate the gradient of field function f (x1;x2) = x1
2 + 0:25x2

2 shown in
Figure 1.18 at points p1 (x1;x2) = (0;2)

Gradient of the function =

"
∂ f
∂x1
∂ f
∂x2

#
=

�
2x1

0:5x2

�
At point p1. It means that functions ∂ f

∂x1
= 0, ∂ f

∂x2
= 1 and gradient will be (0,1), so moving

to an adjacent point by only increasing x1 by an infinitesimal amount, while x2 is same, does not
change the function

�
∂ f
∂x1

= 0
�

. As in Figure 1.19, the increment in position x as indicated in
the drawn arrow is in direction tangent to the contour lines which indicates no change in the
function value, so only change in function can appear if we move in any direction except this
tangent direction. Also maximum increase in function can be reached when moving normal
to the contour line or in direction of the gradient

�
∂ f
∂x1

; ∂ f
∂x2

�
= (0;1), while the value of the

gradient j4 f j= 1 reflects the amount of increase in function with changing position (x1;x2).
Another derivative we would like to introduce is directional derivative of a scalar field in

some direction nnn which is defined as ∇Φ:nnn. For example, the directional derivative of the upper
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Figure 1.19: contour lines of the function projected on x1 x2 plane

function f in direction nnn = (1; 0) at point P1 equals to ∇ f :nnn === (1;0):(0;1) = 0 which means
no change for the function in this direction, while if we evaluated it in the same direction of the
gradient nnn = (0; 1), directional derivative yields ∇ f :nnn === (0;1):(0;1) = 1 which provides the
maximum change. Any other direction results smaller change or negative change, due to the
fact that dot product of any two vectors is maximum if they share the same direction. �

Gradient of vector vvv is the dyadic product of Nabla operator and vector field vvv which transforms
the vector to a second order tensor. Generally gradient of a field increases the order of the field
by one (gradient of a scalar is vector and the gradient of vector is second order tensor). This field
should have a continuous partial derivative.

∇vvv = ∇
vvv =
∂

∂xi
eeei
 v jeee j =

∂v j

∂xi
eeei
eee j (1.157)

With matrix from

[∇vvv]i j = [∇
vvv]i j = [∇]i
 [vvv] j =

�
∂v j

∂xi

�
(1.158)

[∇vvv] =

264
∂vvv1
∂x1

∂vvv2
∂x1

∂vvv3
∂x1

∂vvv1
∂x2

∂vvv2
∂x2

∂vvv3
∂x2

∂vvv1
∂x3

∂vvv2
∂x3

∂vvv3
∂x3

375 (1.159)

Gradient of 2nd order tensor AAA forms 3rd order tensor defined as follows:

∇AAA = ∇
AAA =
∂A jk

∂xi
eeei
eee j
eeek (1.160)

Divergence of a field tensor is the dot product of Nabla operator with the field tensor. For a
vector field vvv and tensor field AAA with a continuous partial derivative, divergence of these fields is
given by:

∇:vvv =
∂

∂xi
eeei:v jeee j =

∂v j

∂xi
eeei:eee j =

∂v j

∂xi
δi j =

∂v1

∂xi
=

∂v1

∂x1
+

∂v2

∂x2
+

∂v3

∂x3
(1.161)
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∇:AAA =
∂

∂xi
eeei:A jkeee j
eeek =

∂A jk

∂xi
eeei:eee j
eeek =

∂A jk

∂xi
δi jeeek =

∂Aik

∂xi
eeek (1.162)

∇:vvv is a scalar value while ∇:AAA is a vector field represented in matrix form as follows:

[∇:AAA] j = [∇] j:[AAA]i j =
∂Ai j

∂xi
(1.163)

Rotation or curl of vector includes the cross product of the Nabla operator and the vector as
follows:

∇�vvv =
∂

∂x j
eee j�vvvkeeek =

∂vk

∂x j
eee j�eeek =

∂vk

∂x j
εεεi jki jki jkeeei (1.164)

Curl of vector tells us about the spatial rate of rotation (ω) with magnitude defined as:

ω =
1
2
j∇�vvvj (1.165)

where vvv is the velocity vector field across the body studied.

� Example 1.21 Let us have a plate rotating about an axis x3 with rate ω . The position of
material points of the plate is changing as a function of time t according to the following:

x1 = X1cos(ωt) �X2sin(ωt)

x2 = X1sin(ωt) +X2cos(ωt)

x3 = X3

v =
dxxx
dt

=

24 �ωX1sin(ωt) �ωX2cos(ωt)
ωX1cos(ωt) �ωX2sin(ωt)

0

35=

24 �ωx2
ωx1

0

35
∇�vvv = (0;0;2ω)

The spin have magnitude:

1
2
j∇�vvvj= 1

2
j(0;0;2ω)j= ω

With direction (0;0;1) and parallel to the axis of rotation. While ∇�vvv gives direction the axis
of the rotations. �

Laplacian of a scalar field function is the divergence of gradient of a function with a continuous
second partial derivative termed as:

∇:∇Φ = ∇
2
Φ =

∂ 2Φ

∂x12 +
∂ 2Φ

∂x22 +
∂ 2Φ

∂x32 (1.166)

Laplacian of a vector field function is defined as:

∇:∇vvv = ∇
2vvv =

∂ 2v j

∂xi∂xi
eee j (1.167)
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Note 1.4 There are some useful expression we would like to address.
For scalar fields Φ and Ψ and vectors a and b, we note the following:

∇� (∇Φ) =

�
∂

∂xi
eeei

�
�
�

∂Φ

∂x j
eee j

�
=

∂ 2Φ

∂xi∂x j
εi jkeeek =

∂ 2Φ

∂x j∂xi
εi jkeeek (1.168)

As coordinate axes are linear independent so ∂ 2Φ

∂xi∂x j
= ∂ 2Φ

∂x j∂xi
. Using that εi jk =�ε jik so;

∇� (∇Φ) =� ∂ 2Φ

∂x j∂xi
ε jikeeek (1.169)

As index notation can be flipped with each other so flipping index i with index j yields:

∇� (∇Φ) =� ∂ 2Φ

∂xi∂x j
εi jkeeek (1.170)

Summing Equation 1.170 and Equation 1.168 leads to:

∇� (∇Φ) = 0 (1.171)

Also we can deduce the following relation

∇:(∇Φ�∇Ψ) =

�
∂

∂xi
eeei

�
:

�
∂Φ

∂x j
eee j� ∂Ψ

∂xk
eeek

�
=

∂

∂xi

�
∂Φ

∂x j

∂Ψ

∂xk

�
eeei:(eee j�eeek)

=

�
∂ 2Φ

∂xi∂x j

∂Ψ

∂xk
+

∂Φ

∂x j

∂ 2Ψ

∂xi∂xk

�
εi jk = 0

(1.172)

So we get

∇:(∇Φ�∇Ψ) = 0 (1.173)

In deriving the above expression, we used Equation 1.171 and the following identities:

eeei:(eee j�eeek) = eeei:
�
ε jkm eeem

�
= ε jkm δim = ε jki = εi jk (1.174)

∂ 2Φ

∂xi∂x j
εi jk = 0 (1.175)
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Another one we would like to introduce:

∇� (∇�a) =
�

∂

∂xi
eeei

�
�
�

∂

∂x j
eee j�akeeek

�
=

�
∂

∂xi
eeei

�
�
�

∂ak

∂x j
ε jkmeeem

�
=

∂ 2ak

∂xi∂x j
εi jkeeei�eeem

=
∂ 2ak

∂xi∂x j
εi jkεimneeen

=
∂ 2ak

∂xi∂x j
(δ jnδki�δ jiδkn)eeen

=

�
∂ 2ak

∂xk∂xn
� ∂ 2an

∂xi∂xi

�
eeen

=
∂

∂xn

�
∂ak

∂xk

�
eeen�∇

2a

= ∇(∇:a)�∇
2a

(1.176)

so we get:

∇� (∇�a) = ∇(∇:a)�∇
2a (1.177)

Another one:

∇:(a�b) =
∂

∂xi
eeei:
�
a jakε jkleeel

�
=

�
∂a j

∂xi
ak +a j

∂ak

∂xi

�
ε jkleeei:eeel

=

�
∂a j

∂xi
ak +a j

∂ak

∂xi

�
ε jklδil

∇:(a�b) = εi jk

�
∂a j

∂xi
ak +a j

∂ak

∂xi

�
= bbb:(∇�aaa)�aaa:(∇�bbb)

(1.178)

So we get

∇:(a�b) = bbb:(∇�aaa)�aaa:(∇�bbb) (1.179)

We used the following expression in deriving the above equation:

ε jkleeei:eeel = ε jklδil = ε jki = εi jk (1.180)

In the same manner:

∇� (aaa�bbb) = (∇:bbb)aaa+bbb:∇aaa� [(∇:aaa)bbb+aaa:∇bbb] (1.181)

aaa� (∇�bbb) = aaa:
�
∇aaaT �∇aaa

�
(1.182)
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For the length of vector xxx defined as:

jxxxj=
p
jxxx:xxxj=

p
jxi:xij (1.183)

The gradient of the length comes from:

∇(jxxxj) = ∂

∂x j
eee j
p
jxi:xij

=
∂

�pjxi:xij
�

∂x j
eee j

=
1
2

2xipjxi:xij
∂xi

∂x j
eee j

=
xipjxi:xij

δi jeee j

=
x jpjxi:xij

eee j =
xxx
jxxxj

(1.184)

�

1.3.1 Divergence or Gauss theorem
This theorem is used to solve mechanical and variational calculus problems, especially when
integral is hard to evaluate in some forms and can be switched to other forms easier to handle.
Divergence of a tensor AAA with a continuous partial derivative over some domain V (generally the
body volume) can be converted into integral over the body boundary ∂V with an outward unit
vector n normal to the boundary as in Figure 1.20. The general divergence theorem is defined as:

n

Body V

Boundary ∂V

Figure 1.20

Z
V

∇�AAA dV =

Z
∂V

nnn�AAA dS (1.185)

Where � is a general operator which can be dot, cross, or dyadic product as follows:Z
V

∇:AAA dV =

Z
∂V

nnn:AAA dS (1.186)

Z
V

∇�AAA dV =

Z
∂V

nnn�AAA dS (1.187)
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Z
V

∇
AAA dV =

Z
∂V

nnn
AAA dS (1.188)

From above, we can evaluate the integral over body volume using the properties of the outer
parameter (surface) without need to dig into the body volume.
For a two dimensional analysis, integral over area a can be switched to integration over the area
perimeter P as follows:Z

V
∇�AAA da =

Z
∂A

nnn�AAA dP (1.189)

We will illustrate The following two examples to understand the divergence theorem as follows.

e1

e2

3

2

n1n3

n2

n4

1

2

3

4

Figure 1.21

� Example 1.22 — Rectangular area. If we need to evaluate the area of the shown rectangular
in Figure 1.21. Area of the rectangular A is defined as follows:

A =

Z
A

dA =

Z
A

1 dA =

Z
A

∇:bbbdA (1.190)

Where bbb is any vector such that ∇:bbb = 1, e.g. assume b = x1eee1. Using divergence theorem, area
integral can be converted to line integral as follows:

A =

Z
A

∇:bbbdA =

Z
S
nnn:bbbdS (1.191)

Where nnn is the normal to the surface and S signifies the boundary of rectangular. We can divide
the boundary of rectangular into four boundaries and the line integral can be defined over each
boundary as follows:

Boundary 1 [nnn] = (1;0)! R
S (nnn:bbbjx1=3)dS = 3

R
S dS = 3�2 = 6

Boundary 2 [nnn] = (0;1)
R

S (nnn:bbbjx2=2)dS = 0
Boundary 3 [nnn] = (�1;0)

R
S (nnn:bbbjx1=0)dS = 0

Boundary 4 [nnn] = (0;�1)
R

S (nnn:bbbjx1=0)dS = 0

(1.192)
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So the total integral is the sum over the four boundaries resulting the area:

A =

Z
S
nnn:bbbdS = 6 (1.193)

�

e1

e2

2

1 v = x1+2

Figure 1.22

� Example 1.23 — Discharge of a rectangular body with a unit width. If we have a fluid
with velocity field vvv = (4x1 +2;0), and it is required to find the discharge through rectangular
shape shown in Figure 1.22 with unit width. Discharge Q is measured through the dot product
of the velocity and the normal to the surface nnn as follows:

Q = width�
Z

A
n:vn:vn:vdS =

Z
A

∇:vvvdA =

Z
A

4dA = 4�2�1 = 8 (1.194)

�

Note 1.5 Useful relation

∇:(AAA:vvv) =
∂

∂xi
(Ai jv j) =

∂Ai j

∂xi
:v j +Ai j

∂v j

∂xi
= (∇:AAA) :vvv+AAA ::: ∇vvv (1.195)

Z
∂V

nnn:(AAA:vvv) dS =

Z
V

∇:(AAA:vvv) dV =

Z
V
((∇:AAA) :vvv+AAA ::: ∇vvv)dV (1.196)

But

nnn:(AAA:vvv) = nnn:AAA:vvv = vvv:AAA:nnn = vvv:(:(:(AAA:nnn))) (1.197)

We can deduce from above expressions and Equation 1.196 the following:Z
V
(∇vvv ::: AAA)dV =

Z
∂V

vvv:(nnn:AAA)dS�
Z

V
vvv:(∇:AAA) dV (1.198)

The above derivation is called integration by part.
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The term ∇:(vvv�AAA) can be defined as follows:

∇:(vvv�AAA) =
∂

∂xn
en:
�
viA jmεi jkek
 em

�
=

�
∂vi

∂xn
A jm + vi

∂A jm

∂xn

�
εi jkδnkem

(1.199)

But

∂vi

∂xn
A jmεi jnenδnm =

∂vi

∂xm
A jmεi jnen

=
∂vvv
∂xxx

m

� AAA m

= ∇vvv m� AAA m

(1.200)

Where vector AAA m represents the mth column of matrix AAA with components AAA m
k =Akm Where

BBB m� PPP m =
P3

m=1 BBB m� PPP m as m is a dummy index. Also the second term in Equation 1.199
can be reduced to:

vi
∂A jm

∂xn
εi jkδnkem = vi

∂An j

∂xn
δ jmδ jnεi jkδnkδmkek

= (v�∇:A)δ jmδ jnδnkδmk

= vvv� (∇:AAA)

(1.201)

So ∇:(vvv�AAA) in Equation 1.199 after using the divergence theorem will be:Z
∂V

nnn:(vvv�AAA)dS =

Z
V

∇:(vvv�AAA) dV

=

Z
V
(vvv� (∇:AAA)+ ∇vvv m� AAA m)dV

(1.202)

But Z
V
(vvv� (∇:AAA))dV =

Z
∂V

nnn:(vvv�AAA) dS�
Z

V
vvv� (∇:AAA)dV (1.203)

and

nnn:(vvv�AAA) = vvv�(�(�(AAA:nnn))) (1.204)

which yields:Z
V
(vvv� (∇:AAA))dV =

Z
∂V

vvv� (AAA:nnn) dS�
Z

V
vvv� (∇:AAA)dV (1.205)

The above expression can also be called integration by part. �
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2. Finite Rotation and its Applications

2.1 Rotation in plane (rotation about origin)

2.1.1 Body rotation with fixed coordinate system
Lets us assume a body undergoing a counterclockwise rotation with angle θ in two dimensional
plane about origin and referred to a fixed coordinate system with basis (triad) B. If we assume that
the solid line and dashed line are used for the body before and after rotation as shown in Figure 2.1
and the rotation θ is positive for rotating counter-clockwise (or using right-hand rule by upward
pointing thumb normal to the paper plane in eee3 direction), such that any vector attached to the body
with position vector (X1;X2) is transformed after rotation to (x1;x2) given by:

x1 = X1cosθ �X2sinθ

x2 = X1sinθ +X2cosθ
(2.1)

And it can be written in matrix form as follows:�
x1
x2

�
=

�
cosθ �sinθ

sinθ cosθ

��
X1
X2

�
(2.2)

[xxx]B = [RRR]B[XXX ]B (2.3)

[RRR]B is called the rotation matrix resolved in basis B. If [xxx]B and [XXX ]Bare position vector after
and before the rotation resolved in the same basis B, the negative sign in �sin(θ) in the above
expressions comes from the fact that components of vector XXX in eee1 direction is reduced with positive
rotation.

The tensorial form of the transformation will be:

x =RRRXx =RRRXx =RRRX (2.4)

Bear in mind that the coordinate system still the same after rotation. Also we need to note that the
upper form implies that observer has the freedom to choose other coordinate system with other
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basis, e.g. èeei such that the rotation RRR can be resolved in both bases; eee1 and èeei as follows:

xxx= xieeei= x̀ièeei (2.5)

XXX= X ieeei= X̀ ièeei (2.6)

RRR =RRRi jeeei
eee j = R̀RRi jèeei
 èee j (2.7)

Where xi, and Xi are components of the vector after and before rotation and rotation matrix resolved
in coordinate system with basis eeei, while x̀i, and X̀i are the components of the same vectors resolved
in different basis èeei as shown in Figure 2.2, for i = 1; 2; 3. RRRi j, and R̀RRi j represents the components
of rotation tensor resolved in different bases and they are generally different to the same spatial
tensor RRR, but it can be proven that R̀RRi j, and RRRi j are identical in two dimensional plane rotation as it
depends only on the rotation angle θθθ .

2.1.2 Body fixed in space referred to a rotated coordinate system.
Consider a body resolved in two coordinate system B and B�. As schematically shown in
Figure 2.3 coordinate system B� with dashed axes is obtained from applying a counterclockwise
rotation by angle θ about origin O on coordinate system B. Keep in mind that the body itself is
fixed, while coordinate system undergoes rotation. If we have a vector attached to a body, it can be
resolved in the both coordinate systems following these relations:

x1
� = x1cosθ + x2sinθ

x2
� =�x1sinθ + x2cosθ

(2.8)

Where xi, xi
� are components of the vector resolved in coordinate system with basis B and

basis B�, respectively as shown in Figure 2.4 for i = 1; 2; 3.�
x1
�

x2
�

�
=

�
cosθ sinθ

�sinθ cosθ

��
x1
x2

�
(2.9)

[xxx]B
�

= [QQQ]BB!B� [xxx]B or [xxx]B
�

= [QQQ]B
�

B!B� [xxx]B (2.10)

[QQQ]BB!B� ; [QQQ]B
�

B!B� are the transformation matrix from basis B to basis B�; as indicated in the
subscript of [Q][Q][Q]; resolved in basis B and basis B�, respectively (the superscript indicates the
basis [Q][Q][Q] is resolved in). They are identical in two dimensional plane transformation. Subscript
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(B! B�)can be dropped for convenience. [QQQ]B also called direction cosine matrix with elements
expressed as:

Qi j = cos(eeei
���;eee j) = eeei

���:eee j (2.11)

We emphasis again that the vector itself do not rotate and it is still the same spatial vector but de-
scribed in a new coordinate system. We can also easily verify that rotation matrix and transformation
matrix are orthogonal matrix carrying these relations:

det (RRR) = det(QQQ) = 1 (2.12)

RRRRRRT =RRRTRRR = 1 or RRR�1 =RRRT (2.13)

QQQQQQT =QQQTQQQ = 111 or QQQ�1 =QQQT (2.14)

we can generalize the transformation rule for higher order tensors. For example, second order
tensor can be formed from a dyadic product of two arbitrary vectors uuu and vvv and can be resolved in
basis B as follows:

[AAA][B] = [uuu
vvv][B] =
�
[uuu][vvv]T

�[B]
= [uuu][B]

�
[vvv][B]

�T
(2.15)

The components of this dyadic in another basis B� could be determined as follows:

[AAA]BBB
���

= [uuu
vvv]BBB
���

= [uuu]BBB
���

�
[vvv]BBB

���

�T
= [QQQ]B [uuu]

[B]
�
[QQQ]B [vvv]

[B]
�T

= [QQQ]B[uuu][B]
�
[vvv][B]

�T�
[QQQ]B

�T

(2.16)

[AAA]BBB
���

= [QQQ] [AAA][B][QQQ]T (2.17)

With index notation as follows:

A�i j = QimQ jnAmn (2.18)

For example, assume a second order stress tensor σσσ at point P in two dimensional case as
shown in Figure 2.5 and resolved in basis B as follows:

[σσσ ] =

�
σ11 σ12
σ12 σ22

�
(2.19)
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Resolving in other basis B0 will follow this transformation relation:

[σσσ ]
000

= [QQQ] [σσσ ] [QQQ]T (2.20)

Or in index notation

σσσ
000
i j =QQQimimimQQQ jnjnjnσσσ i j (2.21)�
σ 0

11 σ 0
12

σ 0
12 σ 0

22

�
=

�
cosθ sinθ

�sinθ cosθ

��
σ11 σ12
σ12 σ22

��
cosθ sinθ

�sinθ cosθ

�
(2.22)

Which results in:

σ
0
11 = σ11cosθ

2 +σ22sinθ
2 +2σ12 sinθ cosθ

σ
0
22 = σ11sinθ

2 +σ22cosθ
2�2σ12 sinθ cosθ

σ
0
12 = (σ22�σ11)sinθ cosθ +σ12

�
cosθ

2� sinθ
2� (2.23)

The same results can be obtained using Mohr’s circle or studying the equilibrium of a differential
triangular element with thickness t and dimensions shown in Figure 2.6 by summing the force
along x0 coordinate as follows:.

σ
0
11�1�t =σ11cosθ �(cosθ � t)+σ22sinθ �(sinθ � t)+σ12sinθ �(cosθ � t)+σ12cosθ �(sinθ � t)

(2.24)

Which leads to the same results of Equation 2.23.
For 4th order tensor like the one used in constitutive relations can be resolved in two bases B�

and B0 as follows:
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σmn = Cmnop εop (2.25)

σ
0
i j = C0

i jkl ε
0
kl (2.26)

The transformation rule will be:

QimQ jnσmn = C0
i jkl QkoQl pεop (2.27)

σmn = C0
i jkl Qim

T Q jn
T QkoQl pεop = QmiQn jQkoQl pC0

i jklεop (2.28)

C0
i jkl = QimQ jnQokQplCmnop (2.29)

Also a two important role can be noticed. First, rotation matrix is transpose to transformation
matrix for the same rotation angle, and second, rotation matrix for rotation angle θ is equivalent to
transformation matrix for a rotation angle �θ as follows:

[QQQ] = [RRR]T (2.30)

[QQQ(θ)] = [RRR(�θ)] (2.31)
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Figure 2.7

� Example 2.1 A vector PPP in Figure 2.7a is originally oriented along direction
�
cos
�

π

3

�
;sin

�
π

3

� �
in coordinate systemB. If the vector is subjected to a rotation by an angle�π=3, the new vector
P0P0P0 components in the same coordinate system B are (1;0). While, in Figure 2.7b, another case
involves rotating the coordinate system by angle π=3 to form new coordinate system B�, but



50 Chapter 2. Finite Rotation and its Applications

x1

x2

B

X
x1*

x2*

B*

x

x1

θ
B

θ

X

x2

Figure 2.8

vector PPP stay still in its original position. The vector PPP resolved in the new coordinate system
B� will be [PPP]B

�

=
�

1 0
�T which results in the same components formed in the first case.

Leading us to conclude that�
P0P0P0
�B

=
h
RRR
�
�π

3

�i
[PPP]B (2.32)

[PPP]B
�

=
h
QQQ
�

π

3

�i
[PPP]B (2.33)

Both equations lead to same result which implies that [QQQ(θ)] = [RRR(�θ)] �

2.1.3 Rotation of the coordinate system and body together with same angle
In some cases, the coordinate system chosen may be attached to the body and rotates with it. This
case is used when the body exhibits a large rotation while its internal deformations are infinitesimal.
Observing these infinitesimal deformations required choosing a coordinate system attached to
the body. This rotating or attached frame of reference is called co-rotated frame. As shown in
Figure 2.8, a body with attached coordinate system to it is rotated counter clockwise by angle θ .
By intuition, the new vector components resolved in the new coordinate system is identical to old
vector components resolved in old coordinate system before rotation.

[xxx]B
�

= [XXX ]B (2.34)

We also need to note this useful rule for rotation. Rotation preserves scalar quantities like vector
length, projection of one vector on another, dot product of two vectors, and angle between two
vectors. As shown in the Figure 2.9, angle between vectors aaa and bbb does not change after rotation
by angle φ .

� Example 2.2 A scalar quantity like work W is defined as the dot product of the force FFF and
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displacement ddd as follows:

W =FFF :ddd =FFFTddd = (QQQT F̀̀F̀F)
T

QQQT d̀̀d̀d = F̀̀F̀F
T

QQQQQQT d̀̀d̀d = F̀̀F̀FT d̀̀d̀d = F̀ :d̀F̀ :d̀F̀ :d̀ (2.35)

So we conclude that the dot product of any two vector referred to two different coordinate
systems are identical. �

2.1.4 Compound rotation in two dimensions

x1

b

θ

a

x2

b

θ

a

ϕ

Figure 2.9

As shown in Figure 2.10a, if rotation RRR(θ1) is followed by rotation RRR(θ2), so the first rotation
transforms vector XXX to vector xxx0 and the second one rotates the vector xxx0 to vector xxx as follows:

xxx0 =RRR(θ1)XXX (2.36)

xxx =RRR(θ2)xxx0 (2.37)

So the final vector xxx will be:

xxx =RRR(θ2)RRR(θ1)XXX =RRR(θ)XXX (2.38)

Where the equivalent rotation RRR(θ) of two compound rotations RRR(θ1) and RRR(θ2) follows this
relation:

RRR(θ) =RRR(θ2)RRR(θ1) (2.39)

In two dimensional plane rotation, the equivalent rotation angle will be:

θ = θ1 +θ2 (2.40)

Also the sequence of rotation does not affect the final result as shown in Figure 2.10b, thus we can
reach the same rotated vector if we started with angle of rotation θ2 followed by rotation with angle
θ1.

RRR(θ2)RRR(θ1) =RRR(θ1)RRR(θ2) (2.41)
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2.1.5 Rotation in three dimensions
Rotation in three dimensional space is defined by the angle and the axis of rotation. The rotation
in two dimensional plane can be considered as a special case of rotation in which x3 is the axis of
rotation. Using Equation 2.2 and the fact that the position of any point laying on the axis of rotation
(x3) remain fixed after rotation, the point with initial coordinate XXX rotates to a new position xxx from
this relation:24 x1

x2
x3

35=

24 cosθ �sinθ 0
sinθ cosθ 0

0 0 1

3524 X1
X2
X3

35 (2.42)

Similarly rotation about x1 axis follows this equation:24 x1
x2
x3

35=

24 1 0 0
0 cosθ �sinθ

0 sinθ cosθ

3524 X1
X2
X3

35 (2.43)

While rotation about x2 axis comes from:24 x1
x2
x3

35=

24 cosθ 0 sinθ

0 1 0
�sinθ 0 cosθ

3524 X1
X2
X3

35 (2.44)

2.1.6 Rotation about any axis with unit vector nnn
The rotation tensor can be paramterized using its intrinsic paramterization defined by RRR (orthogonal
tensor with nine parameters and an element of Lie group called SO(3), e.i. RRRT R = 111;det(RRR) = 1)
but group SO(3) is non-linear space (manifold) and there will be some nonlinear issues when using
it, so we can simplify the problenm using a vector-like parameterization so-called rotation vector.
As in Figure 2.11a, assume a vector XXX rotated to a vector xxx (shown with dashed line) via a rotation
of angle θ about axis with direction nnn through a circle normal to the axis of the rotation. The vector
XXX makes angle α with axis of rotation. If we investigate the change in vector XXX via this circle as
shown in Figure 2.11b, the vector after rotation increases in two directions eee�� and eee� by length jaj
and jaj, respectively, as follows:

jrrrj= jXXX jsinα (2.45)

jbbbj= jrrrjsinθ (2.46)

jaaaj= jrrrj(1� cosθ) (2.47)
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The direction of unit vectors eee� and eee��

eee� =
nnn�XXX
jnnn�XXX j =

n�XXXn�XXXn�XXX
jXXX jsinα

=
n�XXXn�XXXn�XXX
jrj (2.48)

eee�� =
n�eeen�eeen�eee�

jnnn�eee�j =
nnn�eee�

sin(π=2)
= nnn�eee� =

n� (nnn�XXX)n� (nnn�XXX)n� (nnn�XXX)

jrrrj (2.49)

The final vector xxx will be:

xxx =XXX + jbbbjeee�+ jaaajeee�� (2.50)

=XXX + sinθ (n�Xn�Xn�X)+(1� cosθ)(n� (n�X)n� (n�X)n� (n�X)) (2.51)

= xxx+ sinθ ñnnXXX +(1� cosθ)ññXññXññX (2.52)

= (1+1+1+sinθ ñnn+(1� cosθ)ññññññ )XXX =RXRXRX (2.53)

So the rotation tensor RRR is defined as:

RRR = 111+ sinθ ennn+(1� cosθ)ennnennn (2.54)

We need to note that the last term of the above equation ññññññ is symmetric, while the middle term
ñ̃ñn is skew-symmetric. The last term is symmetric because

Skew(ennnennn) = ennnennn� (ennnennn)T

2
= 000 (2.55)

(ennnennn)T = ennnTennnT = (�ennn)(�ennn) = ennnennn (2.56)

This above Equation 2.54 is called Rodrigues’ rotation formula. Another form we would like to
introduce is exponential form of the rotation tensor as follows:

Using Taylor series

cosθ = 1� θ 2

2!
+ : : : ; sinθ = θ � θ 3

3!
+ : : : (2.57)
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Also the skew-symmetric matrix with unit vector nnn as an axial vector follows this relation

ennnennnennn=�=�=� ennn (2.58)

We can conclude that:

RRR = 1+1+1+eθθθ +
eθθθ 2

2!
+
eθθθ 3

3!
+ � � �=+ � � �=+ � � �= exp(eθθθ) (2.59)

Where θθθ = θnnn is the rotational vector and θ is the magnitude of rotation, so the rotation RRR
depends on three free independent parameters. There are other choices for parameterization like
Euler angles, rotational pseudovector, quaternion, conformal rotation vector, Euler parameters,
etc. Assume a rigid body rotation and we have two orthonormal frame; material (inertia) frame
(E = fEEE Ig) and body-attached (moving) frame (T = ftttIg) as shown in Figure 2.12 such that a
rotation operator RRR maps the material frame into the moving frame as follows:

tttI =RRREEE I (2.60)

We need to note that the material frame remains constant in the space at any time while the moving
frame is attached to the body and change with time tttI(t), such that the moving frame is identical to
the material frame at initial configuration (t = 0). The rigid body rotation RRR can be interpreted as a
rotation about axis nnn with angle θ . Resolving the above equation in material frame results in:

[tttI]
E = [RRR]E [EEEI]

E (2.61)

With

[EEE1]
E = f1;0;0gT ; [EEE2]

E = f0;1;0gT ; [EEE3]
E = f0;0;1gT (2.62)

So vector [ttt i]
E represent the ith column of matrix [RRR]E .

2.1.7 Recovering the axis and angle of rotation from rotation tensor
As stated before, the skew symmetric part of rotation tensor RRR is defined as:

skew(RRR) =
1
2
(R�RR�RR�RT ) = sinθ ennn (2.63)
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The magnitude of the skew-symmetric part will be:

sinθ = j= j= j axial (skew(RRR)) j (2.64)

Axial vector sinθnnn of the skew-symmetric part define the direction of the rotation vector:

nnn =
axial (skew(RRR))

sinθ
(2.65)

The range of angle θ is ]0�π[. Note that the axis of rotation could be�nnn with corresponding angle
]π�2π[. For example, rotating about axis nnn = (0;0;1) with angle pi=3 is equivalent to rotating
about axis�n�n�n = (0;0;�1) with angle equal to 2π�π=3 = 5π=3.

For relatively small rotations, we can neglect terms with order higher than second.

RRR = 111+ eθθθ +
eθθθ 2

2!
(2.66)

For infinitesimal small rotations, neglecting higher order terms than first results in:

RRR = 111+ eθθθ (2.67)

The infinitesimal rotation can be proven from Equation 4.575 as follows. Assume a vector vvv in
a plane xxx1�xxx2 directed with angle θ from x1 axis. If the vector is subjected to an infinitesimal
rotation 4θ , it is transformed to vector vvv0, such that if:

vvv = jvvvj(cosθ ;sinθ) (2.68)

The resulting vector will be:
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v
θ
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 Δv
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vvv0 = vvv+4vvv = jvvvj(cos(θ +4θ) ;sin(θ +4θ) ) (2.69)

vvv0 = vvv+4θ jvvvj nnn =

��
1 0
0 1

�
+

�
0 �4θ

4θ 0

��
vvv (2.70)

Where the direction nnn = (�sinθ ;cosθ) as nnn is orthogonal to vector vvv and axis of rotation.
In the same manner, we can conclude the general form for infinitesimal rotation about any arbitrary
axis with rotational vector θθθ = (θ1;θ2;θ3) as follows: First, we can deduce the vector nnn as follows:

nnn =
θθθ �vvv
jθθθ �vvvj =

θθθ �vvv
jvvvjsinθ

' θθθ �vvv
jvvvjθ (2.71)
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As for an infinitesimal angle θ , sinθ ' θ , and using Equation 2.70

vvv0 = vvv+θθθ �vvv =
�

111+ eθθθ�vvvcoc (2.72)

The general form of rotation tensor for an infinitesimal rotation θθθ = (θ1;θ2;θ3):

RRR = 111+ eθθθ =

24 1 0 0
0 1 0
0 0 1

35+

24 0 �θ 3 θ2
θ3 0 �θ 1
�θ2 θ1 0

35 (2.73)

Generally any infinitesimal rotation ∆θθθ is also called spin.

Note 2.1 There are some useful properties we would like to introduce:
1. All the properties of rotation in three dimensional case is identical to those of the two

dimensional case rotation except for dealing with compound rotations (see the next
section).

2. Axis of rotation is not affected by rotation and remains fixed.
3. For the plane normal to the axis of rotation, any vector lying on this plane remains in the

same plane after rotation.
4. Dot product of two vectors is preserved under rotation.
5. If we have two vectors xxx1 and xxx2 subjected to the same rotation RRR and the resulting vectors

are xxx01 and xxx02.

xxx01 =RRR(θθθ)xxx1; xxx02 =RRR(θθθ)xxx2 (2.74)

6. The cross product of these two vectors before rotation (xxx1, xxx2) and after rotation (xxx01, xxx02)
are related as follows:

xxx01�xxx02 = (RRR(θθθ)xxx1)� (RRR(θθθ)xxx1) =RRR(θθθ)(xxx1�xxx2)
a (2.75)

7. If a coordinate system with basis B1 is subjected to a rotation RRR to form basis B2, the
rotation tensor resolved in both bases are identical. As, rotation formula in Equation 2.54
depends on the angle rotated and the axis of rotation as follows:

RRRB =RRRB(θ ; [nnn]B) (2.76)

As the axis of rotation nnn remains fixed after rotation as shown in Figure 2.14, so its
components on both bases are identical [nnn]B1 = [nnn]B2 and using Equation 2.54 results in:

[RRR]B1 = [RRR]B2 (2.77)

�

aThis expression can be proven by intition or from this relation (Fa)� (Fb) = det(F)F�T (a�b), where F is a
linear mapping to vectors a and b

2.1.8 Non-commutative property of rotation
In Figure 2.15, a rectangular plate is subjected to rotation about eee1 axis with angle π=2 then
followed by a rotation about eee2 axis with angle π=2 to finally reach to some configuration. While
if we flipped the order of rotation starting with rotation about axis eee2 followed by rotation about
axis eee1 using the same angles, we reach to another configuration, so we conclude that the sequence
of rotations affects the final result of the compound rotation unlike the case of two dimensional
rotation in subsection 2.1.4.
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If rotation matrices RRR(θθθ 1), and RRR(θθθ 2), respectively, rotate a vector vvv0 to vector vvv1 and vector v1 to
vector vvv2 as follows:

vvv1 =RRR(θθθ 1)vvv0 (2.78)

vvv2 =RRR(θθθ 2)vvv1 =RRR(θθθ 2)RRR(θθθ 1)vvv0 (2.79)

So the compound rotation tensor is:

RRR(θθθ) =RRR(θθθ 2)RRR(θθθ 1) (2.80)

The resulting rotation θθθ does not represent the algebraic vector sum of the two angles or (θθθ 6= θθθ 1 +
θθθ 2) as confirmed from Figure 2.14. The above expression can be illustrated via Figure 2.21, in which
basisB is transformed through rotation tensor RRR(θθθ) to basisB� then rotated through (4φφφ) to reach
finally to basisB+ . This two subsequent rotations can be replaced with one equivalent rotation
θθθ +4θθθ where (4θθθ 6=4φφφ ). Also the not commutative property of [RRR(θθθ 2)RRR(θθθ 1) 6= RRR(θθθ 1)RRR(θθθ 2)]
argues the above discussion.

2.1.9 Compound Rotation
Consider a rotation operator RRR mapping from orthonormal frame EEE I into another frame tttI , then an
incremental rotation is added which carries the rotation frame tttI to bbbI . There are two ways to apply
thus rotation defined as follows:

� Through spatial rotation:
In this case, the incremental rotation φφφ is applied to moving frame tttI as shown in Figure 2.16a
and the compound rotation is defined as:

bbbI =R(φ)RR(φ)RR(φ)REEE I (2.81)
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� Through material rotation:
The incremental rotation ΦΦΦ is applied to the material frame EEE I shown in Figure 2.16b and the
resulting rotation is:

bbbI =RR(Φ)RR(Φ)RR(Φ)EEE I (2.82)

The updated compound rotation tensor is defined in the following two forms:

RRReq =R(φ)RR(φ)RR(φ)R =RR(Φ)RR(Φ)RR(Φ) (2.83)

Where φφφ (ΦΦΦ ) is the rotational vector corresponding to the incremental spatial (material) rotation.
From above equation, they are related through the following:

R(Φ)R(Φ)R(Φ) =RRRTR(φ)RR(φ)RR(φ)R!ΦΦΦ =RRRT
φφφ $ φφφ =RRRΦΦΦ (2.84)

The above equation can be interpreted through considering the rotation vector as a real vector
attached to a rigid body like the moving frame tttI and subjected to rotation RRR. As the angle between
any two vectors subjected to the same rotation is preserved, we can imagine that rotating of frame
EEE i through rotation RRR followed by rotation φφφ is equivalent to a rotation of the same frame with
rotational vector ΦΦΦ followed by rotation RRR.
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� Example 2.3 Assume a rigid body shown in Figure 2.17 subjected rotational vector resolved
in basis E as [θθθ ]E =

�
π

2 ;0;0
	T , then followed by an incremental rotation resolved in the same

basis as [φφφ ]E =
�

0; π

4 ;0
	T , resulting a body with attached frameB with bases resolved in frame

of reference E as follows:

[bbbI]
B = [R(φ)R(φ)R(φ)]B [RRR]B [EEE I]

B =RRR([φφφ ]B) [RRR]B [EEEI]
B (2.85)

Also identical results can be reached from rotating about rotational vector [ΦΦΦ]E = [RRRTφφφ ]E =�
0;0;�π

4

	T followed by rotation about θθθ . Also, see the examples described in subsection 2.1.12.
�

2.1.10 Finite rotation followed by an infinitesimal rotation
This case is very common in nonlinear finite element analysis, as the solution is divided into small
steps, each step includes number of increments with relatively small rotation. Updating rotations
requires adding incremental rotations to the last converged step which is generally finite, such that
if a vector subjected to a finite rotation θθθ followed by an infinitesimal or linearized incremental
spatial rotation 4φφφ as shown in Figure 2.18, the compound rotation will be:

RRR(θθθ +4θθθ) =RRR(4φφφ)RRR(θθθ) (2.86)

As the final rotation 6= θθθ +4φφφ but equal to θθθ +4θθθ

4φφφ , 4θθθ are called non-additive and additive rotation vectors, respectively. From above
expression:

∆RRR =RRR(θθθ +4θθθ)�RRR(θθθ) =RRR(4φφφ)RRR(θθθθθθθθθ)�RRR(θθθ) = (RRR(4φφφ)�111)RRR(θθθ) (2.87)
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While for an infinitesimal rotation 4φφφ , rotation tensor will be RRR(4φφφ) � 111+g4φφφ and the above
expression yields:

∆RRR =g4φφφRRR(θθθ) (2.88)

which leads to:

g4φφφ = ∆RRR(θθθ ;4θθθ)RRR(θθθ)T (2.89)

For an infinitesimal rotation, 4φφφ is also called spatial spin or angular variation.The above
relation is equivalent to the following equation:

4φφφ = TTT (θθθ)4θθθ $4θθθ = TTT (θθθ)�14φφφ (2.90)

Where TTT (θθθ) and TTT (θθθ)�1 are defined as:

TTT (θθθ) = 111+
1� cosθ

θ 2
eθθθ +

θ � sinθ

θ 3
eθθθeθθθ (2.91)

TTT (θθθ)�1 =
θ=2

tan(θ=2)
111+

�
1� θ=2

tan(θ=2)

�
θθθθθθ

T

θ 2 +
1
2
eθθθ (2.92)

The derivation of the above expressions is presented in Appendix 4.5.5. As stated before, rotation
tensor RRR is an element of Lie group SO(3). Rotation variation δRRR lies on the tangent space to
SO(3) at the current rotation RRR defined by TRTRTRSO(3). Unlike non-linear manifold SO(3), TRTRTRSO(3)
is a vector space as shown in Figure 2.20a and Figure 2.20b. At point with (RRR = 111), the tangent
space is defined as T1T1T1SO(3), such that rotation vectors eθθθ , and δeθθθ belong to the same vector space
T1T1T1SO(3) and the can added together as follows:

eθθθ ;fδθθθ 2 T1T1T1SO(3); eθθθ +fδθθθ 2 T1T1T1SO(3) (2.93)

While variational rotation δRRR evaluated at rotation tensor RRR belongs to another tangent space
TRTRTRSO(3), such that it is defined as:

δRRR = fδφφφRRR 2 TRTRTRSO(3) (2.94)
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As δφφφ belong to a different vector space it can not be added to θθθ and δθθθ , which leads us to use the
mapping tensor TTT (θθθ) in Equation 2.91 to relate the linearized rotation at T1T1T1SO(3) defined as δθθθ

with the linearized rotation at TRTRTRSO(3) defined as δφφφ as stated in Equation 2.90.

When jθθθ j approaches zero, T (θθθ) approaches identity matrix 111 and 4φφφ =4θθθ , while for an
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infinitesimal rotation θθθ 1[T (θθθ)! 1], TTT can be approximated as follows:

TTT (θθθ)' 111+
1
2
eθθθ (2.95)

2.1.11 Adding two infinitesimal rotations or spin
As shown in Figure 2.19, imagine a rigid line vvv rotated about axis nnn1 with infinitesimal rotation
4φφφ 1 around point OOO moving the point PPP0 to point PPP1 by changing vector v as follows:

4vvv1 =4φφφ 1�vvv (2.96)

Thenthe above rotation is followed by a rotation about axis nnn2 with an infinitesimal rotation 4φφφ 2
around point OOO moving the point PPP1 to point PPP2 by changing vector vvv as follows:

4vvv2 =4φφφ 2� (vvv+4vvv1) =4φφφ 2�vvv+4φφφ 2� (4φφφ 1�vvv)'4φφφ 2�vvv (2.97)

The last expression results form neglecting second order terms, so the resulting rotation 4φφφ comes
from:

4vvv =4φφφ �vvv (2.98)

4vvv1 +4vvv2 =4φφφ 1�vvv+4φφφ 2�vvv (2.99)

= (4φφφ 1 +4φφφ 2)�vvv (2.100)

Then the resulting infinitesimal compound rotation will be:

4φφφ =4φφφ 1 +4φφφ 2 (2.101)

This is called addition theorem. In this chapter, we generally use θθθ , and 4θθθ for addition rotational
vector, 4φφφ for non-additive one following rotation θθθ .

� Example 2.4 For [θθθ 1] = (π=3 ;0;0) ; [θθθ 2] = (0;�π=3 ;0) ; [4φφφ 1 =]π=100(1;1;0),and [4φφφ 2] =
π=200(0;2;1), from formula in Equation 2.54.

[R(θθθ 1)R(θθθ 1)R(θθθ 1)] =

24 1 0 0
0 1 0
0 0 1

35+ sin
�

π

3

�24 0 0 0
0 0 �1
0 1 0

35
+
�

1� cos
�

π

3

��24 0 0 0
0 0 �1
0 1 0

3524 0 0 0
0 0 �1
0 1 0

35
=

264 1 0 0
0 0:5 �p3

2
0

p
3

2 0:5

375
(2.102)

Similarly, the second rotation tensor will be:

[R(θθθ 2)R(θθθ 2)R(θθθ 2)] =

264 0:5 0 �p3
2

0 1 0
�p3

2 0 0:5

375 (2.103)
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The resulting compound rotation will be:

RRR(θθθ) =RRR(θθθ 2)RRR(θθθ 1) =

264 0:5 0 �p3
2

0 1 0
�p3

2 0 0:5

375
264 1 0 0

0 0:5 �p3
2

0
p

3
2 0:5

375 (2.104)

=

264 0:5 �0:75 �p3
4

0 0:5 �p3
2p

3
2

p
3

4 0:25

375 (2.105)

Using the procedures in subsection 2.1.7 to evaluate θθθ , we get

[θθθ ]T =
�

0:9463 �0:9463 0:5463
�

(2.106)

We find that θθθ 6= θθθ 1 +θθθ 2. If we change the rotation sequence, the resulting compound rotation
will be:

RRR(θθθ 1)RRR(θθθ 2) =

264 0:5 0 �p3
2

�0:75 0:5 �p3
4p

3
4

p
3

2 0:25

375 (2.107)

We can conclude that:

RRR(θθθ 2)RRR(θθθ 1) 6= RRR(θθθ 1)RRR(θθθ 2) (2.108)

and the sequence of rotation effect the final compound rotation.
The compound rotation formed by rotation θθθ 1 followed by infinitesimal rotation 4φφφ 1 will be:

RRR(θθθ 1 +4θθθ 1) =RRR(4φφφ 1)RRR(θθθ 1) (2.109)

The resulting additive rotation vector 4θθθ 1 will be:

[4θθθ 1]
T =

�
0:0313 0:0286 �0:0165

�
(2.110)

Or using Equation 2.91

[TTT (θθθ 1)] =

24 1 0 0
0 1 0
0 0 1

35+
1� cos

�
π

3

��
π

3

�
24 0 0 0

0 0 �1
0 1 0

35
+

�
π

3

�� sin
�

π

3

��
π

3

�
24 0 0 0

0 0 �1
0 1 0

3524 0 0 0
0 0 �1
0 1 0

35
=

24 1 0 0
0 0:827 �0:4775
0 0:4775 0:827

35
(2.111)

The last solution is an approximate solution to the first one and can be used in the linearization
of weak form of the finite element differential equation to evaluate the geometric stiffness matrix
(predictor phase), while updating rotation after each increment can be done through the first one
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to ensure the exact results (corrector phase in which the accuracy of finite element depends on).
We can get 4φφφ 1 from 4θθθ 1 as follows:

∆RRR =RRR(θθθ 1 +4θθθ 1)�RRR(θθθ 1) (2.112)

[g4φφφ 1] = ∆RRR:RRR(θθθ 1)
T =

24 �0:0005 0:0005 0:0314
0:0005 �0:0005 �0:0314
�0:0314 0:0314 �0:001

35 (2.113)

Note that g4φφφ 1 is totally skew-symmetric when the added rotation becomes infinitesimal, so we
can consider the skew-symmetric part of the above equation to evaluate its axial vector 4φφφ 1 as
follows:

[4φφφ 1]
T =

�
0:0314 �0:0314 0

�
(2.114)

Which is identical to 4φφφ 1 = π=100(1;1;0) given in the start of the example.
For adding two infinitesimal rotations (spin) 4φφφ 1 and 4φφφ 2, we get:

RRR(4θθθ added +4φφφ 1) =RRR(4φφφ 2)RRR(4φφφ 1) =

24 0:9979 �0:0142 0:0633
0:0162 0:9994 �0:0307
�0:0628 0:0316 0:99751

35 (2.115)

[4θθθ added ] =

24 �0:0002
0:0317
0:0152

35 (2.116)

4θθθ added '4φφφ 2 (2.117)

Or using addition theorem:

4φφφ f inal =4φφφ 1 +4φφφ 2 (2.118)

�

2.1.12 Manipulation with bases
As shown in Figure 2.21, assume a rotation tensor RRR(θθθ 1) that transforms bases B = [eee1 eee2 eee3] to
basis B� = [eee�1 eee�2 eee�3], such that any axis of the resulting basis equals to:

eee�i =RRR(θθθ 1)eeei f or i = 1;2;3 (2.119)

Similarly, rotation tensor RRR(θθθ 2) brings basis B� to B+ =
�
eee+1 eee+2 eee+3

�
through R(θθθ 2) as follows:

eee+i =RRR(θθθ 2)eee�i (2.120)

The compound rotations will be:

RRR(θθθ) =RRR(θθθ 2)RRR(θθθ 1) (2.121)

Equation 2.119 can be resolved in any basis, e.g. it can be resolved in basis B as follows:

[eee�i ]
[B] = [RRR(θθθ 1)]

[B] [eeei]
[B] (2.122)
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Where AAA[B] means that tensor AAA is resolved in basisB. [eeei]
[B] means that the basis eeei of frameB is

resolved on itself which yields:

[eee1]
[B] =

24 1
0
0

35 ; [eee2]
[B] =

24 0
1
0

35 ; [eee3]
[B] =

24 0
0
1

35 (2.123)

From Equation 2.54, we get:

[RRR(θθθ 1)]
[B] = 111+

sinθ

θ

g
θθθ
[B]
1 +

(1� cosθ)

θ 2
g
θθθ
[B]
1
g
θθθ
[B]
1 =RRR

�
θθθ
[B]
�
=RRR[B](θθθ) (2.124)

The last equality is used for convenient. Also from Equation 2.122 and Equation 2.123, the rotation
tensor (θθθ 1) resolved in basis B will be:

[RRR(θθθ 1)]
[B] =

h
[eee�1]

[B] [eee�2]
[B] [eee�3]

[B]
i

(2.125)

It means that a rotation tensor RRR rotating from basis B1 to basis B2 contains three columns, each
one represents a unit vector in basis B2 and resolved in basis B1. Similarly, we can resolve the
compound rotations in bases B, B� and B+ as follows:

RRR
�

θθθ
B

�
=RRR

�
θθθ
B

2

�
RRR
�

θθθ
B

1

�
or RRRB(θθθ) =RRRB (θθθ 2)RRRB (θθθ 1)

RRR(θθθ���) =RRR(θθθ���2)RRR(θθθ���1) or RRR���(θθθ ) =) =) =RRR��� (θθθ 2)RRR��� (θθθ 1)
RRR
�
θθθ
+
�
=RRR

�
θθθ
+
2
�

RRR
�
θθθ
+
1
�

or RRR+(θθθ ) =) =) =RRR+ (θθθ 2)RRR+ (θθθ 1)

(2.126)

Where , RRRB (θθθ), RRR���(θθθ) and RRR+(θθθ) are rotation matrices resolved in bases B, B� and B+

respectively. We also note that the rotation tensors RRR(θθθ 1) resolved in bases B and B� are identical
as the axis of rotation θθθ 1 remains the same after the rotation and its components in bases B and
B� are identical, so using Equation 2.124 results in

RRR
�

θθθ
B

1

�
=RRR(θθθ���1) (2.127)
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Similarly θθθ 2 when resolved in bases B� and B+:

RRR(θθθ���2) =RRR
�
θθθ
+
2
�

(2.128)

Also the components of rotation tensor resolved in different bases is related via:

RRRB (θθθ 2) =RRR
�

θθθ
B

2

�
= RRR

�
RRR
�

θθθ
B

1

�
θθθ
���
2

�
=RRR

�
θθθ
B

1

�
RRR(θθθ���2)RRR

�
θθθ
B

1

�T
(2.129)

The last equality comes from Equation 2.124 and identity
�fRaRaRa =RRReaaaRRRT

�
, so the compound rotation

will be:

RRR
�

θθθ
B

�
=RRR

�
θθθ
B

2

�
RRR
�

θθθ
B

1

�
(2.130)

= RRR
�

θθθ
B

1

�
RRR(θθθ���2)RRR

�
θθθ
B

1

�T
RRR
�

θθθ
B

1

�
(2.131)

=RRR
�

θθθ
B

1

�
RRR(θθθ���2),RRR =RRR1RRR���2 (2.132)

RRR1, RRR2 are rotation tensor that brings basis B to basis B� and basis B� to B+, both resolved
in basis B, While RRR���2 is the one that describes the rotation from basis B� to basis B+ resolved
in basis B�. We find that the sequence of rotation is reversed in Equation 2.132 compared to the
sequence of rotation in Equation 2.80 and the order of multiplication depends on the basis which
they are resolved in.

� Example 2.5 A basis B is subjected to rotation θθθ resolved in basis B with θθθ
B

1 = (0;0;π=4)
to form basis B� and followed by θθθ

B

2 = (0;π=2;0) to form basis B+,
Rotation of basis B to basis B� is shown in the Figure 2.22a through θθθ

B

1 via R1

R1 = RR1 = RR1 = R
�

θθθ
B

1

�
=

24 cos(π=4) �sin(π=4) 0
sin(π=4) cos(π=4) 0

0 0 1

35 (2.133)

Rotation of basis B� to B+ as shown in Figure 2.22b through R2

RB
2 = RRB
2 = RRB
2 = R

�
θθθ
B

2

�
=

24 cos(π=2) 0 sin(π=2)
0 1 0

�sin(π=2) 0 cos(π=2)

35 (2.134)

So the compound rotations will be:

RRRB (θθθ) =RRRB (θθθ 2)RRRB (θθθ 1) =

24 0 0 1
�1=

p
2 1=

p
2 0

1=
p

2 1=
p

2 0

35 (2.135)

The resulting rotation RRRB (θθθ) resolved in basis B with bases eee+1 defined as:

RRRB (θθθ) = [= [= [
�
eee+1
�B �eee+2 �B �eee+3 �B]]] (2.136)
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Where
�
eee+i
�B are components of eee+i resolved in B for i = 1;2;3.

�
eee+1
�B

=

24 0
�1=

p
2

1=
p

2

35 �
eee+2
�B

=

24 0
1=
p

2
1=
p

2

35 �
eee+3
�B

=

24 1
0
0

35 (2.137)

But if we calculate the components of θθθ 2 resolved in basis B� as (θθθ �2), it will be:

θθθ
���
2 =RRRT

1 θθθ
B

2 (2.138)

Or from Figure 2.22d (resolving angle along axis eee2 in basis B�), it follows:

θθθ
���
2 =

π

2

�
1p
2
;

1p
2
; 0
�

(2.139)
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Applying this rotation is shown in Figure 2.22c. Adding a rotation tensor RRRT
1 to the above

rotation, RRR =RRR1RRR���2 yields a identical results in Equation 2.135 as shown in Figure 2.22d.
From the last case, we reversed the rotation from B+ to B� through RRRT

1 then reverse the
rotation through R�2R�2R�2

T to transform finally to basis B as shown in Figure 2.22d. �
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Figure 2.23

� Example 2.6 Imagine that we have a unit vector vvv come from the rotation of basis eee���1 about
eee�3 via an angle θθθ 2. The components of the vector v resolved in basis B� is (vvv�1; vvv�2; vvv�3) =
(cos(θθθ 2) ;sin(θθθ 2) ;0). If we track the bases eee�i due to rotation R(θθθ 2), we get new basis B+

with bases e+i with components resolved in basis B� as follows:

RRR� (θθθ 2) = [
�
eee+1
���� �eee+2 ���� �eee+3 ����]]] (2.140)

Where
�
eee+i
���� are components of e+i resolved in B� for i = 1;2;3. (Note vector vvv and eee+1 are

identical)
If the vector vvv and basis B� are attached to rigid body, and this body is subjected to rotation

RRR(θθθ 1), the vector vvv and basis B� rotate also with the body. We find out the components of new
vector vvv resolved in (projection on) basis B� is still the same as old one and is not affected by
RRR(θθθ 1) at all. Similar to vector vvv, components of e+i resolved in B� and donated by

�
eee+i
���� do

not change with RRR1, so RRR� (θθθ 2) is constant for any rotation RRR(θθθ 1) and the components of spatial
abject or vector attached to a body referred to its local frame (basis B� attached to this body) is
called the material components. Studying material components is important, especially when a
body is rotating with high speed (RRR1), while deformation (change in distance between any two
point on it) is very small, so it is convenient to study this change relative to its local basis not
global basis without affected by RRR1, the same case in our study. After rotation

�
eee+i
�B resolved
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in basis B is as follows:�
eee+i
�B

=RRR(θθθ 1)
�
eee+i
���� (2.141)

�
eee+1
����

=RRR� (θθθ 2)

24 1
0
0

35=RRR� (θθθ 2)
�

eeeB1
�B

(2.142)

�
eeeBi
�B are components of eBi resolved in B, for i = 1; 2; 3(components o f basis on itsel f ).

Which equal to (1,0,0), (0,1,0), (0,0,1), respectively. So

�
eee+i
�B

=RRR(θθθ 1)RRR� (θθθ 2)
�

eeeB1
�B

=RRR(θθθ)
�

eeeB1
�B

()RRR(θθθ) =RRR(θθθ 1)RRR� (θθθ 2) (2.143)

�

2.1.13 Angular velocity
From chapter 1, we concluded that the velocity of a point lying on object rotating with angular
velocity ω about axis with unit vector nnn as shown in Figure 1.13 is defined as:

ȧaa = eωωωaaa (2.144)

Where ωωω = ωnnn, so the time derivative of vector with constant length equal to the cross product of
angular velocity and vector itself.

Also vector aaa(t) can be formulated from rotation of vector aaa0 (constant with the time) through
rotation RRR(t) which is a function of time:

aaa(t) =RRR(t)aaa0 , aaa0 =RRR(t)Taaa(t) (2.145)

ȧ̇ȧa(t) = Ṙ̇ṘR(t)a0 = Ṙ̇ṘR(t)RRR(t)Taaa(t) (2.146)eωωω = Ṙ̇ṘR(t)RRR(t)T (2.147)

As the angular velocity can be imagined for constant axis of rotation as

ωωω =
∂φφφ

∂ t
n =n =n =

4φφφ

4t
nnn (2.148)

So it is infinitesimal rotation rotated in infinitesimal time. There no vector its derivative is angular
velocity due to the fact that:

d(φφφnnn)
dt

= φ̇φφnnn+φφφ ṅ̇ṅn =ωωω+φφφ ṅ̇ṅn (2.149)

So angular velocity can be called the spin as it is similar to infinitesimal spin (g4φφφ = ∆RRR:R(θθθ)R(θθθ)R(θθθ)T )

ωωω = TTT (θθθ)θ̇θθ (2.150)

Following addition theorem 4φφφ =4φφφ 1 +4φφφ 2, adding two angular velocity follows:

ωωω =ωωω1 +ωωω2 (2.151)

Also addition theorem can be proven as follow in Figure 2.24. Assume that ωωω1 is spin that convert
basisB (with basis EEE i) to basisB� (with basis eeei), and spin ωωω2 convert basisB� to basisB+(with
basis bbbi), such that:

bbbi =RRRB2 RRRB1 EEE i (2.152)
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or

bbbi =RRRB1 RRRB
�

2 EEE i =RRR1RRR�2EEE i !EEE i =RRR�2
TRRR1

Tbbbi (2.153)

Then the time derivative of basis bbbi will be:

ḃ̇ḃbi =
�
Ṙ̇ṘR1RRR�2 +RRR1Ṙ̇ṘR�2

�
EiEiEi

=
�
Ṙ̇ṘR1RRR�2 +RRR1Ṙ̇ṘR�2

�
RRR�2

TRRR1
Tbbbi

=
�

Ṙ̇ṘR1RRR1
T +RRR1Ṙ̇ṘR�2RRR�2

TRRR1
T
�

bbbi

(2.154)

Using the following expressions for angular velocity:

eωωω1 = ṘRR1RRR1
T ; ˙eωωω�

2 =RRR
�
2RRR�2

T (2.155)

where ωωω1 is the angular velocity of basis B� with respect to B resolved in basis B. While ωωω�
2 is

angular velocity of basis B+ with respect to basis B� and resolved in basis B�. Resolving ωωω2 in
basis B results in:

eω2 =RRR1eωωω�
2RRR1

T (2.156)

Equation 2.154 will be:

ḃbbi =
�eωωω1 +RRR1eωωω�

2RRR1
T �bbbi =

�eωωω1 + eωωω2
�

bbbi = eωωωbbbi (2.157)

And the equivalent angular velocity is:

ωωω =ωωω1 +ωωω2 (2.158)

Note that

ṘRR2RRR2
T 6= ωωω2 (2.159)
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As it is expressed in terms of basis (B) different from the basis the angular velocity is supposed to
be measured with respect to (B�), so it is not considered as an angular velocity as follows:

ṘRR2RRR2
T =

∂ (RRR1RRR�2RRRT
1 )

∂ t
RRR1RRR�2

TRRRT
1 (2.160)

=
�

ṘRR1RRR�2RRRT
1 +RRR1ṘRR�2RRRT

1 +RRR1RRR�2ṘRRT
1

�
RRR1RRR�2

TRRRT
1 (2.161)

= ṘRR1RRRT
1 +RRR1ṘRR�2RRR�2

TRRRT
1 +RRR1RRR�2ṘRRT

1 RRR1RRR�2
TRRRT

1 (2.162)

= eωωω1 + eωωω2�RRR2eωωω1RRRT
2 (2.163)

= eωωω2 +^(111�RRR2) eωωω1 (2.164)

As

RRR1RRR�2ṘRRT
1 RRR1RRR�2

TRRRT
1 =RRR1RRR�2RRRT

1 RRR1ṘRRT
1 RRR1RRR�2

TRRRT
1 =

�
RRR1RRR�2RRRT

1
�

RRR1ṘRRT
1

�
RRR1RRR�2

TRRRT
1

�
(2.165)

=�RRR2eωωω1RRRT
2 (2.166)

Where

RRR1ṘRRT
1 =

�
ṘRR1RRR1

T �T
= eωωωT

1 =�eωωω1 (2.167)
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� Example 2.7 The plate rotates about the xxx3 axis at a constant rate ω1 = 0:5 rad=s without
slipping on the horizontal plan pictured in Figure 2.25. Evaluate the ω2.

Plate rotation is:

ωωω =ωωω1 +ωωω2 =�0:5eee3 + cos(π=6)� jωωω2j �eee2 + sin(π=6)� jωωω2j �eee3 (2.168)

As axis xxx2 represents the instantaneous axis of zero velocity, such that:

vvv =ωωω�eee2 = 0 =
�

0:5�sin
�

π

6

�
� jωωω2j

�
eee3 ! jωωω2j= 1 (2.169)
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From Equation 2.168, we get:

ωωω =ωωω1 +ωωω2 =

p
3

2
jωωω2jeee2 =

p
3

2
eee2 (2.170)

�

� Example 2.8 A disk attached to a shaft spinning with angular velocity ωωω2 = 2 rad=s shown
in Figure 2.26 attached through an internal hinge to another shaft rotating with angular velocity
ωωω1 = 1 rad=s, calculate the velocity of point b.

ωωω =ωωω1 +ωωω2 = (0;
p

3;2) (2.171)

The velocity of point b is defined through:

vvv =ωωω�rrr (2.172)

Where vector rrr is a position vector from point a to point b defined as rrr = (0;2;2), so the resulting
velocity will be:

vvv =ωωω�rrr = (2
p

3�4)eee1 (2.173)

�

2.2 Applications in structural analysis
2.2.1 Finite rotation of a rigid joint in framework

Assume a rigid joint connecting some structural members through rigid links with negligible length
as shown in Figure 2.27. Each member i has its local axes formed through rotation transformation
RRRi of the global axes such that:

EEE i
I =RRRieeeI (2.174)

Where EEE i
I is the local basis of element i in the direction I, while eeeI represents the global axis. If the

connecting joint is rotated through spatial rotation θθθ resolved in global axes as:

[θθθ ]eeeI = [ θ1 θ2 θ3 ]T (2.175)

Because of the rigid links, this will result in a rotation of each element with rotation θθθ i resolved in
the member local axes (θθθ

i
) as follows:

θθθ
i
= [θθθ i]EEEI =RRRT [θθθ ]eeeI (2.176)

This rotation leads to a motion of each material point on the member cross section, such that
if the position of a point P relative to the beam centroid resolved in the member local bases is
[XXX ]tttI = [0;X2;X3]

T as shown in Figure 2.28, it will be RRR(θθθ
i
)X , so the displacement uuu of the material

point (X2;X3) resolved in the local axes of the member will be:

uuu = x�Xx�Xx�X = (RRR(θθθ
i
)�111)XXX (2.177)

For relatively small rotation and using Equation 2.66, the displacement will be:

uuu =

�
˜

θθθ
i
+

1
2

˜
θθθ

i ˜
θθθ

i
�

XXX (2.178)
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With [XXX ]tttI = [0;X2;X3]
T and [θθθ

i
]tttI = [θx;θy;θz], the displacement components resolved in the

member local axes are:

[uuu]tttI =

0@24 0 �θz θy

θz 0 �θx

�θy θx 0

35+
1
2

24 ��θ 2
y +θ 2

z
�

(θxθy) (θxθz)

(θxθy) ��θ 2
x +θ 2

z
�

(θyθz)
(θxθz) (θyθz) ��θ 2

x +θ 2
y
�
351A24 0

X2
X3

35
(2.179)
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2.2.2 Curvature of two dimensional beams
For a two dimensional curve with a radius of curvature R, its curvature κκκ is defined as

κ =
1
R
=

dθ

ds
(2.180)

Where s is the arc length along the curve. Assume an Euler-Bernoulli in plane curved beams shown
in Figure 2.29 with radius of curvature R, so any fiber located in distance y away from its center-line
is stretched along the arc length by strain εb(y) defined as:

εb (y) =
length change
original length

=
4(ds)

ds
=
�ydθ

ds
=�yκ (2.181)

The above relation relates the strain induced in beam element with its curvature κ which ds is the
undeformed or initial arc length. The beam is subjected to uniform axial strain across its cross
section εa as shown in Figure 2.31 defined as

ds1

ds0

NN

Figure 2.31

dθ
R

y

Total length (ds2)

NMN M

Figure 2.32

εa =
ds1�ds0

ds0 (2.182)

Then followed by curvature in Figure 2.32 with total strain of:

ε =
ds2�ds0

ds0 =
ds1�ds0

ds0 +
ds2�ds1

ds0 = εa� y
dθ

ds0 = εa� yκκκ (2.183)



2.2 Applications in structural analysis 75

The third equality comes from:

ds2�ds1 = (R� y)dθ �Rdθ =�ydθ (2.184)

As differential arc length (ds) is related to differential coordinates increment dx and dy through:

ds =
p

dx2 +dy2 = dx

s
1+
�

dy
dx

�2

= dx
q

1+(y0)2 (2.185)

(0) means here differentiating with dx.

θ =
dy
dx
! dθ =

d2y
d2x

dx = y00dx (2.186)

κ =
dθ

ds
=

dθ

dx

r
1+
�

dy
dx

�2
=

y00q
1+(y0)2

(2.187)

First order analysis assumes that the dominator of the upper equation equals to unity which results
in:

κ ' y00 (2.188)

� Example 2.9 Assume a beam shown in Figure 2.30 with length L directed along axis eee1 with
end rotations θ1; θ2. A smooth curve can be formed from the end boundary conditions:

y(0) = 0;y(L) = 0;y0 (0) = θ1;y0 (L) = θ2 (2.189)

The curve will be a polynomial of third degree as follows:

y = ax3 +bx2 + cx+d (2.190)

Solving for 4 unknowns a to d, we get the following:

y =

�
θ1 +θ2

L2

�
x3�

�
2θ1 +θ2

L

�
x2 +θ1x (2.191)

y0 = 3
�

θ1 +θ2

L2

�
x2�2

�
2θ1 +θ2

L

�
x+θ1 (2.192)

From Equation 2.188

κ (x)' 6
�

θ1 +θ2

L2

�
x�2

�
2θ1 +θ2

L

�
=

�
�4

L
+

6x
L2

�
θ1 +

�
�2

L
+

6x
L2

�
θ2 (2.193)

Curvature at beam mid point will be:

κ

�
L
2

�
=

�
θ1�θ2

L

�
(2.194)
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Even if we assumed a constant curvature along the element, so the rotation y0 (integration of
curvature) would be a first-order polynomial as follow:

y0 = ax+b (2.195)

Applying only the rotational boundary conditions at ends in Equation 2.189:

y0 (0) = θ1;y0 (L) = θ2 (2.196)

We conclude that

y0 =
�

θ1�θ2

L

�
x+θ1 (2.197)

So the assumed constant curvature will be:

κ = y00 =
�

θ1�θ2

L

�
(2.198)

So for a constant curvature along the member, it can be evaluated from the changed in beam
orientations at ends with beam length L as follows:

κ =
4θ

L
(2.199)

�

For a three dimensional beam, the curvature will be:

κκκ =
4φφφ

L
(2.200)

Or generally

κκκ =
dddφφφ

ds
(2.201)

4φφφ is variation in non-additive rotation (see Equation 2.86). Also curvature κκκg in this case is
vector. For more details, see subsection 2.2.4

2.2.3 Effect of beam bowing on axial strain

θ2

θ1

L

LT

Figure 2.33

θ2

θ1

L

LT

uL0

Figure 2.34

As shown in Figure 2.33, a straight beam is initially oriented along axis eee1 and subjected to to
ends rotation θ1 and θ2, the current beam length LT compared to its projection on axis eee1 is defined
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as:

Lt =

Z
ds =

Z L

0

p
1+ y02 dx (2.202)

Using Equation 2.192, and solving the integration results in:

Lt = L
�

1+
2θ 2

1 +2θ 2
2 �θ1θ2

30

�
(2.203)

If a two dimensional beam with initial length L0 shown in Figure 2.34 is subjected to axial
displacement u, such that the axial strain εa will be:

εa =
u
L0

(2.204)

Then, its ends are subjected rotations θ1 and θ2. From Equation 2.203, the bowing created in the
beam induces axial strain through beam elongation formed by end rotations as follows:

εa =
change in beam length

original length
=

Lt �L0

L0

=
u
L0

+

�
L0 +u

L0

�
2θ 2

1 +2θ 2
2 �θ1θ2

30

=
u
L0

+
2θ 2

1 +2θ 2
2 �θ1θ2

30

(2.205)

For second order analysis, we can consider
�

L0+u
L0

�
equals to unity. The total strain on the beam

section due to axial strain and curvature will be:

ε (x;y)= εa+εb (x;y) = εa+
2θ 2

1 +2θ 2
2 �θ1θ2

30
�
��
�4

L
+

6x
L2

�
θ1 +

�
�2

L
+

6x
L2

�
θ2

�
y (2.206)
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2.2.4 Curvature of three dimensional beams with small strain and large rotations
As shown in Figure 2.35, assume a three dimensional beam with two nodal triads (or nodal frame)
at beam ends, TTT and UUU with axes [t1; t2; t3] ; [u1;u2;u3], respectively, so the first axis of each triad, ttt1



78 Chapter 2. Finite Rotation and its Applications

and uuu1, is directed along the beam tangent, while other two axes of each triad are directed along the
principal axes of beam sections at ends. We can use another triad along the element EEE (generally
with first axis linking two ends of the beam, while the other two axes are defined using many
different procedures mentioned in subsection 2.2.8).
Assuming the relation between nodal triads as follows:

UUU =RRR(4φφφ)T ,RRR(4φφφ) =UTUTUT T (2.207)

4φφφ is relatively small within beam element, so it can be approximated as follows:

UTUTUT T =RRR = 111+g4φφφφφφφφφ +
g4φφφφφφφφφ

2

2!
(2.208)

The skew-symmetric part of the above rotation tensor will be:

skew (RRR) =
RRR�RRRTRRR�RRRTRRR�RRRT

2
=g4φφφ =

UTUTUT T �UUUTTTT
2

(2.209)

And from Equation 2.200, curvature will be:

eκκκeκκκeκκκ =
UTUTUT T �UUUTTTT

2L
(2.210)

The above formula can be resolved in any basis. To get the global curvature, it can be resolve in
basis I = [iii1;iii2;iii3] as follow

eκκκeκκκeκκκg =
�eκκκeκκκeκκκ�[I] = �UTUTUT T �UUUTTTT

2L

�[I]
(2.211)

While it can be resolved in local basis E to get the local curvature κκκ l with axes [eee1;eee2;eee3] (or
observed by triad EEE)

κκκ l = [κκκ]E =EEET
κκκg (2.212)

Where EEE is the rotation tensor transforming from the global basis to the element local one EEE. Also
the local curvature can be written in this form:

κκκ l =
4φφφ l =4φφφ lb�4φφφ lalala

L
(2.213)

Where the local spin (non-additive) rotation related to global one via this relation:

4φφφ l =EEET4φφφ g ,g4φl =EEET g4φφφ gEEE (2.214)

4φφφ a is the rotation from EEE to TTT basis. Using formula in Equation 2.211 results in the global
components of this rotation as follows:

4fφφφ ga =

�
T ET �ET TT ET �ET TT ET �ET T

2

�[I]
(2.215)

While the local components are:

4eφφφ la =EEET
]4φφφ gaEEE =

�
EEET T ET �ET TT ET �ET TT ET �ET T

2
EEE
�[I]

=

�
EEETT �T T ET �T T ET �T T E

2

�[I]
(2.216)
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In the same manner, if 4φφφbbb is the rotation from EEE to UUU basis, it follows that:

�
4eφφφ lb =

EEETUUU�UUUTEEE
2

�[I]
(2.217)

So the variation in rotation between the two ends 4φφφ l =4φφφ lb�4φφφ lalala will be:

4eφφφ 1 =

"�
EEETUUU�UUUTEEE

�� �EEETTTT �TTT TEEE
�

2

#[I]
'
�
EEET UTUTUT T �UUUTTTT

2
EEE
�[I]

(2.218)

The last equality comes from the fact that UUU is close to TTT for small deformation inside the beam
element, so it follows:

UTUTUT T 'UEUEUET +ETETET T (2.219)

Using Equation 2.213, the local curvature will be:

eκκκ l =

�
EEET UTUTUT T �UUUTTTT

2L
EEE
�[I]

=EEETfκκκgEEE (2.220)

Which is identical to the findings in Equation 2.211, so the assumed formula in Equation 2.213 for
local curvature is right.

2.2.5 Differential form of beam curvature
As shown in Figure 2.36, assume a differential beam ds with a nodal triad RRR changing along the arc
length to RRR+ dRRR

ds ds at the other end, such that TTT and UUU in the previous section are replaced with RRR
and RRR+RRR0ds, respectively, where R0 is derivative of R with respect to arc length s.

fκκκg =
UTUTUT T �UUUTTTT

2L
=

1
2
�
RRR0RRRT �RRRRRR0T

�
=RRR0RRRT (2.221)

eκκκ l =EEETfκκκgEEE =RRRTRRR0RRRTRRR =RRRTRRR0 (2.222)

The second equality comes from EEE 'RRR

2.2.6 Effect of nodal spin on beam curvature
As shown in Figure 2.37, a beam with initial end rotation θθθ 1 and θθθ 2 is subjected to spin at ends
δφφφ 1 and δφφφ 2, such that the resulting nodal rotation at the ends will be:

RRR(θθθ 1 +δθθθ 1) =RRR(δφφφ 1)RRR(θθθ 1) =RRR(δφφφ 1)RRR (2.223)

Assuming for an infinitesimal beam element of length ds that RRR(θθθ 1) =RRR and RRR(θθθ 2) =RRR+ dRRR
ds ds

RRR(θθθ 2 +δθθθ 2) =RRR(δφφφ 2)RRR(θθθ 2) =RRR(δφφφ 2)

�
RRR+

dRRR
ds

ds
�

(2.224)

Before inducing the nodal spin, the initial global curvature is:

fκκκgo =RRR0RRRT (2.225)
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While the final global curvature will be:

gκκκg f =
dRRR f

ds
RRRT

f =
RRR(θθθ 2 +δθθθ 2)�RRR(θθθ 1 +δθθθ 1)

ds
RRRTRRR(δφφφ 1)

T

=
RRR(δφφφ 2)

�
RRR+ dRRR

ds ds
��RRR(δφφφ 1)RRR

ds
RRRTRRR(δφφφ 1)

T

=
RRR(δφφφ 2)RRR(δφφφ 1)

T �1
ds

+RRR(δφφφ 2)
dRRR
ds

RRRTRRR(δφφφ 1)
T

(2.226)

Where subscripts f and o refer to the old and final state, respectively, while δφφφ 1, δφφφ 2 are infinitesi-
mal change:

RRR(δφφφ) = 111+fδφφφ (2.227)

gκκκg f =

�
111+gδφφφ 2

��
111�gδφφφ 1

�
�111

ds
+
�

111+gδφφφ 2

� dRRR
ds

RRRT
�

111�gδφ1

�
=
gδφφφ 2�gδφφφ 1�gδφφφ 2

gδφφφ 1

ds
+ fκκκgo +gδφφφ 2 fκκκgo� fκκκgo

gδφφφ 1�gδφφφ 2 fκκκgo
gδφφφ 1

(2.228)

Neglecting second order terms (δφφφ 2δφφφ 1)

gκκκg f =
gδφφφ 2�gδφφφ 1

ds
+ fκκκgo +gδφφφ 2 fκκκgo� fκκκgo

gδφφφ 1 (2.229)

The infinitesimal change in global curvature due to end nodal spins δκκκg = κκκg f �κκκgo is:

gδκκκg =
gδφφφ 2�gδφφφ 1

ds
+gδφφφ 2 fκκκgo� fκκκgo

gδφφφ 1 (2.230)

A similar expression to above can be deduced as follows:

fκκκg =RRR0RRRT ,gδκκκg = δRRR0RRRT +RRR0δRRRT (2.231)
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Where δRRR and δRRR0 are evaluated through:

δRRR = RRR(θθθ +δθθθ)�RRR =RRR(δφφφ)RRR�RRR

=
�

111+fδφφφ

�
RRR�RRR = fδφφφRRR! δRRRT =RRRT

δθθθ
T =�RRRT

δθθθ
(2.232)

δRRR0 = δ

�
dRRR
ds

�
=

d
ds

(δRRR) =
d
ds

�fδφφφRRR
�
=

dfδφφφ

ds
RRR+fδφφφ

�
dRRR
ds

�
(2.233)

Subtitling in Equation 2.231 and Equation 2.233 results in

gδκκκg =
dfδφφφ

ds
+fδφφφfκκκg�fκκκg

fδφφφ (2.234)

Which is identical to findings of Equation 2.230. if we assume that δφφφ 1, δφφφ 2 are very close to each
other for an infinitesimal element

Using the identity that ( ẽababab = ãaab̃bb�b̃bbãaa), the infinitesimal change in curvature is related to induced
nodal spin through the following expression:

δκκκg =
dδφφφ

ds
+fδφφφκκκg (2.235)

The corresponding infinitesimal change in beam curvature with respect to the local axes can be
evaluated from the local curvature defined as:

eκκκ l =RRRT eκκκgRRR (2.236)

Taking the variation results in:

δ eκκκ l = δRRRTfκκκgRRR+RRRT
δfκκκgRRR+RRRTfκκκgδRRR (2.237)

From Equation 2.234, Equation 2.232 and the identity
�

RRRRRRT = 111!RRR0RRRT +RRRRRR0T = 000 & δRRRRRRT +RRRδRRRT = 000
�

,
we can deduce the following:

δ eκκκ l = δRRRTfκκκgRRR+RRRT

 
dfδφφφ

ds
+fδφφφfκκκg�fκκκg

fδφφφ

!
RRR+RRRTfκκκgδRRR

= δRRRTfκκκgRRR+RRRT

 
dfδφφφ

ds

!
RRR�δRRRTfκκκgRRR�RRRTfκκκgδRRR+RRRTfκκκgδRRR

=RRRT dfδφφφ

ds
RRR

(2.238)

Consequently, the infinitesimal change in curvature resolved in local axis (local curvature) will be:

δκκκ l =RRRT dδφφφ

ds
(2.239)

Equation 2.235 and Equation 2.239 can be used in formulating the geometric stiffness (predictor
phase), but using them in updating curvature after each converged step results some computational
errors, as they are formulated for an infinitesimal change in rotation (spin), while the incremental
non-additive rotation at ends for each step is generally finite. Simo and Vu-Quoc proposed a method
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to update the curvature as follows:
1. Evaluate the final rotation RRR f and its derivative with respect to arc length s

RRR f =RRR(δφφφ)RRRo (2.240)

RRR0f =RRR0 (δφφφ)RRRo +RRR(δφφφ)RRR0o (2.241)

2. Using substituting the above formulations into the global curvature expressiongκκκg f =
dRRR f
ds RRRT

f as
follows:

gκκκg f =
�
RRR0 (δφφφ)RRRo +RRR(δφφφ)RRR0o

�
RRRT

o RRR(δφφφ)T

=RRR0 (δφφφ)RRR(δφφφ)T +RRR(δφφφ)RRR0oRRRT
o RRR(δφφφ)T

= κ̂κκg�add +RRR(δφφφ) fκκκgoRRR(δφφφ)T

(2.242)

Which results in:

κκκg f = κκκg�add +RRR(δφφφ)κκκgo (2.243)

Where κ̂κκg�add =RRR0 (δφφφ)RRR(δφφφ)T is evaluated from the incremental rotation induced in the current
step/increment. Term κκκg�add can evaluated approximately for small values for δφφφ through:

κκκg�add = T (δφφφ)δφφφ
0 (2.244)

This expression is concluded from Equation 2.86 and Equation 2.90. Substituting Equation 2.2.6
into the above equation results in:

κκκg f = TTT (δφφφ)δφφφ
0+RRR(δφφφ)κκκgo (2.245)

From above, we can deduce the following expression for beam global curvature:

∆RRR =g4φφφRRR(θθθ),g4φφφ = ∆RRR:RRR(θθθ)T ,4φφφ = T (θθθ)4θθθ (2.246)

Replacing the variation with time derivative results in:

ṘRR = ėφφφRRR(θθθ), ė
φφφ = ṘRR:RRR(θθθ)T , φ̇φφ = T (θθθ)θ̇θθ (2.247)

While differentiating with arc length s yields:

RRR0 = eφφφ 0RRR(θθθ), eφφφ 0 = ṘRR:RRR(θθθ)T , φφφ
0 = T (θθθ)θθθ

0 (2.248)

The beam curvature observed by beam element triad E (local curvature) will be:

fκκκ l f =RRRT
f

dRRR f

ds
(2.249)

Substituting Equation 2.240 into the above equation yields:

fκκκ l f =RRRT
o RRR(δφφφ)T �RRR0 (δφφφ)RRRo +RRR(δφφφ)RRR0o

�
(2.250)

=RRRT
o RRR(δφφφ)TRRR0 (δφφφ)RRRo +RRRT

o RRR0o (2.251)

Assuming (κκκ l�add =RRR(δφφφ)TRRR0 (δφφφ)) and using old local curvature (κκκ lo =RRRT
o RRR0o) results in:

fκκκ l f =RRRT
o κ̂κκ l�addRRRo +fκκκ lo , κκκ l f =RRRT

o κκκ l�add +κκκ lo (2.252)
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In the same manner, using κκκ l�add = T (δφφφ)T
δφφφ 0 approximation for small δφφφ , the final local

curvature is evaluated from:

κκκ l f = (T (δφφφ)RRRo)
T

δφφφ
0+κκκ lo (2.253)

Equation 2.245 and Equation 2.253 can be used to update the curvature after each converged
step in nonlinear finite element analysis. Crisfield proposed an approximate update to the above
equations using the fact that δφ is small during incremental step so T (δφφφ) can be approximated
using Equation 2.95 as follows:

TTT (δφφφ)' 1+
1
2
fδφφφ 'RRR

�
δφφφ

2

�
(2.254)

Introducing a medium rotation tensor RmRmRm =RRR
�

δφφφ

2

�
RRRo in Equation 2.253 results in another approx-

imation for local curvature:

κκκ l f = Rm
T

δφφφ
0+κκκκκκκκκ lo (2.255)

2.2.7 Methods of updating rotation and curvature in finite element analysis
There are two methods for updating rotation and curvature defined as follows:

1. The first method (updating on an iteration or incremental basis)
� convergence at step j with following data:

– Rotation and local curvature at Gauss points (g.p) κκκ l j - θθθ
g:p:

j and rotation at ends
θθθ j and the new unbalanced force vector FFF .

– initial: local curvature at the start of iteration phase κκκ l0 =κκκ l j and rotation at Gauss
points and at beam ends θθθ

g:p:

0 = θθθ
g:p:

j & θθθ 0 = θθθ j at ends - Start the iteration phase
with i = 0
� iteration i
F solve F = K4 to get 4 which includes incremental displacement and

incremental spin at element nodes4φφφ then applying interpolations function
to evaluate incremental spin and its derivative with respect to arc length s at
Gauss points 4φφφ g:p: and 4φ 0φ 0φ 0g:p:.

F updating spin at ends and Gauss points:

RRR(θθθ i+1) =RRR(4φφφ)RRR(θθθ i)

RRR(θθθ g:p:

i+1) =RRR(4φφφ
g:p:)RRR(θθθ g:p:

i )

F update the local curvature:

κκκl(i+1)l(i+1)l(i+1) =
�
TTT
�4φφφ

g:p:

i

�
RRR
�
θθθ

g:p:

i

��T 4φ
0

φ
0

φ
0g:p: +κκκlilili

F Use the updated curvature to evaluate the unbalance vector force FFF
F Stop iteration when the solution converge or the magnitude of unbalance

force vector is less than the allowable or start new iteration with i = i+1
– New step curvature at Gauss points: κκκl jl jl j = κκκlilili
– New rotations at beam ends and Gauss points:

θθθ j = θθθ i

θθθ
g:p:

j = θθθ
g:p:

i
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– Start a new step with j = j+1 and new external load.
2. The second method (updating on a step basis)

� convergence at step j with following data:
– Rotation and local curvature at Gauss points (g.p) θθθ

g:p:

j - κκκ l j and rotation at ends
θθθ j and the new unbalanced force vector FFF .

– initial: Null spin at ends and at Gauss points φφφ inc
0 = 0 & φφφ

inc g:p:

0 = 0 - Start the
iteration phase with i = 0
� iteration i
F solve F = K4 to get 4 which includes incremental displacement and

incremental spin at element nodes4φφφ then applying interpolation functions
to evaluate incremental spin at Gauss points 4φφφ g:p:.

F updating spin at ends and Gauss points:

RRR(φφφ inc
i+1) =RRR(4φφφ)RRR(φφφ inc

i )

RRR(φφφ inc g:p:

i+1 ) =RRR(4φφφ
g:p:)RRR(φφφ inc g:p:

i )

F update local curvature:

κκκ l(i+1) =
�

TTT
�
φφφ

inc
i
�

RRR
�

θθθ
g:p:

j

��T
φ
0

φ
0

φ
0inc g:p:

i+1 +κκκ l j where φ
0

φ
0

φ
0inc g:p:

i+1 =
∂φφφ

inc g:p:

i+1

∂ s

�����
atg:p:

F Use the updated curvature to evaluate the unbalance vector force FFF
F Stop iteration when the solution converge or the magnitude of unbalance

force vector is less than the allowable or start new iteration with i = i+1
– New step curvature at Gauss points: κκκ l j = κκκlilili
– New rotations at beam ends and Gauss points:

RRR(θθθ j+1) =RRR(φφφ inc
i )RRR(θθθ j)

RRR(θθθ
g:p:

j+1) =RRR(φφφ inc g:p:

i )RRR(θθθ
g:p:

j )

– Start a new step with j = j+1 and new external load.
We can use Equation 2.245 or Equation 2.255 instead of Equation 2.253 for updating curvature in
both methods.

2.2.8 Beam element triad E with axes [eee1;eee2;eee3]

Calculating element triad EEE is essential step in co-rotational formulation for non-linear analysis
and evaluating natural deformations which are responsible for inducing the internal stresses. There
are various methods to evaluate this triad. However, these methods agree that the basis eee1 of the
element triad is pointed along the line connected beam ends. We will introduce three methods
defined as follows:

According to Crisfield[6]
As shown in Figure 2.39, assume a medium triad VVV with axes [vvv1;vvv2;vvv3] related to beam end triads
TTT and UUU as follows:

UUU =RRR(4θθθ)T (2.256)

VVV =RRR
�4θθθ

2

�
T (2.257)
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Triad VVV does not have to be identical to the element triad EEE as axis vvv1 is not necessary to be
directed along the line connecting beam two ends, so we need to apply a rotation on triad VVV to
transform axis vvv1 to axis eee1 pointed to beam ends. There are an infinite number of rotation tensors
to achieve this rotation, but we can choose the one with least angle of rotation. This transformation
is achieved through rotating about axis nnn orthogonal to axes vvv1 and eee1 as shown in Figure 2.40 with
angle θ equal to the angle between these two axes as follows:

cos(θ) = v1:e1 (2.258)

While the direction is defined as:

vvv1�eee1 = sinθ nnn (2.259)

So the resulting rotation tensor will be:

RRR = 1+ sinθ ennn+(1� cosθ)ennnennn = 1+ v̂vv1�eee1 +
(1� cosθ)

sinθ
2
^(vvv1�eee1)^(vvv1�eee1) (2.260)

RRR = 1+ v̂vv1�eee1 +
1

1+ cos(θ)
^(vvv1�eee1)^(vvv1�eee1) (2.261)

Then the resulting axis eee2 will be:

eee2 =RRRvvv2 = vvv2 +
�

v̂vv1�eee1

�
vvv2 +

1
1+ cos(θ)

^(vvv1�eee1)^(vvv1�eee1)vvv2 (2.262)

Using the following identity (aaa�bbb)�ccc = (aaa:ccc)bbb� (bbb:ccc)aaa, we can conclude:�
v̂vv1�eee1

�
vvv2 = (vvv1�eee1)�vvv2 = (vvv1:vvv2) eee1� (eee1:vvv2) vvv1 =�=�=� (eee1:vvv2) vvv1 (2.263)

vvv1:vvv2 = 000 as vvv1 and vvv2 are orthogonal to each others

^(vvv1�eee1)^(vvv1�eee1)vvv2 = ^(vvv1�eee1) (vvv1�eee1)�vvv2

=�(eee1:vvv2) ^(vvv1�eee1) vvv1

=�(eee1:vvv2)(vvv1�eee1)�vvv1

(2.264)
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Using this identity ẽab = ãb̃� b̃ã, it follows:

^(vvv1�eee1)^(vvv1�eee1)vvv2 =�(eee1:vvv2)((vvv1:vvv1) eee1� (eee1:vvv1) vvv1)=�=�=� (eee1:vvv2)(eee1� cos(θ) vvv1) (2.265)

If we assumed that bi = eee1:vvvi, for i = 2;3, we get:

eee2 =RRRvvv2

= vvv2�bbb2vvv1 +
1

1+ cos(θ)
(bbb2 (cos(θ) vvv1�eee1))

= vvv2� bbb2

1+ cos(θ)
(eee1 +vvv1)

(2.266)

In the same manner:

eee3 = vvv3� bbb3

1+ cos(θ)
(eee1 +vvv1) (2.267)

According to Yang[12]
As shown in Figure 2.41a, the projections of beam axes ttt12; ttt13 and ttt22;ttt23 of the ends triads TTT 1
and TTT 2 on a plane orthogonal to eee1 are defined using Equation 1.34 as follows:

pppi j = ttt i j� (ttt i j:eee1)eee1 (2.268)

These projections are pictured in Figure 2.41b with unit vector defined as:

p̂ppi j =
pppi j��pppi j
�� (2.269)

Then, as shown in Figure 2.41b, we will evaluate a medium vector PPP2 and PPP3 as follows:

ppp j = p̂pp1 j + p̂pp2 j; j = 2;3 (2.270)

In Figure 2.41c, we construct another two vectors êee2 and êee3 defined:

êee�2 =
ppp2 + ppp3

jppp2 + ppp3j (2.271)

êee�3 =
ppp3� ppp2

jpjpjp3� ppp2j (2.272)

Then rotating axes êee2, êee3 by an angle �π=4 about eee1, such that the final element triad will be:

eee2 =
1p
2
(êee�2� êee�3) (2.273)

eee3 =
1p
2
(êee�2 + êee�3) (2.274)

According to Battini[3]
Assume a straight beam shown in Figure 2.42 with initial triad EEE0 for the beam element and TTT 0

1, TTT 0
2

for the two ends. We can see that the three triad are identical for an initially straight beam and have
equal transformation tensor as follows:

EEE0 = TTT 0
1 = TTT 0

2 =RRR0 (2.275)
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with axes defining the above rotation tensor as follows:

EEE0 =
�
eee0

1;eee
0
2;eee

0
3
�
; TTT 0

1 =
�
ttt0

11;ttt
0
12;ttt

0
13
�
; TTT 0

2 =
�
t0
21;ttt

0
22;ttt

0
23
�

(2.276)

If the nodal triads at ends are rotated via RRRg1 and RRRg2, the final triads of the beam ends T1; T2 will
be:

[TTT 1] = [ttt11;ttt12;ttt13] =RRRg1RRR0; TTT 2 = [ttt21;ttt22;ttt23] =RRRg2RRR0 (2.277)

where ttt i j represents the jth axis of nodal end i. The second axis of each nodal triads ttt i2 can be
evaluated through:

ttt12 =RRRg1ttt0
12 =RRRg1RRR0

24 0
1
0

35 ; ttt22 =RRRg2ttt0
22 =RRRg2RRR0

24 0
1
0

35 (2.278)
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Figure 2.42: Rotation tensor RRR
�

θθθ i

�
with i = 1;2 defines the rotation of basis EEE to basis TTT i

(ti j =RRR
�

θθθ i

�
eee j) with j = 1;2;3 and defines the natural rotation deformation which is responsible

for internal stresses.

The last equality in the above equation (ttt0
22 =RRR0

�
0 1 0

�T ) comes from the fact that ttt0
22

represents the second column of the rotation tensor RRR0. Defining a new vector ttt2 by taking the
average of ttt12 and ttt22 as follows:

ttt2 =
ttt12 +ttt22

2
(2.279)

Vector eee1 can be defined from position of beam ends, but generally ttt2 is not necessary pointed
normal to eee1. However, we can create basis eee2, such that it share the same plane with basis eee1 and
vector ttt2 as shown in Figure 2.43. In this case basis eee3 is orthogonal to this plane with direction
defined as follows:

eee3 =
eee1�ttt2

jjjeee1�ttt2jjj (2.280)

Then basis vector eee2 will be:

eee2 = eee3�eee1 (2.281)

The formulated element basis EEE = [eee1;eee2;eee3] will be evaluated.

2.3 Natural deformations
Evaluating the local (natural deformation) that is responsible for internal stresses requires removing
any rigid body motion (displacement or rotation) from the beam nodal displacements. As shown in
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e1

e2

e3

t2

Figure 2.43

Figure 2.44, axial displacement induced in the element can be evaluated through comparing the
beam length before and after deformation.As shown in Figure 2.42, after defining the element triad
using one of the above three methods, we can evaluate the rotation tensors RRR

�
θθθ i

�
that transform

element triad EEE to nodal triads TTT i at beam ends resolved in global (local or element) basis
h
RRR
�

θθθ i

�iIII

(
h
RRR
�

θθθ i

�iEEE
) as follows:

h
RRR
�

θθθ 1

�iIII
= T1ET1ET1ET =RRRg1RRR0EEET (2.282)

In the same manner:h
RRR
�

θθθ 2

�iIII
=RRRg2RRR0EEET (2.283)

Where frame of reference III is formed by inertia basis eeeg
i shown in Figure 2.42, while the local

(element) components will be:h
RRR
�

θθθ 1

�i
EEE
=EEET �RRRg1RRR0EEET �EEE =EEETRRRg1RRR0 (2.284)h

RRR
�

θθθ 2

�i
EEE
=EEETRRRg2RRR0 (2.285)

Where frame of reference EEE is formed by element attached basis eeei shown in Figure 2.42. Generally,
local end rotations

h
RRR
�

θθθ i

�i
EEE

are directly responsible for beam bending stresses.

2.3.1 Variation in natural deformations
In this section, our goal is to evaluate the variation in natural deformations δdddl due to variation in
global displacements at element nodes δdddg through the following equation:

[δdddl] =BBB[δdddg] (2.286)

Where [δdddl] and [δdddg] are the local natural deformation and global displacements variation in
beam element, respectively. This process is done through using so-called linearization. This step is
essential in deducing the geometric stiffness matrix in co-rotational formulation of beam element. In
the next two subsections, we will illustrate how to evaluate BBB matrix for two and three dimensional
beams.
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x1

x2

β0

β

θ1

θ1 θ2

α

θ2

u1

w1

w2

u2

u

l0

l0

Figure 2.44: Natural deformation include axial displacement u and local end rotations θ 1, θ 2

Two dimensional beam
As shown in Figure 2.44, the deformed beam possess local (natural) deformations dddl , and global
displacement dddg defined as follows:

dddg =
�

u1 w1 θ1 u1 w1 θ2
�T (2.287)

dddl =
�

u θ1 θ2
�T (2.288)

Relation between dddl and dddg can be defined as follows:
The change in beam length comes from:

u = ln� l0 (2.289)

And the local natural rotation is defined as:

θi = θi�α f or i = 1; 2 (2.290)

α = β �β0 (2.291)

Where

l0 =
q

(x2� x1)
2 +(z2� z1)

2 (2.292)

ln =
q

(x2 +u2� x1�u1)
2 +(z2 +w2� z1�w1)

2 =

q
4x2 +4z2 (2.293)
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Where 4x = x2 +u2� x1�u1 and 4z = z2 +w2� z1�w1.
Assuming the following:

s = sinβ =
4z
ln

; c = cosβ =
4x
ln

; s0 = sinβo =
4z0

l0
; c0 = cosβ0 =

4x0

lo
(2.294)

We get:

sinα = sin(β �β0) = sin(β )cos(β0)� cos(β )sin(β0) = s c0� c s0 (2.295)

In the same manner

cosα = c c0� c s0 (2.296)

Relation between the variation or increment in local deformationδdddl and global displacement δdddg is defined as:

δdg =
�

δu1 δw1 δθ1 δu1 δw1 δθ2
�T (2.297)

δdddl =
�

δu δθ1 δθ2
�T

(2.298)

From Equation 2.292 and Equation 2.293, we can evaluate the variation in the axial displacement u
as follows:

δu = δ ln�δ l0 = δ ln (2.299)

The variation in the initial length δ l0 is null.
As the change in beam length or axial deformation depends only on ends displacement, it follows

δ ln =
∂ ln
∂u1

δu1 +
∂ ln
∂u2

δu2 +
∂ ln
∂w1

δw1 +
∂ ln
∂w2

δw2 (2.300)

Where:

∂ ln
∂u1

=
(x2 +u2� x1�u1)��1q

(x2 +u2� x1�u1)
2 +(z2 +w2� z1�w1)

2
=
�4x

ln
=�c (2.301)

In the same manner

∂ ln
∂u2

=
4x
ln

= c (2.302)

∂ ln
∂w1

=
�4z

ln
=�s (2.303)

∂ ln
∂w2

=
4z
ln

= s (2.304)

So the resulting variation in beam length will be:

δ ln =�c δu1 + c δu2� s δw1 + s δw2 = c δ (4x)+ sδ (4z) (2.305)

Where δ (4x) = δu2� δu1, δ (4z) = δw2� δw1, so the variation in beam length or axial
deformation will be related to the variation in the global displacement δdddg as follows:

δu = δ ln =
� �c �s 0 c s 0

�
δdddg (2.306)
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Also we need to evaluate the variation in beam orientation δβ . We find that it is related to the
increments δ (4x) and δ (4z) by differentiating equation sinβ = 4z

ln
as follows:

δ

�
sinβ =

4z
ln

�
! cos(β ) δβ =

δ (4z)
ln

�4z
l2
n

δ ln (2.307)

=
1
ln
(δ (4z)� s [c δ (4x)+ sδ (4z)]) (2.308)

=
1
ln

�
δ (4z)

�
1� s2�� sc δ (4x)

�
(2.309)

=
1
ln

�
c2

δ (4z)� sc δ (4x)
�

(2.310)

The spin of the beam element orientation δβ will be:

δβ =
1
ln
(c δ (4z)� s δ (4x)) (2.311)

=
1
ln

�
s �c 0 �s c 0

�
δdddg (2.312)

From above equation, the infinitesimal change in beam orientation δβ is related directly to the
variation in position of nodal coordinates δ (4x) = δu2� δu1, δ (4z) = δw2� δw1, while the
variation in local rotations at ends results from:

δθ i = δθ i�δα = δθ i� (δβ �δβ0) = δθ i�δβ f or i = 1; 2 (2.313)

δθ 1 = δθ 1�δβ (2.314)

=
1
ln

� �s c 1 s �c 0
�

δdddg (2.315)

(2.316)

Similarly

δθ 2 = δθ 2�δβ =
1
ln

� �s c 0 s �c 1
�

δdddg (2.317)

So the relation between variation in local deformations and global displacements will be:

δdddl = B δdddg (2.318)

Where matrix BBB is defined as:

BBB =

24 �c �s 0 c s 0
�s=ln c=ln 1 s=ln �c=ln 0
�s=ln c=ln 0 s=ln �c=ln 1

35=

24 bbb1�
0 0 1 0 0 0

��bbb2�
0 0 0 0 0 1

��bbb2

35 (2.319)

Where

bbb1 =
� �c �s 0 c s 0

�
=ln

bbb2 =
�

s �c 0 �s c 0
�
=ln

δβ = bbb2 δdddg

δ ln = bbb1δdddg

(2.320)
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Three dimensional beam
Relation between dddl and dddg is defined as:

dddg =
�

ddd1 θθθ 1 ddd2 θθθ 2
�T with size 12�1 (2.321)

Where the components of global displacement is defined as:

ddd1 =
�

u1 v1 w1
�

(2.322)

ddd2 =
�

u2 v2 w2
�

(2.323)

θθθθθθθθθ 1 =
�

θ 1
1 θ 1

2 θ 1
3
�

(2.324)

θθθ 2 =
�

θ 2
1 θ 2

2 θ 2
3
�

(2.325)

while the local (natural) deformation is:

dddl =
�

u θθθ 1 θθθ 2
�T

with size 7�1 (2.326)

The local axial deformation expresses the beam change in length as follows:

u = ln� l0 (2.327)

Where the initial and final length are defined as:

l0 =
q

(x2� x1)
2 +(y2� y1)

2 +(z2� z1)
2 (2.328)

ln =
q

(x2 +u2� x1�u1)
2 +(y2 + v2� y1� v1)

2 +(z2 +w2� z1�w1)
2 =

q
4x2+4y2 +4z2

(2.329)

Where4x = x2+u2�x1�u1,4y = y2+v2�y1�v1 and4z = z2+w2� z1�w1. While the local
rotation angles, θθθ i observed from element triad EEE are defined from Equation 2.284 as follows:

RRR
�

θθθ i

�
=EEETRRRgiR0 $RRRgi =RRR(θθθ i) f or i = 1; 2 (2.330)

Assume a unit vector eee1 along element axis with components resolved in the global frame of
reference III with basis eeeg

i shown in Figure 2.42 as [eee1]
III =
�

r1 r2 r3
�T which represents the first

column of element rotation tensor EEE resolved in the global frame as follows:

[eee1]
III =EEE

24 1
0
0

35 (2.331)

In the same manner as in Equation 2.305

δ ln = r1 δ (4x)+ r2δ (4y)+ r3δ (4z) = [eee1]
T

24 δ (4x)
δ (4y)
δ (4z)

35 (2.332)

δu=
� �eeeT

1 0001�3 eeeT
1 0001�3

�
[δdddg]

III =
� �1 0 0 0 0 0 1 0 0 0 0 0

�
EEET

4 [δdddg]
III
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(2.333)

δu =
� �1111�6 1111�6

�
ET

4 [δdddg]
III = rrrET

4 [δdddg]
III (2.334)

Where δ (4x) = δu2� δu1, δ (4y) = δv2� δv1, δ (4z) = δw2� δw1, rrr =
� �1111�6 1111�6

�
,

1111�6 =
�

1 0 0 0 0 0
�
, and [EEE4]I =

2664
EEE 000 000 000
000 EEE 000 000
000 000 EEE 000
000 000 000 EEE

3775
III

with size 12 � 12

If the beam is displaced δd12
l ;δd22

l (displacement in the direction of current element axis e2),

the element triad EEE exhibits a spin rotation via a rotation about axis e3 by angle =
δd22

l �δd12
l

ln
, so the

spin vector of the element will be:

e3

e2

e1

e3

e2 e1

δd22
l

δd12
l

ln

(a)

e3

e2

e1

e3

e2

e1

δd23
l

δd13
l

ln

(b)

Figure 2.45: The displacement shown ar parallel to the element triads eee2 and eee3

[δφ
r3
e ]EEE =

�
0;0;

δd22
l �δd12

l
ln

�T

(2.335)

[δφe]
EEE is the spin of element resolved in basis EEE. In the same way, if the displacement in eee3

direction through δd13
l ;δd23

l , the spin will be:

[δφ
r2
e ]EEE =

�
0;

δd13
l �δd23

l
ln

;0
�T

(2.336)

For local nodal spin δθ 11
l ;δθ 21

l , about axis eee1 contributes greatly to element spin around axis e1.

[δφ
r1
e ]EEE =

�
δφ 11

l +δφ 21
l

2
;0;0

�T

(2.337)

Using addition theorem for spin [δφe]
EEE =

P3
i=1 [δφ ri

e ]
EEE

[δφφφ e]
EEE =

2664
δφ 11

l +δφ 21
l

2
δd13

l �δd23
l

ln
δd22

l �δd12
l

ln

3775 (2.338)



2.3 Natural deformations 95

=

24 0 0 0
0 0 1=Ln

0 �1=Ln 0

1=2 0 0
0 0 0
0 0 0

0 0 0
0 0 �1=Ln

0 1=Ln 0

1=2 0 0
0 0 0
0 0 0

35 [δdddg]
EEE

(2.339)

Where [δdddg]
EEE defines the global nodal displacement but resolved im the element triad EEE. From

above, we can define the following expression:

[δφφφ e]
EEE =AAA[δdddg]

EEE (2.340)

Where [δdddg]
EEE is defined as follows:

[δdddg]
EEE =

�
δddd1 δφφφ 1 δddd2 δφφφ 2

�EEE (2.341)

=
�

δd11
l δd12

l δd13
l δφ 11

l δφ 12
l δφ 13

l δd21
l δd22

l δd23
l δφ 21

l δφ 22
l δφ 23

l

�
(2.342)

Where δdi j
l defines the displacement of beam end i in direction j parallel to element basis e j as

shown in Figure 2.45a and Figure 2.45b, while rotation vector with components resolved in the
element basis (δφ i1

l ;δφ i2
l ;δφ i3

l ) defines the end i orientation. Term AAA is equal to:

AAA =

24 0 0 0
0 0 1=Ln

0 �1=Ln 0

1=2 0 0
0 0 0
0 0 0

0 0 0
0 0 �1=Ln

0 1=Ln 0

1=2 0 0
0 0 0
0 0 0

35 (2.343)

But the components of the global displacement resolved in element frame of reference EEE ([δdddg]
EEE)

are related to these resolved in the global frame III ([δdddg]
III) through the transformation rule defined

as follows:

[δdddg]
EEE =EEET

4 [δdddg]
III (2.344)

Using addition theorem, the nodal spin measured from the element triad is equal to the nodal spin
measured from the global triad minus element triad spin measured from the global triad as follows:

δφφφ i = δφφφ i�δφφφ e (2.345)

This spin can be resolved in any basis, such that if we choose the local element basis EEE, the spin of
the first nodal beam measured from element triad δφφφ 1 is defined as:�

δφφφ i
�EEE

= [δφφφ i]
EEE � [δφφφ e]

EEE (2.346)

=
�

0003�3 1113�3 0003�3 0003�3
�
[δdddg]

EEE �AAA[δdddg]
EEE (2.347)

=PPP1 [δdddg]
EEE (2.348)

=PPP1EEET
4 [δdddg]

III (2.349)

Where PPP1 matrix is defined as:

PPP1 =
�

0003�3 1113�3 0003�3 0003�3
��AAA (2.350)

and [δφφφeee]
EEE can be defined as:

[δφφφeee]
EEE =AAA[δdddg]

EEE =AEAEAET
4 [δdddg]

III (2.351)
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Where

1113�3 =

24 1 0 0
0 1 0
0 0 1

35 ; 0003�3 =

24 0 0 0
0 0 0
0 0 0

35 ; (2.352)

In the same manner:�
δφφφ 2

�EEE
= P2[δdddg]

EEE =PPP2EEET
4 [δdddg]

III (2.353)

With PPP2 defined as:

PPP2 =
�

0003�3 0003�3 0003�3 1113�3
��AAA (2.354)

We get from above that

BBB =PPPEEET
4 (2.355)

with

[δdddl] =
�

δu δφφφ 1 δφφφ 2

�T
with size 7�1 (2.356)

[δdddg] =
�

δddd1 δφφφ 1 δddd2 δφφφ 2
�

with size 12�1 (2.357)

PPP =

24 rrr
PPP1
PPP2

35 (2.358)
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3. Introduction in Continuum Mechanics

3.1 Description of motion

Material can be described using two scale; microscopic and macroscopic scale. Microscopic scale
considers that the material is discontinuous and takes into account the gap between the particles
and the sliding of particles relative to each other. Continuum mechanics study the material at
macroscopic level in which it is assumed that the material is continuous with no gaps, and the body
completely fills the space. Also it studies the macroscopic geometric change undergone on the
body under external loadings or kinematics of the body. This loading yields a geometric change
and internal stresses, forcing the body to occupy continuous sequences of geometric regions. Body
motion includes two types of motion; deformation and rigid body motion. Rigid body motion
neither changes body shape nor contributes to internal stresses, while the deformation (change
in the distance between any two particles attached on the body) is responsible for stresses. First
we shall introduce some definition used commonly in continuum mechanics like configuration,
material and spatial descriptions, then we will move to deformation gradient and how to separate
rigid body motion out of the body motion. After that we will give different measures of strains and
stresses followed by introducing an objective stress rate for nonlinear finite element.

Any continuum medium is formed by an infinite number of particles, each one occupies a
particular position in space during its movement with time. Every particle attached to the body, we
are interested in, is called material point, while any position in space, constant with time, is called
spatial point. As a result, the location of material points changes with body motion, whereas spatial
points have fixed position in space. As shown in Figure 3.1a, if we focus on a particle moving
in a river, we find that it occupies different spatial positions with time, but if we are observing a
particular position as shown in Figure 3.1b, we will record many material particles passing this
spatial point ith time.

Also we need to introduce another definition called configuration Ct at time t which is defined
as a set of positions occupied by particles of the body or the region occupied by the body in space
at this time. As illustrated in Figure 3.2, anybody has a different configuration each time. The
initial configuration C0 at time (t = 0) is called reference or known configuration. While the current
or deformed configuration Ct defines the region occupied by the body at the current time t. As
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Tracking the same
material points at
different configuration

Material Description

C0

C1

C2

(a)

Tracking the same
spatial position at
different configuration

Spatial Description

C0

C1

C2

(b)

Figure 3.1

schematically shown in Figure 3.3, the position vector of a particular particle at the reference
configuration is XXX with components [X1;X2;X3] referred to the spatial frame. This initial position
XXX is called the material coordinates of the particle of label XXX which is a fixed property for the
particle and does not change with time. The position of material points of label XXX in the current
configuration at time t is called spatial position xxx with components [x1;x2;x3] referred to the spatial
frame, such that it will be a function of material position of particle label XXX and time t as follows:

e1

e2

e3

Ct0
Ct1

Ct2

t0
t1 t2

time time time

Initial
conf.

Current
conf.

Figure 3.2

e1

e2

e3

C0
CtInitial

conf.

Current
conf.

x

X

u
P

P`

3
Figure 3.3

xxx = xxx(XXX ; t) =XXX +uuu (3.1)

The above equation is called the canonical form of the equation of motion. xxx(XXX ; t) defines the
current position of a particle point at time t with initial position XXX , while uuu refers to the displacement
displaced by the material point X from the initial configuration to the current one.

The mechanical properties of the bodies are defined using two descriptions, material and spatial
description. If we are concerned with properties of a particle moving with time, we shall use the
material or Lagrangian description, but if we study the properties of particles passing particular
position in space, we can use the spatial or Eulerian description. For example shown in Figure 3.4a
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when testing a composite beam, we attach strain gauges at some points and record strain readings
with loading. In this case, the description used in tracking the properties of these material points
with time is Lagrangian description which is more suitable for studying solids, while an example of
Eulerian description is installing velocity readers (velocity-meter) in some fixed positions in fluid
channel to record its velocity with time as shown in Figure 3.4b. It is hard to track the motion of
fluid particles as the case of Lagrangian description, so the better choice for fluid description is to
implement Eulerian description. The general Lagrangian description for property Φ is defined as:

P

P

Strain Gauge fixed
at material point

Strain Gauge fixed
at material point

(a) Material description

C0

C1

C2

(b) Spatial description

Figure 3.4

Φ = Φ(XXX ; t) (3.2)

Which Φ(XXX ; t) is a function of the initial position of XXX and the current time t e.g. the Lagrangian
description of position vector xxx and strain εεε of a material point at time t with initial position XXX is
given by:

xxx = xxx(XXX ; t) ; εεε = εεε (XXX ; t) (3.3)

Whereas the general Eulerian description is defined as:

Φ = Φ(xxx; t) (3.4)

Which Φ(xxx; t) is a function of the spatial position xxx recorded at it the property Φ and the time of
recording t. For example, the Eulerian description of particle velocity at spatial position xxx and time
t is given by:

v = v(x; t) (3.5)
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3.1.1 Time derivative
Time derivative of a property with a material description is defined as a time rate of change of a
particular property as follows:

dΦ(XXX ; t)
dt

=
∂Φ(XXX ; t)

∂ t
(3.6)

In the above expression, we equalize the total derivative dΦ(XXX ;t)
dt and partial derivative ∂Φ(XXX ;t)

∂ t of the
property Φ as the time derivative of property Φ tracks the same particle of label XXX , so it depends
only on time, whereas the total time derivative of a property descried using a spatial description is
given by:

dΦ(xxx; t)
dt

=
∂Φ(xxx; t)

∂ t| {z }
Local derivative

+
∂Φ(xxx; t)

∂xxx
:
∂xxx
∂ t| {z }

Convective derivative

(3.7)

As the total derivative tracks the change in particle property with time, it includes two parts for
spatial description; local derivative ∂Φ(xxx;t)

∂ t defined as the rate of change of the property measured at
a fixed spatial position with time, and convective derivative, which compensates for the effect of
particles motion at this fixed position. The convective derivative part is defined as follows:

∂Φ(xxx; t)
∂xi

:
∂xi

∂ t
=

∂Φ

∂x1

∂x1

∂ t
+

∂Φ

∂x2

∂x2

∂ t
+

∂Φ

∂x3

∂x3

∂ t
(3.8)

∂Φ(xxx; t)
∂xxx

:
∂xxx
∂ t

=∇∇∇Φ:vvv (3.9)

Where vvv defines the velocity of the particle passing the spatial position xxx and ∇∇∇Φ is the
gradient of Φ. The above expression of time derivative does not need the current position function
xxx = xxx(XXX ; t) but the velocity of the particle and gradient of the property ∇∇∇Φ at particular position
xxx.

� Example 3.1 Let us consider a steady flow through tapered pipe shown in Figure 3.5, and we
want to evaluate the time derivative of particles velocity with spatial description vvv(xxx; t). As the
discharge for the steady flow is constant, the velocity recorded at any spot shall be constant with
time, but if we track a particle velocity through its motion in the pipe, it increases with time due
to pipe contraction. Applying the above expression, we find that the local derivative vanishes as
the velocity do not change for the same spatial point for steady flow, while the convective part
results in (∇∇∇Φ:vvv =∇∇∇vvv:vvv) which makes up for the increasing velocity of the particle with time. �

Also we will states two definitions for volume, material volume and spatial (control) volume. The
material volume generally expresses the volume of the body occupying series of configuration.
The material volume has a constant mass and a varied shape or space occupation with time, while
control volume has a constant shape and position with time, so the particles is expected to move in
and out of it.

3.2 Deformation gradient
Let us assume a body shown in Figure 3.6 with undeformed configuration C0 is gradually displaced
to the current configuration Ct under the application of external loads body. Through this displace-
ment, the body undergoes two different types of motion; stretch (deformation) and rigid body
motion. In rigid body motion, the distance between any two particles does not change, such that
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Figure 3.5: Spatial description
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Figure 3.6: Material description

all the material particles undergo the same linear and angular displacement. Assume two arbitrary
particles, P and Q embedded in the body, infinitesimally close to each other and spaced by vector
dXXX in the undeformed configuration. After deformation, line PQ translates to line P`Q ,̀ such that
point P with material position XXX relative to global axes is translated through displacement uuu to point
P` with new position vector xxx defined as follows:

xxx(XXX ; t) =XXX +uuu(XXX ; t) (3.10)

An infinitesimal vector dXXX is transformed to its deformed state dxxx through what is called the
deformation gradient FFF such that the components of the new deformed vector dxxx can be evaluated
through:

dx1 =
∂x1

∂X1
dX1 +

∂x1

∂X2
dX2 +

∂x1

∂X3
dX3

dx2 =
∂x2

∂X1
dX1 +

∂x2

∂X2
dX2 +

∂x2

∂X3
dX3

dx3 =
∂x3

∂X1
dX1 +

∂x3

∂X2
dX2 +

∂x3

∂X3
dX3

(3.11)

Where dxi and dXi are the components of vector dxxx and dXXX for i = 1;2;3. Writing these components
in matrix form yields:24 dx1

dx2
dx3

35=

264
∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

375
24 dX1

dX2
dX3

35! dxxx =FFFdXXX (3.12)

Deformation gradient FFF provides a mapping from the reference configuration C0 to the current
configuration Ct , so it can be written in this form (t

0FFF). Also it provides a complete description
of the displacement (excluding translations) which includes deformation and rigid body rotation.
Using Equation 3.10, deformation gradient takes many forms as follows:

FFF =∇∇∇0xxx =
∂xxx
∂XXX

= 111+∇∇∇ouuu = 111+
∂uuu
∂XXX

(3.13)
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which Nabla operator ∇∇∇o =
∂

∂XXX operates on the initial configuration and ∇∇∇ouuu is the displacement
gradient. For infinitesimal vectors dXXX and dxxx with components defined respectively with respect to
the initial or material EEE I and final or spatial frame of reference eeei as dXXX = dXIEEE I and dxxx = dxieeei,
the index notation of the above equation will be:

FFF = FiJeeei
EEEJ (3.14)

So the deformation gradient is called a two-point tensor as it maps between two different config-
urations, each one defined with respect to a particular frame of reference. The components of
deformation gradient will be as follows:

FiJ =
∂xi

∂XJ
= xi;J = ui;J +δiJ (3.15)

Where ui;J is defined as ∂ui
∂XJ

. While the inverse of deformation gradient is defined as:

FFF�1 =
∂XXX
∂xxx

(3.16)

e1

e2

(a)

e1

e2

θ

(b)

e1

e2

(c)

e1

e2

γ

(d)

e1

e2

γ/2

γ/2

(e)

Figure 3.7

� Example 3.2 Rigid body translation shown in Figure 3.7a, the deformation gradient FFF will
be:

FFF = 111
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Finite rotation shown in Figure 3.7b

[FFF ] = [RRR] =

24 cosθ �sinθ 0
sinθ cosθ 0

0 0 1

35
Where RRR is a rotation matrix.
Pure stretching in Figure 3.7c, the deformation gradient is evaluated as follows:

x = 2X ; y = 1:5Y ! [FFF ] =

24 2 0 0
0 1:5 0
0 0 1

35 (3.17)

Shear with rotation in Figure 3.7d, it follows from the figure that two dimensional deforma-
tion gradient will be:

x = X + γY; y = Y ! [FFF ] =

�
1 γ

0 1

�
(3.18)

Pure shear in Figure 3.7e, it follows that:

x = X +
γ

2
Y; y =

γ

2
X +Y ! [FFF ] =

�
1 0:5γ

0:5γ 1

�
(3.19)

The un-symmetry of deformation gradient indicates that body motion contains rigid body
rotation as shown in Figure 3.7b and Figure 3.7d. Off-diagonal elements in deformation gradient
matrix reflect the existence of shear deformation in Figure 3.7d and Figure 3.7e which result
from change of the angle between two perpendicular planes initially oriented along material
frame EEEI . �

3.2.1 Volume and area change
Assume an infinitesimal cubic with dimension shown in Figure 3.8 subjected to deformation
gradient FFF . Assuming the following expressions:

HHH =

24 dX1
1 dX2

1 dX3
1

dX1
2 dX2

2 dX3
2

dX1
3 dX2

3 dX3
3

35hhh =

24 dx1
1 dx2

1 dx3
1

dx1
2 dx2

2 dx3
2

dx1
3 dx2

3 dx3
3

35 (3.20)

Where dx j
i are components of vector dxxxi resolved in the global bases eee j. These above matrices are

related through deformation gradient as follows:

hhh =HHHFFFT ! det(hhh) = det(HHHFFFT ) = det(HHH)det(FFF) (3.21)

Evaluating the volume of the cube before and after deformation dV0; dV1 as follows:

dV = dxxx1:(dxxx2�dxxx3) = det

0@24 dx1
1 dx2

1 dx3
1

dx1
2 dx2

2 dx3
2

dx1
3 dx2

3 dx3
3

351A
= det(hhh) = det(FFF)det(HHH) = det(FFF) [dXXX1:(dXXX2�dXXX3)] = JdV

(3.22)

Where J is the determinant of the deformation gradient. Some formulation can be proved as follows:

dxxx1:(dxxx2�dxxx3) = dXXXT
1 FFFT (FFFdXXX2�FFFdXXX3)

1 =T FFFT JFFF�T (dXXX2�dXXX3) = J (dXXX1:(dXXX2�dXXX3))
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Figure 3.8

(3.23)

Which is identical to the first expression. Also infinitesimal areas before and after deformation are
related as follows

dv = JdV ! dx1x1x1:daaa = JdX1X1X1:dAAA

dX1X1X1
TFFFT daaa = JdX1X1X1

T dAAA

daaa:dX1X1X1 =
�
JFFF�T dAAA

�
:dX1X1X1

daaa = JFFF�T dAAA

nnnda = JFFF�TNNNdA

(3.24)

Where NNN;nnn are unit vectors normal to the areas dAAA;daaa, respectively. This formula is called Nanson’s
formula.

3.2.2 Polar decomposition
As stated before, the stretch is responsible for stresses, while rigid body rotation is not, such that if
we need to measure the stresses, we shall first remove rigid body rotation part out of the deformation
gradient to keep only the part responsible for stresses. As schematically shown in Figure 3.9, a
body is subjected to pure deformation, such that an infinitesimal line dXXX transforms to dxxx1 through
what is called stretch tensor UUU and then the body is subjected to a rotation tensor RRR to yield finally
dxxx defined as follows:

dxxx1 =UUUdXXX ! dxxx =RRRdxxx1 =RRRUUUdXXX (3.25)

So the final deformation gradient will be defined as:

FFF =RRRUUU (3.26)

As rotation tensor RRR does not contribute in body stress, the stretch tensor UUU is a symmetric tensor
and responsible for the deformation and can be considered as a strain measure to evaluate body
stresses. Stretch tensor can be evaluated as follows:

FFFTFFF =UUUTRRRTRURURU =UUUTUUU =UUU2 (3.27)
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For example shown in Figure 3.10, if we have a rectangular block undergoing a pure stretch in eee1
and eee2 directions, then followed by a rotation with angle π=3, the stretch and rotation tensors can
be given by:

e1

e2

a b

cd

e1

e2

a`

b`

c`

d` π/3

U R

Figure 3.10

[UUU ] =

�
2 0
0 0:5

�
; [RRR] =

�
cosπ=3 �sinπ=3
sinπ=3 cosπ=3

�
(3.28)

So the resulting deformation gradient will be:

[FFF ] = [RURURU ] =

�
2C �0:5S
2S 0:5C

�
; where S = sinπ=3; C = cosπ=3 (3.29)

We can evaluate the deformation gradient in a different way by tracking the coordinates of the new
rectangular block points after deformation and comparing them with its initial positions as follows:

If the coordinate of points b and d are (X ;0) and (0;Y ), respectively, before deformation
and reached to b` = (2CX ;2SX) and d` = (�0:5SY;0:5CY ), any general point like point c with
coordinates (X ;Y ) transforms to point c` as follows:

c`= b`+d`= (2CX�0:5SY;2SX +0:5CY ) or x = 2CX�0:5SY and y = 2SX +0:5CY (3.30)
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[F ]iJ =

�
∂xi

∂XJ

�
=

�
2C �0:5S
2S 0:5C

�
(3.31)

Deformation gradient can be evaluated for two dimensional cases, whereas general three dimen-
sional case needs some effort to perform polar decomposition in extracting stretch tensor UUU from
deformation gradient FFF .

� Example 3.3 Assume the deformation gradient FFF as follows:

[FFF ] =

24 0:415 �0:894 �0:208
1:009 0:684 0:004
�0:1 0:18 1:165

35 (3.32)

we can evaluate FFFTFFF as follows

[FFFTFFF ] = [UUU ]2 =

24 1:2 0:3 �0:2
0:3 1:3 0:4
�0:2 0:4 1:4

35 (3.33)

We can extract UUU from UUU2 through spectral decomposition as follows:

[FFFTFFF ] =AAAλλλAAAT (3.34)

Which AAA, λλλ i are the Eigen vectors matrix and Eigen values of matrix FT F evaluated as follows:

[λλλ ] =

24 λ1 0 0
0 λ2 0
0 0 λ3

35=

24 0:69 0 0
0 1:45 0
0 0 1:76

35 (3.35)

[AAA] =

24 �0:58 0:81 �0:12
0:63 0:35 �0:7
�0:52 �0:48 �0:71

35 (3.36)

So UUU is defined [UUU ] = [AAA]
�

λ 0:5
i

�
[AAA]T as follows:

[UUU ] =

24 �0:58 0:81 �0:12
0:63 0:35 �0:7
�0:52 �0:48 �0:71

3524
p

0:69 0 0
0

p
1:45 0

0 0
p

1:76

3524 �0:58 0:81 �0:12
0:63 0:35 �0:7
�0:52 �0:48 �0:71

35
=

24 1:08 0:14 �0:1
0:14 1:12 0:18
�0:1 0:18 1:16

35
(3.37)

Then the rotation matrix RRR will be:

RRR =FUFUFU�1 (3.38)

[UUU ]�1 = [AAA]
�

1
λ i

�
[AAA]T (3.39)
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[UUU ]�1 =

24 �0:58 0:81 �0:12
0:63 0:35 �0:7
�0:52 �0:48 �0:71

3524 1=0:83 0 0
0 1=1:2 0
0 0 1=1:33

3524 �0:58 0:81 �0:12
0:63 0:35 �0:7
�0:52 �0:48 �0:71

35
=

24 0:954 �0:141 0:105
�0:141 0:94 �0:159
0:105 �0:159 0:892

35
(3.40)

[RRR] = [FFF ][UUU ]�1 =

24 0:415 �0:894 �0:208
1:009 0:684 0:004
�0:1 0:18 1:165

3524 0:954 �0:141 0:105
�0:141 0:94 �0:159
0:105 �0:159 0:892

35
=

24 0:5 �0:866 0
0:866 0:5 0

0 0 1

35
(3.41)

�

From above calculation, using stretch tensor UUU as a strain measure can be tedious and time-wasting,
so we will mention another strain measures in the following section.

3.2.3 Strain measure
As stated before, deformation gradient cannot be used as a strain measure as it includes rigid body
rotation, while stretch tensor UUU can be used as a strain measure, but it requires some effort to extract.
However, we can measure the strain from the change in the length between two infinitesimally-
spaced points. Let us assume infinitesimal line of length ds in the deformation configuration with
initial length dS at the reference configuration. The length square of a vector can be evaluated from
the dot product of the vector with itself as follows:

ds2 = dxxx:dxxx = dxxxT dxxx = (FFFdXXX)TFFFdXXX = dXXXT �FFFTFFF
�

dXXX = dXXXTCCCdXXX (3.42)

where

CCC =FFFTFFF =UUUTRRRTRRRUUU =UUUTUUU =UUU2 (3.43)

Where CCC is called left Cauchy-Green tensor. It depends on the stretch tensor UUU , and consequently
excludes rigid body rotation from body motion and can be used as a strain measure. However, it
yields identity matrix 111 when ds and dS are identical (no strain case), so the appropriate strain
measure can be evaluated from the length change defined as follows:

ds2�dS2 = dxxx:dxxx�dXXX :dXXX = dXXXTCCCdXXX�dXXXT dXXX = dXXXT (CCC�111)dXXX (3.44)

= 2dXXXTEEEdXXX = 2dXXX :EEE:dXXX (3.45)

EEE =
1
2
�
FFFTFFF�111

�
(3.46)

Where EEE is a symmetric tensor called Green-Lagrange strain. It can be evaluated in index notation
as follows:

EEE = EIJEEEI
EEEJ where EIJ =
1
2
(FmIFmJ�δIJ) (3.47)



110 Chapter 3. Introduction in Continuum Mechanics

Where EEE I represent vector bases of the material frame at the initial configuration for I = 1;2;3.
Using Equation 3.15 yields:

Ei j =
1
2
�
(δki +uk;i)

�
δk j +uk; j

��δi j
�
=

1
2
�
ui; j +u j;i +uk;iuk; j

�
(3.48)

Or in tensor notation:

EEE =
1
2
�
∇∇∇ouuu+∇∇∇ouuuT +∇∇∇ouuuT

∇∇∇ouuu
�

(3.49)

With components defined as:

E11 = u1;1 +
1
2
�
u2

1;1 +u2
2;1 +u2

3;1
�

E22 = u2;2 +
1
2
�
u2

1;2 +u2
2;2 +u2

3;2
�

E33 = u3;3 +
1
2
�
u2

1;3 +u2
2;3 +u2

3;3
�

E12 =
1
2
(u1;2 +u2;1)+

1
2
(u1;1u1;2 +u2;1u2;2 +u3;1u3;2) = E21

E13 =
1
2
(u1;3 +u3;1)+

1
2
(u1;1u1;3 +u2;1u2;3 +u3;1u3;3) = E31

E23 =
1
2
(u2;3 +u3;2)+

1
2
(u1;2u1;3 +u2;2u2;3 +u3;2u3;3) = E32

(3.50)

Where ui; j =
∂uuui
∂XXX j

.
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Figure 3.11

� Example 3.4 Lets assume an infinitesimal line attached to a bar and directed along its
longitudinal as shown in Figure 3.11. The bar is stretched, such that the initial and final length
of the line are dS and ds, respectively, with a change in its length of value (dδu = ds�dS), so
the axial Green-Lagrange strain E11 using Equation 3.44 will be obtained from:

E11 =
ds2�dS2

2dS2 =
(dS+dδu)2�dS2

2dS2 =
2(dδu)dS+dδu2

2dS2 (3.51)

Neglecting second order terms in above expression yields:

E11 ' dδu
dS

(3.52)

Which is similar to strain evaluate using small strain theory, so using half used in Equation 3.46
is necessary to define a physical meaning for Green-Lagrange strain. We also need to note that,
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for a body undergoing small strains and large rotations, Green-Lagrange strain is very similar to
stretch tensor minus identity matrix EEE 'UUU�111. �

� Example 3.5 Assume a rectangular body shown in Figure 3.12 undergoing only a finite
rotation by rotating counter-wise an angle θ about axis x3 such that the deformation gradient
will be given by:

[FFF ] = [RURURU ] = [RRR] =

24 cosθ �sinθ 0
sinθ cosθ 0

0 0 1

35 (3.53)

We can conclude that Green-Lagrange strain vanishes for rigid body rotation as follows:

EEE =
1
2
�
FFFTFFF�111

�
=

1
2
�
RRRTRRR�111

�
= 000 (3.54)

�

� Example 3.6 Let us assume that this rectangular body is subjected uniaxial strain after rigid
body rotation, such that the final configuration is Coordinate of points b, d, c before deformation
will be (X ;0), (0;Y ) and (X ;Y ), respectively, and reached to following points:

b`= (1;T )X ;d`= (�S;C)Y;c`= b`+d`= (X�SY;T X +CY ): (3.55)

where T = tan(θ), C = cos(θ) and S = sin(θ), so the deformation gradient FFF stretch tensor UUU
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and rotation tensor RRR will be given by:

[FFF ] =

24 1 �S 0
T C 0
0 0 1

35 (3.56)

[FFFTFFF ] =

24 1 T 0
�S C 0
0 0 1

3524 1 �S 0
T C 0
0 0 1

35=

24 1
C2 0 0
0 1 0
0 0 1

35= [UUU ]2 (3.57)

[UUU ] =

24 1=C 0 0
0 1 0
0 0 1

35 (3.58)

[RRR] = [FFF ][UUU ]�1 =

24 1 �S 0
T C 0
0 0 1

3524 C 0 0
0 1 0
0 0 1

35=

24 C �S 0
S C 0
0 0 1

35 (3.59)

We conclude that the body is rotated through by angle θ about origin, then subjected to a stretch
through uniaxial strain of amount 1=cos(θ). �

3.2.4 Infinitesimal strain tensor
For small displacement gradient ∇∇∇ouuu, the strain tensor can be approximated by neglecting second
order terms and assuming that the final configuration is very close to the initial one, such that
the gradient operating on the initial and final configuration can be identical (∇∇∇ouuu =∇∇∇uuu), so the
resulting strain will be obtained from:

εεε =
1
2
�
∇∇∇uuu+∇∇∇uuuT � ! εεε i j =

1
2

�
∂ui

∂x j
+

∂u j

∂xi

�
(3.60)

Where εεε is a symmetric tensor called an infinitesimal strain. This strain measure can not be used for
a body undergoing a finite rotation or it will introduce large errors for strain results. Engineering
strain vector εeεeεe is identical to infinitesimal strain tensor, but its shear components are twice the
shear components of the infinitesimal strain tensor as follows:

εeεeεe =
�

ε11 ε22 ε33 γ12 γ13 γ23
	T ! γγγ i j = 2εi j f or i 6= j (3.61)

3.2.5 Velocity gradient, rate of deformation and spin
Assume a velocity field v(x)v(x)v(x) shown in Figure 3.13, such that the change in velocity dvvv between
two particles of the body infinitesimally-spaced by spatial vector dxxx measured in the deformed
configuration is evaluated through:

dvvv =
∂vvv
∂XXX

dxxx = LLLdxxx (3.62)

where LLL is called the velocity gradient that describes the spatial rate of change of the velocity field.
It can be written in index notations as follows:

dvi =
∂vi

∂x j
dx j = Li jdx j (3.63)
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But the time rate of change of deformation gradient can be defined as:

ḞFF =
∂

∂ t

�
∂xxx
∂XXX

�
=

∂

∂XXX

�
∂xxx
∂ t

�
=

∂vvv
∂XXX

=
∂vvv
∂XXX

∂xxx
∂XXX

= LFLFLF ! LLL = ḞFFFFF�111 (3.64)

From above equation, the velocity gradient maps deformation gradient onto rate of change of
deformation gradient. Generally the rate of change of deformation is implemented for nonlinear
analysis, in which it uses incremental process or time rate of change. Velocity gradient can be
decomposed into two parts; symmetric part called the rate of deformation tensor DDD and anti-
symmetric part called spin or vorticity tensor WWW defined as follows:

LLL =DDD+WWW

DDD =
1
2
�
LLL+LLLT �; WWW =

1
2
�
LLL�LLLT � (3.65)

Also from polar decomposition expression in (F = RUF = RUF = RU), time rate of change of deformation
gradient will be:

ḞFF = ṘRRUUU +RRRU̇UU (3.66)

And consequently, the velocity gradient and vorticity tensors WWW can be evaluated as follows:

LLL = ḞFFFFF�111 =
�
ṘRRUUU +RRRU̇UU

�
UUU�111RRRT = ṘRRRRRT +RRRU̇UUUUU�111RRRT (3.67)

WWW =
1
2
�
LLL�LLLT �= 1

2

�
ṘRRRRRT +RRRU̇UUUUU�111RRRT �RRRṘRRT �RRR

�
U̇UUUUU�111

�T
RRRT
�

= ṘRRRRRT +
1
2

RRR
�

U̇UUUUU�111�
�

U̇UUUUU�111
�T
�

RRRT
(3.68)

As the rotation tensor is orthogonal
�
RRRRRRT = 111

�
, we can derive that:

RRRṘRRT
=�ṘRRRRRT $ΩΩΩ =RRRṘRRT

=
1
2

∇∇∇�vvv (3.69)
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Where ΩΩΩ is the angular velocity tensor, which depend on rigid body rotation and its time rate of
change. From above, we can express vorticity tensor WWW as follows:

WWW =ΩΩΩ+
1
2

RRR
�

U̇UUUUU�111�
�

U̇UUUUU�111
�T
�

RRRT (3.70)

Generally term
�

U̇UUUUU�1� �U̇UUUUU�1
�T
�

has a negligible value and vorticity and angular velocity
tensor can be considered approximately equal (WWW 'ΩΩΩ). We can also express the relation between
time rate of change of Green-Lagrange strain tensor and rate of deformation tensor as follows:

ĖEE =
1
2

h
FFFT ḞFF + ḞFFTFFF

i
=

1
2
�
FFFTLFLFLF +FFFTLLLTFFF

�
=

1
2

FFFT �LLL+LLLT �FFF =FFFTDFDFDF (3.71)

DDD =FFF�T ĖEEFFF�111 (3.72)

In some textbooks, rate change ĖEE is defined as a push back to rate of deformation tensor DDD while DDD
is considered as a push forward to ĖEE. Also using polar decomposition expression (F = RUF = RUF = RU), time
rate of change of Green-Lagrange strain tensor ĖEE is obtained from:

ĖEE =
1
2

h
FFFT ḞFF + ḞFFTFFF

i
=

1
2

h
UUURRRT �ṘRRUUU +RRRU̇UU

�
+
�

UUUṘRRT
+U̇UUTRRR

�
RURURU
i

=
1
2

h
UUURRRT ṘRRUUU +UUUU̇UU +UUUṘRRTRRRUUU +

�
UUUU̇UU

�T
i (3.73)

As the underlined terms cancel each other, the final expression of ĖEE will be:

ĖEE =
1
2

h
UUUU̇UU +

�
UUUU̇UU

�T
i
= sym(UUUU̇UU) (3.74)

� Example 3.7 Lets assume a rectangular body shown in Figure 3.14, stretching and rotating
with constant angular velocity θ̇ such that the time rate of change of current stretch and rotation
tensor can be obtained using Equation 3.58 and Equation 3.6 as follows:

[U̇̇U̇U ] = θ̇

24 S=C2 0 0
0 0 0
0 0 0

35 [Ṙ̇ṘR] = θ̇

24 �S �C 0
C �S 0
0 0 0

35 (3.75)

where C = cos(θ); S = sin(θ).

[U̇UU ][UUU ]�1 = θ̇

24 S=C 0 0
0 0 0
0 0 0

35 (3.76)

[LLL] = [ḞFFFFF�111] = [ṘRRRRRT +RRRU̇UUUUU�111RRRT ] = θ̇

24 0 �1 0
1 0 0
0 0 0

35+ θ̇

24 SC S2 0
S2 S3=C 0
0 0 0

35 (3.77)

[DDD] = [RRRU̇UUUUU�111RRRT ] = θ̇

24 SC S2 0
S2 S3=C 0
0 0 0

35 (3.78)

Also rate of deformation tensor DDD is known as a push forward to tensor U̇U�1, the verticity
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tensor will be:

[WWW ] = θ̇

24 0 �1 0
1 0 0
0 0 0

35= eωωω $ωωω =
�
0;0; θ̇

�T (3.79)

From above example, we find DDD and WWW are identical and another expression for rate of deforma-
tion tensor DDD is approximated as follows:

DDD =RRRU̇UUUUU�111RRRT (3.80)

�

e1

e2

X
Y

X

θ

R

θ
.

Figure 3.15

� Example 3.8 If a rectangular body shown in Figure 3.15 is rotating with angular velocity θ̇

without axial strain, the deformation gradient and rate of deformation tensors at any configuration
orientated at angle θ are given by:

[F ] = [RURURU ] = [RRR] =

24 cosθ �sinθ 0
sinθ cosθ 0

0 0 1

35 (3.81)

DDD =RRRU̇UUUUU�111RRRT = 000 (3.82)

From the last equality in the above equation, we can use rate of deformation tensor DDD in nonlinear
geometric analysis as it depends on the time rate of change of stretch tensor U̇UU and vanishes for
rigid body rotation. �

3.3 Introduction to stress analysis
As schematically shown in Figure 3.16, Let us assume a bar with rectangular section of area A
subjected to axial load P, such that the stress distribution σ induced on a cut plane normal to the
cross section is defined as follows:

σ =
P
A

(3.83)
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P

σ
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P

P

Figure 3.16

   ��

P

P

Figure 3.17

As the force is normal to the cut section, the stresses induced are normal stresses, while shear
stresses are tangent to the section cut as the case of two hinged beam with normal section cut
near the support, as shown in Figure 3.17. Complexity arises if we choose another cut plane with
normal axis different from the force vector direction. For example, if the cut plane is oriented at
angle θ relative to the plane normal to force vector, as shown in Figure 3.18, the new cut plane has
surface area equal to A=cos(θ). From equilibrium, Force normal to the cut plane equals to Pcos(θ)
resulting normal stresses σn given by:

θ θ

Psin
(θ)

Pcos(θ
)

A

A/co
s(θ

)

P

P

P

Figure 3.18

σn = (Pcos(θ))=(A=cos(θ)) =
P
A

cos(θ)2 (3.84)
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While force tangent to the surface equals to Psin(θ) resulting shear stress τn obtained from:

τn =
P
A

sin(θ)cos(θ) (3.85)

These results are identical to the findings of Mohr’s circle. Also using axes transformation form
axes xi to xì, shown in Figure 3.19, leads to the followings:

θ

P/A

P/A

σ1̀1

σ2̀2

σ1̀2

σ2̀2

σ1̀2
σ1̀1

σ11
σ11

σ12

σ12

σ22

σ22
R
θ

P

P

P

P

Figure 3.19

σσσ`=QσQQσQQσQT (3.86)

With:

[σσσ ] =

�
σ11 σ12
σ21 σ22

�
=

�
0 0
0 σ

�
; [QQQ] =

�
cos(θ) sin(θ)
�sin(θ) cos(θ)

�
(3.87)

The transformed stress tensor will be:

[σσσ ]̀ =

�
σ 0

11 σ 0
12

σ 0
21 σ 0

22

�
=

�
σsin(θ) 2

σsin(θ) cos(θ)
σsin(θ) cos(θ) σcos(θ) 2

�
(3.88)

3.3.1 Stress vector
Let’s assume a body subjected to external forces (body or surface forces) shown in Figure 3.20,
and a cut plane with normal direction n is used to divide the body into two parts. Focusing on an
infinitesimal area located on the cut plane 4A it will be subjected to small force vector 4FFF such
that the stress vector or surface traction acting on this area will be:

ttt(nnn) =
�4FFF
4A

�
4A!0

(3.89)

Superscript (nnn) means that the stress vector is associated with plane nnn. Stress vector has two
components; normal stress σ normal to the section cut, and shear stress τ tangent to the cut section.
If we change the orientation of the cut section, it will result in different stress vector as concluded
from the previous example. Also, at any point, there is an infinite number of section planes at this
point, such that each one has its own stress vector, but tracking the stress vectors associated with
three perpendicular or independent planes is enough to define the stress state at that point. These
three planes with three different components of stress vector associated with each plane can be
combined together in what is called dyadic or second order stress tensor of nine elements shown on
rectangular block as shown in Figure 3.21 and expressed as follow:
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Figure 3.22

σσσ = σi j eeei
eee j (3.90)

[σi j] =

24 σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

35 (3.91)

We shall exhibit here how to extract stress vector ttt(nnn) associated with plane nnn from stress tensor σσσ .
Assume a rectangular block shown in Figure 3.22, with plane cut with normal nnn with area equal to
A and surface traction ttt(n), while the traction force associated with plane normal to axis eeei can be
defined as ttt(i), for i = 1; 2; 3 defined as :

ttt(1) =
�

σ11 σ12 σ13
	T

ttt(2) =
�

σ21 σ22 σ23
	T

ttt(3) =
�

σ31 σ32 σ33
	T

(3.92)
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Figure 3.22 shows the components of stress vector ttt(1). We can evaluate the area of each side A(i)

normal to axis xi through the projection of area A on each side as follows:

A(i) = (n)(n)(n)(i):Annn =
�
(n)(n)(n)(i):nnn

�
A2 (3.93)

The unit vectors normal to each surface shown in Figure 3.22 and resolved in the global frame is
given by:

nnn =
�

n1 n2 n3
	T

; nnn
(1)

=
�

1 0 0
	T

; (n)(n)(n)(2) =
�

0 1 0
	T

; (n)(n)(n)(3) =
�

0 0 1
	T

(3.94)

And consequently,

A(1) = An1; A(2) = An2; A(3) = An3 (3.95)

Applying equilibrium over the this part of rectangular block in Figure 3.22 results in:

ttt(n)(n)(n)A = ttt(1)An1 +ttt(2)An2 +ttt(3)An3 (3.96)

Dividing by the area A yields:

ttt(n)(n)(n) = ttt(1)n1 +ttt(2)n2 +ttt(3)n3 =

8<:
σ11
σ12
σ13

9=;n1 +

8<:
σ21
σ22
σ23

9=;n2 +

8<:
σ31
σ32
σ33

9=;n3 (3.97)

=

24 σ11 σ21 σ31
σ12 σ22 σ32
σ13 σ23 σ33

358<:
n1
n2
n3

9=; (3.98)

The above matrix form can be rewritten in tensor or index notation as follows:

ttt(n)(n)(n) =σσσ
Tnnn = nnn:σσσ = nnnT

σσσ (3.99)

The above equation is called Cauchy formula. The components of stress vector ttt(n)(n)(n) = tieeei on plane
nnn = nieeei are defined in index notation from above equation as follows:

ti = σ jin j (3.100)

3.3.2 Conservation of linear and angular momentum
Conservation of linear momentum or Newton’s second law of motion states that the time rate of
change of linear momentum (mvvv) of a particle of mass m and velocity vvv equals to the net force

P
FFF

exerted on this particle as follows:

d
dt

(mvvv) =
X

FFF (3.101)

If its mass is constant with time, the above expression reduces to:

m
d
dt

(vvv) = m
∂ 2xxx
∂ t2 = maaa =

X
FFF (3.102)

Where aaa and xxx are particle acceleration and position. Generally the forces are divided into two
parts; internal and external forces. The internal forces result from stresses induced in the cut plane,
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while external forces include body forces and surface forces. Body forces act on mass distribution
like inertia, gravity, electromagnetic forces and are generally measured per unit mass, so if the body
force per unit mass is fff b, the total body force FFFb will be obtained from:

FFFb =

Z
V

ρ fff bdV (3.103)

And consequently, the inertia force FFF I is given by:

FFF I =

Z
V

ρ
∂ 2xxx
∂ t2 dV (3.104)

While the surface traction ttt(nnn) includes the forces acting on the boundary surface of the body and
measured per unit area with normal vector nnn, e.g. contact forces, such that the total surface body FFFs

can be evaluated through integrating surface traction over the area as follows:

FFFs =

Z
S
ttt(nnn)dA =

Z
S
nnn:σσσdA (3.105)

From divergence theorem, the above expression can be rewritten in this form:

FFFs =

Z
V

∇∇∇:σσσdV (3.106)

Substituting the above relations into Equation 3.102 results in:

FFFb +FFFs =FFF I !
Z

V
ρ fff bdV +

Z
V

∇∇∇:σσσdV =

Z
V

ρ
∂vvv
∂ t

dV (3.107)

And consequently, we reach to the equilibrium equation of motion as follows:

∇∇∇:σσσ +ρ fff b = ρ
dvvv
dt

= ρ
∂ 2xxx
∂ t2 = ρaaa (3.108)

It can also be expressed in tensor notation as follows:

∂σ ji

∂n j
+ρ fbi = ρ

∂ 2xi

∂ t2 = ρai (3.109)

On the other hand, conservation of angular momentum states that the time rate of change of the
total angular momentum of a body equal to vector sum of the moments of external forces acting on
this body. This principle leads to the symmetry of the stress tensor as follows:

σ12 = σ21; σ13 = σ31; σ23 = σ32 (3.110)

3.3.3 Work and power
Change in work dW done by a force FFF on some particle equals to the dot product of the force vector
and displacement change dxxx as follows:

dW =FFF :dxxx (3.111)

Such that the total work done through the particle path c will be:

W =

Z
c
FFF :dxxx (3.112)
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while power p is the time derivative of the work W defined as follows:

p =
dW
dt

=FFF :
dxxx
dt

=FFF :vvv (3.113)

From above expression, the power can be defined as the dot product of the force vector with velocity
vector vvv. The power generated by the external forces includes the contribution of the body and
surface forces as follows:

P = (FFFb +FFFs) :vvv =

Z
s
TTT :vvvds+

Z
V

ρ fff b:vvvdV =

Z
s
nnn:(σσσ :vvv)ds+

Z
V

ρ fff b:vvvdV (3.114)

The velocity vvv here is considered as a velocity field as it can be varied over the body volume. Using
divergence theorem on the first term of the right hand side in the above expression yields:

p =

Z
V

∇∇∇:(σσσ :vvv)dV +

Z
V

ρFFF :vvvdV (3.115)

∇∇∇:(σσσ :vvv) =
∂

∂xi
(σi jv j) =

∂σi j

∂xi
v j +σi j

∂v j

∂xi
= (∇∇∇:σσσ) :vvv+σσσ : LLLT (3.116)

As stress tensor σσσ is a symmetric matrix, we can conclude using Equation 1.100:

σσσ : LLLT =σσσ : LLL =σσσ : sym(LLL) =σσσ : DDD (3.117)

such that power will be given by:

p =

Z
V
(∇∇∇:σσσ +ρ fff b) :vvvdV +

Z
V

σσσ : DDDdV (3.118)

From equilibrium Equation 3.108, it follows:

P =

Z
V

ρaaa:vvvdV +

Z
V

σσσ : DDDdV (3.119)Z
V

ρaaa:vvvdV =
d
dt

�
1
2

Z
V

ρvvv:vvvdV
�
=

d
dt

(K:E) (3.120)

=
d
dt

(K:E)+

Z
V

σσσ : DDDdV (3.121)

From above equation, the external power is converted into two parts; time rate of change of
kinetic energy K:E associated with body motion and time rate of change of strain energy associated
with deformation. Cauchy stress tensor and rate of deformation strain rate σσσ and DDD are called
energetically conjugate pairs of stresses and strain rates. There are other energetically conjugate
pairs other than Cauchy stress and deformation strain rate. For example, if we need to evaluate the
stress measure conjugate to time rate of change of deformation gradient ḞFF , we need to convert the
power part associated with deformation as follows:Z

V
σσσ : DDDdV =

Z
V

σσσ : LLLdV =

Z
V

σσσ : (ḞFFFFF�1)dV

=

Z
V

σi jḞimF�1
m j dV =

Z
V

σi jF�T
jm ḞimdV

=

Z
V

�
σσσFFF�T � : ḞFFdV =

Z
V

�
σσσ

TFFF�T � : ḞFFdV

(3.122)
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So σσσTFFF�T is conjugate to the time rate of change of deformation gradient ḞFF and integrated over
the current volume V . Using dV = JdV0, where dV , dV0 are the volume of a differential body in
the final and initial configurations, respectively, we can convert the current volume integration into
integration over the initial volume as follows:Z

V
σσσ : DDDdV =

Z
V

Jσσσ
TFFF�T : ḞFFdV0 =

Z
V0

PPP : ḞFFdV0 (3.123)

Where PPP = JσσσTFFF�T is called first Piola Kirchhoff stress tensor, such that PPP and ḞFF are considered
energetically conjugate pairs. Cauchy stress can be evaluated from the following:

σσσ =
1
J

FFFPPPT (3.124)

From the above relation, it seems that PPP is unsymmetric tensor. However, the symmetry of Cauchy
stress σσσ leads to this expression:

FPFPFPT =PFPFPFT (3.125)

Also we can search for another stress measure conjugate to time rate of change of Green Lagrange
tensor using Equation 3.71 as follows:Z

V
σσσ : DDDdV =

Z
V

σσσ :
�
FFF�T ĖEEFFF�1�dV

=

Z
V

σi jF�T
im

˙EmnF�1
n j dV =

Z
V

F�1
mi σi jF�T

jn ĖmndV

=

Z
V0

JFFF�1
σσσFFF�T : ĖEEdV0 =

Z
V0

JFFF�1
σσσ

TFFF�T : ĖEEdV0 =

Z
V0

SSS : ĖEEdV0

(3.126)

Where SSS = JFFF�1
σσσTFFF�T is called second Piola Kirchhoff stress tensor, such that SSS and ĖEE are

considered energetically conjugate pairs. Also it is easily to verify that SSS is a symmetric tensor.
Also it is considered as a push back of Cauchy stress from the current configuration Ct to the initial
configuration C0 which takes sometimes this form t

0SSS. Also the above expressions can be rewritten
in variational rate using virtual work principle3 as follows:Z

V
σσσ : δεεεdV =

Z
V0

PPP : δFFFdV0 =

Z
V0

SSS : δEEEdV0 (3.127)

Using Equation 3.71, Equation 3.64, and Equation 3.65 results in:

δεεε =
1
2

�
δFFFFFF�1 +

�
δFFFFFF�1�T

�
; δEEE =FFFT

δεεεFFF (3.128)

3.3.4 The physical meaning of the first and second Piola Kirchhoff stress tensor

� Example 3.9 Assume a four-node element with undeformed configuration C0 and subjected
to deformation to reach configuration C1 shown in Figure 3.23. The stress tensor resolved in the
inertia basis eeei is:

[σσσ ][eeei
eee j] =

�
3 1
1 2

�
(3.129)

3see chapter 4
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Figure 3.23: Configurations C0 and C1

From the above figure, deformation gradient is defined as

[FFF ][eeei
EEEI ] =

�
1 0:2
0 1

�
; with J = 1; FFF�1 =

�
1 �0:2
0 1

�
(3.130)

First and second Piola Kirchhoff stresses will be:

[PPP][eeei
EEEI ] =

�
2:8 1
0:6 2

�
; [SSS][EEE i
EEEI ] =

�
2:68 0:6
0:6 2

�
(3.131)

Kirchhoff �

First Piola Kirchhoff stress means that plane nnn(1) has force PPP1 = (2:8;0:6) on face 1 with initial
normal NNN(1) = [1;0] and initial area jAAA1j= 1 and current area jaaa1j=

p
1:04

2

1

1

2

0.6

2.8
2.8 0.6

Figure 3.24: Force distribution FFF on the deformed
surfaces deduced from firts Piola Kirchhoff stress
PPP and the initial area AAA (F = P:AF = P:AF = P:A)
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4

Figure 3.25: Stress distribution on the deformed
surfaces after resolving the forces in surface nor-
mal and tangent direction
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Figure 3.26: Cauchy stress state transformed
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Figure 3.27: Applying virtual displacement δx

� Example 3.10 — Equilibrium study. In the above example, the ith column in PPP represents
the force applied on the material surface with current normal nnni and initial normal NNNi with unit
initial area (dA(1)

i = 1) as pictured in Figure 3.24. It is denoted by stress vector PPPi defined as
follows:

PPP =PPPI
EEE I !PPPI =PPPEEE I (3.132)

PPP =PPPiIeeei
EEE I !PPPI =PPPiIeeei

PPP1 = 2:8eee1 +0:6eee2

PPP2 = eee1 +2eee2

(3.133)

The resulting force on plane nnn1 will be FFF1 =PPP1AAA1 =PPP1NNN1dA1 = (2:8eee1 +0:6eee2)�1 = 2:8eee1 +
0:6eee2 as shown in Figure 3.24, while the corresponding force to plane nnn2 is FFF2 = eee1 +2eee2. We
can get the deformed area using Nanson’s formula nnn1da1 = JFFF�TNNN1dA1 =

�
1 �0:2

�T with

unit vector

h
1 �0:2

iT

p
1:04

and area magnitude da1 =
p

1:04 as shown in Figure 3.25, such that
the Cauchy stress vector on this plane is defined as

σσσ
(nnn1) = nnn1:σσσ =

�
1 �0:2

�
p

1:04

�
3 1
1 2

�
=

�
2:8 0:6

�
p

1:04
(3.134)

σσσ
(nnn2) = nnn2:σσσ =

�
1 2

�
(3.135)

The stress distribution is shown in Figure 3.25. The resulting forces FFF1 =σσσ (nnn1)da1 =
�

2:8 0:6
�
,

FFF2 =
�

1 2
�
, which is identical to the first Piola Kirchhoff resultant force mentioned in the

previous paragraph. Also the same results can be obtained from Cauchy stresses σσσ on plane nnn1
can be defined using transformation rule

σσσ =RRRT
σσσRRR; with RRR =

1p
1:04

�
1 0:2

�0:2 1

�
(3.136)
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It follows as shown in Figure 3.25 and Figure 3.26 that

σσσ =
1

1:04

�
2:68 1:16
1:16 2:52

�
(3.137)

Evaluating the components of the resultant force over face 1 shown in Figure 3.26 results in:

FFF11 =

�
2:68
1:04

1p
1:04

+
1:16
1:04

0:2p
1:04

�
a1 =

�
2:68
1:04

1p
1:04

+
1:16
1:04

0:2p
1:04

�
�
p

1:04 = 2:8

(3.138)

As the surface nnn1 has area
p

1:04. This is the component of resultant force on face 1 in eee1
direction (FFF11), while, in eee2 direction, it will be:

FFF2 =

�
�2:68

1:04
0:2p
1:04

+
1:16
1:04

1p
1:04

�
a1 =

�
�2:68

1:04
0:2p
1:04

+
1:16
1:04

1p
1:04

�
�
p

1:04 = 0:6

(3.139)

�

� Example 3.11 — Virtual work. We can also prove Equation 3.127 as follows. Assume a
virtual displacement δx shown in the Figure 3.27 applied over the deformed configuration C1,
such that the resulting deformation gradient and its variation will be:

FFFnew =

�
1 0:2+δx
0 1

�
(3.140)

δFFF =FFFnew�FFF =

�
0 δx
0 0

�
=

�
0 1
0 0

�
δx (3.141)

Also the variation in infinitesimal strain and variation in Green-Lagrange strain using Equa-
tion 3.128 will be:

δεεε =

�
0 0:5

0:5 0

�
δx (3.142)

δEEE =FFFT
δεεεFFF =

�
0 0:5

0:5 0:2

�
δx (3.143)

Such that the resulting virtual work in terms of different stress measures using Equation 3.127

δW =

Z
V

σσσ : δεεεdv =

�
3 1
1 2

�
:
�

0 0:5
0:5 0

�
δx = δx (3.144)

δW =

Z
V0

PPP : δFFFdV =

�
2:8 1
0:6 2

�
:
�

0 1
0 0

�
δx = δx (3.145)

δW =

Z
V0

SSS : δEEEdV =

�
2:68 0:6
0:6 2

�
:
�

0 0:5
0:5 0:2

�
δx (3.146)

= (0:6�0:5+0:6�0:5+2�0:2)δx = δx (3.147)
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Where volume before and after deformation is equal 1 (v =V = 1). Also the same result can be
obtained if we use Figure 3.27 to evaluate the virtual work exerted by first Piola Kirchhoff stress
vectors PPP1 = (2:8eee1 +0:6eee2) and PPP1 = (1eee1 +2eee2) as follows:
The virtual work done by these forces =2:8�

�
δx
2

�
�2:8�

�
δx
2

�
+1�δx = δx.

Which gives the same findings of the above equations �

3.3.5 Geometrically exact beam theory
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Figure 3.28

(X2,X3)

E3
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o

Figure 3.29: Position of point XXX relative
to the material triad EEE at configuration
C1 in Figure 3.28

t1

t2

C3

Figure 3.30: Applying rigid body rotation RRR on configura-
tion C2 in Figure 3.28

Assume a Timoshenko beam (rigid cross section assumption) shown in Figure 3.28 with an
undeformed infinitesimal arc length dS0 and material basis4 EEE I subjected to shear strain γ̄12 and

4The material basis EEEI in Figure 3.28 does not change with deformation and is assumed to be aligned with beams
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axial strain ε̄11 to reach configuration C1, then a curvature K̄3 around basis eee3 to finally reach
configuration C2 such that the total difference in cross section orientation is K̄3dS0 in eee3 direction.
If we are interested in evaluating the deformation gradient at a material point located at distance X2
from centroid, the deformation gradient of configuration C1 will be:

�1
0F̄̄F̄F
�

eee
EEE =

�
1+ ε̄11 0

γ̄21 1

�
(3.148)

The axial strain ε̄11(curv) due to curvature results from change in the length of the longitudinal
fiber located at X2 as follows:

ε̄11(curv) =
Change in beam length

original length
(3.149)

=
Change in beam orientation � Point position relative to centroid

original length
(3.150)

=
(K̄3dS0) (X2)

dS0
= K̄3X2 (3.151)

Such that overall deformation gradient at configuration C1 is:

�2
0F̄̄F̄F
�

eee
EEE =

�
1+ ε̄11 + K̄3X2 0

γ̄21 1

�
(3.152)

For a three dimensional beam, the axial strain ε̄̄ε̄ε(curv) due to 3D curvature resolved in material
basis EEE as

�
K̄̄K̄K
�

EEE =
�

K̄1 K̄2 K̄3
�T is defined as:

ε̄̄ε̄ε(curv) = ˜̄KKKXXX ! [ε̄̄ε̄ε(curv)]EEE =

24 K̄2X3� K̄3X2
�K̄1X3
K̄1X2

35 (3.153)

Where XXX defines the position of a material point. When it is resolved in material frame, it will be
[XXX ]EEE =

�
0 X2 X3

�T , where X2 and X3 define beam position along the beam principle axes as
shown in Figure 3.29, such that the resulting deformation gradient in index notation will be:

�2
0F̄̄F̄F
�

eee
EEE =

24 1+ ε̄11 + K̄2X3� K̄3X2 0 0
γ̄21� K̄1X3 1 0
γ̄31 + K̄1X2 0 1

35 (3.154)

And in tensorial form:

2
0F̄̄F̄F = F̄̄F̄F iIeeei
EEE I = 111+ ε̄̄ε̄ε
EEE1 = eeei
EEE1 + ε̄ieeei
EEE1 (3.155)

where ε̄1 = ¯ε11; ε̄2 = ε̄21 = γ̄21� K̄1X3; ε̄3 = ε̄31 = γ̄31 + K̄1X2
5

Applying virtual strain [δε̄̄ε̄ε]EEE =
�

δ ε̄1 δ ε̄2 δ ε̄3
�T and curvature

�
δ K̄̄K̄K
�

EEE =
�

δ K̄1 δ K̄2 δ K̄3
�T

to the beam in the final configuration, the internal resulting virtual work δWint in terms of first Piola
Kirchhoff stress tensor will be:

principle axes and cross section normal at the undeformed configuration C0 which, in this case, is identical to inertia
frame eeei as the line of undeformed beam centroids is straight and directed along eee1, while co-rotational or moving frame
(beam triad) ttt i is attached to the beam and its orientation changes with deformations (change in cross section normal ttt1)
and principle axes orientation ttt2, ttt3.

5The strains ε̄22; ε̄33 and ε̄23 vanish from the rigid cross section assumption in Timoshenko beam theory
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δWint =

Z
V0

P̄̄P̄P : δ F̄̄F̄FdV0

=

Z
V0

P̄11 (δ ε̄11 +δ K̄2X3�δ K̄3X2)dV0

+

Z
V0

P̄21 (δ γ̄21�δ K̄1X3)dV0

+

Z
V0

P̄31 (δ γ̄13 +δ K̄1X2)dV0

(3.156)

Where P̄iI forms the components of first Piola Kirchhoff stress tensor (P̄̄P̄P = P̄̄P̄Pi
EEE I = P̄iIeeei
EEE I)
and P̄̄P̄Pi is stress traction vector applied on the beam cross section surface. As beam strain and
curvature are only function of arc length s along the line of centroids, the integration can be
simplified to:

δWint =

Z
S0

�
NNN:δε̄̄ε̄ε +MMM:δ K̄̄K̄K

�
dS0 =

Z
S0

�
[NNN]EEE :[δε̄̄ε̄ε]EEE +[MMM]EEE :[δ K̄̄K̄K]EEE

�
dS0 (3.157)

The last equality comes from the fact that work is a scalar value, so we can resolve its terms in any
frame of reference. Terms [NNN]EEE and [MMM]EEE represent the cross section resultant force and moment
resolved in basis EEE defined as follows:
[NNN]EEE = [N1 N2 N3]

T , [MMM]EEE = [M1 M2 M3]
T ,

�
P̄̄P̄P1
�

EEE = [P̄11 P̄21 P̄31]
T

[ε̄̄ε̄ε]EEE = [ε̄11 γ̄21 γ̄31]
T ,

�
K̄̄K̄K
�

EEE = [K̄1 K̄2 K̄3]
T

Where
N1 =

R
A0

P̄11dA0, N2 =
R

A0
P̄21dA0, N3 =

R
A0

P̄31dA0

M1 =
R

A0
(P̄31X2� P̄21X3)dA0, M2 =�

R
A0

P̄11X3dA0, M3 =
R

A0
P̄11X2dA0

If a rigid body rotation RRR is superimposed on the configuration C2 as shown in Figure 3.30, the
beam triads (co-rotational basis) ttt i, the stress traction vector applied on the beam cross section
surface PPP1, the strains and curvature, the resultant force and moment on the cross section, and the
new deformation gradient will be:

ttt i =RRREEE i; PPP1 =RRRP̄̄P̄P1; nnn =RRRNNN; mmm =RRRMMM; εεε =RRRε̄̄ε̄ε; KKK =RRRK̄̄K̄K; FFF =RRRF̄̄F̄F (3.158)

As all the above terms except deformation gradient in the last equality are vectors, they transform
like vector, while the last equity can be deduced using subsection 3.2.2 or using section 3.4. The
above expressions can also be interpreted as shown in Figure 3.31, such that the components of
stress vector PPP1 resolved in the local triad tttI is identical to the components of stress vector P̄̄P̄P1
resolved in the material frame IIII (P̄I1) and it follows:

PPP1 = PI1eeeI = P̄I1tttI (3.159)

With
[nnn]EEE = [n1 n2 n3]

T , [mmm]EEE = [m1 m2 m3]
T , [PPP1]EEE = [P11 P21 P31]

T

[εεε]EEE = [ε11 γ21 γ31]
T , [KKK]EEE = [K1 K2 K3]

T

In the same manner:

nnn = nIeeeI = NItttI (3.160)

mmm = mIeeeI = MItttI (3.161)

εεε = ε11eee1 + γ21eee2 + γ31eee3 = ε̄11ttt1 + γ̄21ttt2 + γ̄31ttt3 (3.162)

KKK = KIeeeI = K̄ItttI (3.163)

FFF = FiIeeei
EEE I = F̄iIttt i
EEE I (3.164)
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t1
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E1
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Figure 3.31: Applying a rigid body rotation on configuration C2 with surface first Piola Kirchhoff
stress P̄̄P̄P1 resolved in material frame EEE I as (P̄11; P̄21; P̄31) to get configuration C3 with surface first
Piola Kirchhoff stress PPP1 defined through the transformation rule PPP1 = RRRP̄̄P̄P1 and resolved in the
inertia frame eeei as (P11;P21;P31) and in the co-rotational frame ttt i as (P̄11; P̄21; ; P̄31) which is identical
to this vector in C2 and resolved in EEE I

The last equality results from using (RRR = tttI
EEE I) and (EEE I:eeei = δIi) as follows:

FFF =RRRF̄̄F̄F = (tttI
EEEI)(F̄iJeeei
EEEJ) = F̄iJδIitttI
EEEJ = F̄iJttt i
EEEJ (3.165)

In the same manner:

PPP =RRRP̄̄P̄P (3.166)

Note that first Piola Kirchhoff stress tensor and deformation gradient are called two-point tensors
and they follow the transformation rule described in the above expressions. We also need to note
that the virtual work created by these spatial vectors nnn, mmm, εεε and KKK described in Equation 3.158
are not effected by rigid body rotation and it should be equivalent to the virtual work generated by
Equation 3.157 as follows:

δWint =

Z
V0

PPP : δFFFdV0 =

Z
S0

(nnn:δεεε +mmm:δKKK)dS0 (3.167)

Such that

PPP : δFFF = P̄̄P̄P : δ F̄̄F̄F (3.168)

Using Equation 3.158, Equation 3.166, it yields:

P̄̄P̄P : δ F̄̄F̄F =RRRTPPP : δ
�
RRRTFFF

�
=PPP : RRR δ (RRRTFFF) (3.169)

Term RRRδ (RRRTFFF) is called the co-rotational variation in deformation gradient and dented by δ
�

F
�

F
�

F . It is
defined as a variation of spatial property recorded by an observer attached to the moving frame to
get δ (RRRTFFF) and pulled forward to the spatial form (It will be farther discussed in section 3.4). The
relation between the co-rotational variation and ordinary variation is defined as follow:

δ
�

F
�

F
�

F =RRR δ (RRRTFFF) = δFFF +
�
RRRδRRRT � F̄̄F̄F = δFFF�δω̃ωωF̄̄F̄F (3.170)
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Where δω̃ωω is the variational spatial spin 6.
From Equation 3.168, it follows that

PPP : δFFF =PPP : RRRT
δ
�
RRRF̄̄F̄F
�
=PPP : δ

�
F
�

F
�

F (3.171)

We see that the first Piola Kirchhoff tensor PPP is conjugate to co-rotational variation of deformation

gradient δ
�

F
�

F
�

F in exerting the virtual work.

Δa

n ΔfΔA

N Δf

F

Δf = F Δf

F-1
C1

C0

Figure 3.32

The physical meaning of the first Piola Kirchhoff stress tensor PPP is obvious from the previous
examples, while it is hard to imagine a sensible definition for second Piola Kirchhoff stress tensor
SSS which performs work over the variation in Green-Lagrange strain tensor δEEE, see equation
Equation 3.127. However, being a symmetric tensor makes it desirable in finite element formulation
(see chapter 3). Also 1

0SSSNNN can be defined using Figure 3.32 as the current force at configuration
C1 affecting a section area with current normal nnn and unit initial area with initial normal NNN at
configuration C0 after being subjected to inverse mapping via deformation gradient (pulled back to
the initial configuration C0) as shown in Figure 3.32. From this definition, second Piola Kirchhoff
stress tensor can be defined as follows:

1
0SSS(N)(N)(N) =

d f̄ff
dAAA

=
FFF�1∂ fff

∂aaa
∂aaa
∂AAA

= JFFF�1 d fff
daaa

FFF�T = JFFF�1
σσσ

(n)(n)(n)FFF�T (3.172)

Where d fff is the applied force of current area daaa with unit normal vector nnn and initial area dAAA with
unit normal vector NNN as shown in Figure 3.32. Applying inverse mapping on this force results
(FFF�1d fff = d f̄ff ). We used Nanson’s formula to prove the above equation ( ∂aaa

∂AAA = JFFF�T ).

6For a spatial vector vvv = v̄ittt i = vieeei = RRRv̄̄v̄v, we get δvvv = δRRRv̄̄v̄v+RRRδ v̄̄v̄v = δRRRRRRTvvv+RRRδ
�
RRRTvvv

�
= δω̃ωωvvv+ δ

�

v
�

v
�

v, while for
second order tensor TTT = aaa1
aaa2. If each vector aaa1 and aaa2 is induced from individual rigid body rotation (aaa1 =RRR1ā̄āa1 and
aaa2 =RRR2ā̄āa2), the resulting tensor TTT will be:
TTT = (RRR1ā̄āa1)
 (RRR2ā̄āa2) =RRR1ā̄āa1
 ā̄āa2RRRT

2 =RRR1T̄̄T̄TRRRT
2 . Where T̄̄T̄T = ā̄āa1
 ā̄āa2, the variation of TTT will be:

δTTT = δRRR1T̄̄T̄TRRRT
2 +RRR1δ T̄̄T̄TRRRT

2 +RRR1T̄̄T̄T δRRRT
2 = δRRR1RRRT

1 TTT +RRR1δ (RRRT
1 T̄̄T̄TRRR2)RRRT

2 + T̄̄T̄TRRR2δRRRT
2 = ˜δwww1TTT +RRR1δ (RRRT

1 T̄̄T̄TRRR2)RRRT
2 � T̄̄T̄T ˜δwww2

Where ˜δwww1 = δRRR1RRRT
1 and ˜δwww2 = δRRR2RRRT

2

For Cauchy stress tensor σσσ , the transformation rule σσσ =RRR σ̄̄σ̄σ RRRT makes (RRR1 =RRR2 =RRR) and

δσσσ = δ
�
RRR σ̄̄σ̄σ RRRT �=RRRδσ̄̄σ̄σRRRT +δRRRσ̄̄σ̄σRRRT +δRRRσ̄̄σ̄σRRRT =RRR δ

�
RRRTσσσRRR

�
RRRT + ˜δwwwσσσ �σσσ ˜δwww = δ

�

σ
�

σ
�

σ + ˜δwwwσσσ �σσσ ˜δwww

For two-point tensor AAA, RRR1 =RRR and RRR2 = 111, the resulting variation will be:

δAAA = δ
�
RRRĀ̄ĀA

�
=RRRδ Ā̄ĀA+δRRRĀ̄ĀA =RRR δ

�
RRRTAAA

�
+ ˜δwwwAAA = δ

�

A
�

A
�

A+ ˜δwwwAAA, where δ
�

A
�

A
�

A represents co-rotational variation of tensor AAA
(farther explanation in section 3.4).
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� Example 3.12 Assume four-node element shown in Figure 3.33 with axial stress σ11 = P
A

and then subjected to the rigid body rotation, such that the resulting stress will be:

σσσ =RRRT
σσσRRR; RRR =

�
C �S
S C

�
; σσσ =

�
σ11 0
0 0

�
where C = cos(θ); S = sin(θ) (3.173)

It follows that

σσσ = σ11

�
C2 SC
SC S2

�
(3.174)

As the deformation gradient is identical to rotation matrix, second Piola Kirchhoff stress tensor
SSS will be:

SSS = JFFF�1
σσσ

TFFF�T =

�
σ11 0
0 0

�
(3.175)

Which is identical to the co-rotational Cauchy stress tensor σσσ .
Reciting the definition of second Piola Kirchhoff stress tensor in the previous paragraph, SSS is the
force applied in the current configuration is (Pcos(θ);Psin(θ)) is subjected to inverse mapping
through deformation gradient F = RF = RF = R to be (P;0) applied on the initial area A which yields the
same results in the above equation.

�

3.3.6 The material form of equilibrium equation of motion

Substituting with
�

∂

∂xxx = ∂

∂XXX
∂XXX
∂xxx = ∂

∂XXX FFF�1
�

into Equation 3.106 results in:

FFFs =

Z
V

∇∇∇:σσσdV =

Z
V

∇∇∇0:
�
FFF�1

σσσ
�

dV =

Z
V0

∇∇∇0:PPPT dV0 (3.176)

The above expression can be proven using index notation and first Piola Kirchhoff stress tensor
definition as follows:

PPP = Pi jeeei
EEE j = Jσ
T
ki F

�T
k j eeei
EEE j; Fi j =

∂xi

∂X j
! F�1

i j =
∂X j

∂xi
= F�T

ji (3.177)

∇∇∇0:PPPT =
∂Pi j

∂X j
eeei = J

∂σki

∂X j

∂Xk

∂x j
eeei = J

∂σki

∂Xk

∂Xk

∂x j
δ jkeeei = J

∂σki

∂x j
δ jkeeei = J

∂σ ji

∂x j
eeei = J∇∇∇:σσσ (3.178)

If fff b0 is the body force per unit volume of the initial configuration, the total body force will be
defined as follows:

FFFb =

Z
V

fff bdV =

Z
V0

fff b0dV0 (3.179)

Which leads to the material form the motion equation of equilibrium in terms of the first Piola
Kirchhoff stress tensor PPP as follows:

∇∇∇0:PPPT + fff b0b0b0�ρ0aaa = 000 (3.180)

Where fff b0 , ρ0 are the body force and density referred to the initial configuration. Also from
expression (PPP =FFF :SSS), the material form of equilibrium equation of motion in terms of the second
Piola Kirchhoff stress tensor will be defined as follows:

∇∇∇0:
�
SSSTFFFT �+ fff b0�ρ0aaa = 000 (3.181)
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As second Piola Kirchhoff stress tensor is symmetric tensor, it yields that:

(∇∇∇0:SSS) :FFFT +SSS:
�
∇∇∇0:FFFT �+ fff b0�ρ0aaa = 000 (3.182)

Where ∇∇∇0:FFFT can be written in index notation as follows:

∇∇∇0:FFFT =∇∇∇0:

�
∂xi

∂X j
EEE j
EEE i

�
=

∂ 2xi

∂X j∂X j
EEE i (3.183)

3.3.7 Constitutive equation in the rate form
For a linear elastic body with Young modulus E and Poisson’s ratio ν , the constitutive relation
between the infinitesimal strain εεε and Cauchy stress σσσ is defined as follows:

εεε =
1
E
[(1+ν)σσσ �ν trace(σσσ)]$σσσ =CCC : εεε (3.184)

with index notation defined as follows:

εεε i j =
1
E
[(1+ν)σi j�νσii] (3.185)

But its time rate form does not follow the above constitutive equation or:

DDD 6= 1
E
[(1+ν)σ̇σσ �ν trace(σ̇σσ)]$ σ̇σσ 6=CCC : DDD (3.186)

For example, if the body is subjected to rigid body rotation, DDD = 000 as stated in the subsection 3.2.5,

e1

e2

X
Y

X

θ

R
θ

.

P

P

P

P

Figure 3.33

while σ̇σσ changes according to the transformation rule (see in the next example).

� Example 3.13 If we have a bar shown in Figure 3.33 with cross section area A and axial
load P inclined at angle θ and under rigid body rotation with time rate θ̇ , the current stress rate
σσσ (θ (t)) is defined as:

σσσ (θ (t)) =RRR(θ (t))σσσ (θ = 0)RRR(θ (t))T

=

�
cos(θ) �sin(θ)
sin(θ) cos(θ)

�� P
A 0
0 0

��
cos(θ) sin(θ)
�sin(θ) cos(θ)

�
=

P
A

�
cos(θ) 2 sin(θ) cos(θ)

sin(θ) cos(θ) sin(θ) 2

� (3.187)



3.4 Change of observer and objectivity 133

As (P=A) remains the same with time and angle θ changes, the time rate of change of stress
will be:

σ̇σσ = θ̇
P
A

� �2CS C2�S2

C2�S2 2SC

�
Using C = cos(θ); S = sin(θ) (3.188)

While DDD vanishes if we used the same procedures defined in subsection 3.2.5. Consequently,
Cauchy stress rate and rate of deformation tensor behave incompatibly in the presence of finite
rotation. This problem forces us to search for new objective rates for stresses and strains. Using
an objective stress rate is an essential step in nonlinear finite element analysis. In the next
section, we will find out other objective stress measures which can be also used in nonlinear
analysis. For example, we can relate the time rate of change of Green-Lagrange strain ĖEE and
time rate of change of second Piola Kirchhoff stress tensor ṠSS as follows:

ĖEE =
1
E

�
(1+ν)ṠSS�ν trace

�
ṠSS
��$ ṠSS =CCC : ĖEE (3.189)

The above expression can be used as stress-strain constitutive relation in the rate form, as this
relation is not effected by finite rotation and consequently are considered objective quantity. �

3.4 Change of observer and objectivity

θ
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O+

u

Counter clockwise rotation

e1

e2

c(t)

R(θ)

R(θ)

Figure 3.34: Two observers tracking a rectan-
gular block

u

u
R(θ)T

Clockwise rotation

O+

OObserver

Observer

Figure 3.35: What observers O and O+ see in
Figure 3.34

Any physical phenomena should remain unchanged even if we change the observer or the
point of view from which we observe it. This is called objectivity or frame-indifference which is
necessary part in nonlinear continuum mechanics. We can describe a phenomena or an event by
choosing an observer which has the ability to record the position and the time of the event, and
track its change with time. Assume we have two observers O and O+ monitoring the same event
(two-dimension event) (e.g. a rectangular block) through their eyes as shown in Figure 3.34. If we
asked both observers to take a snapshot of what they see, we find that each every observer sees a
different picture (e.g. observer O finds the rectangular block inclined toward him or her, while the
other sees away inclination for the block as shown in Figure 3.35). Assuming the relative position
between the two observers is ccc(t) and the orientation of observer O+ is formed through applying
rotation RRR(t) on the observer O by rotating an angle θ about axis eee3. These terms ccc(t), RRR(t) may
change with time t as one of the two observers may be moving relative to the other. For vector uuu
attached to the rectangular block as shown in Figure 3.35 and observed by observer O as uuu, it will
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be observed by O+ defined as follows:

uuu+ =RRR(t)Tuuu =QQQ(t)uuu (3.190)

For a general position XXX in space, if this position is monitored by the two observers as XXX and XXX+,
these two observations are related through the following:

XXX+ = ccc(t)+QQQ(t)XXX (3.191)

Where QQQ(t) represents the transformation tensor from observer O to observer O+ which is equivalent
to the transpose or inverse of rotation tensor QQQ(t) = RRR(t)T . Any vector that transforms like the
above expression is called objective. We also conclude that the change in observer preserves the
scalar quantities like material properties at the point of interest, the distance between two points
and the angle between two vectors.

The velocity and acceleration vector are not objective as the time rate of change of Equa-
tion 3.190 results:

vvv+ = ċcc(t)+QQQ(t)vvv+Q̇QQ(t)XXX = ċcc(t)+QQQ(t)vvv+Q̇QQ(t)QQQT �XXX+�ccc(t)
�

= ċcc(t)+QQQ(t)vvv�WWW
�
XXX+�ccc(t)

�
6= ċcc(t)+QQQ(t)vvv

as Q̇QQ(t)QQQ(t)T = ṘRR(t)T RRR(t) = w̃wwT =WWW T =�WWW See chapter 2

(3.192)

Where
�
ȦAA
�

signifies the time derivative of the quantity (AAA). The non objectivity results from the
effect of spin appeared in the last term in the above equation �WWW (XXX+�ccc(t)).
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Figure 3.36: One event monitored by two
observers
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O

Figure 3.37: Two events monitored by a single
observer. The second event C+ is formed through
superimposing a rigid body rotation RRR(θθθ)T on
configuration C

To simplify the idea, a single motion monitored by two observers can be equivalent two
different events observed by the same observer via rotating the event in reverse direction the
observer is rotated as pictured in Figure 3.36, so the same results can be obtained if we assume
two different events observed by single observer O as shown in Figure 3.37, such that the second
event or configuration C+ is formed via superimposing a rigid body rotation RRRT (θ) on the first



3.4 Change of observer and objectivity 135

e1

e2

O

O+

u

u1

u2

Figure 3.38: The components of vector uuu resolved in a particular basis, e.g. eeei do not change with
changing the observer

configuration C. This rotation makes orientation of vector uuu attached to the body rotate to uuu+ in the
final configuration as follows:

XXX+ = ccc(t)+RRR(t)T XXX (3.193)

which is identical to the results of Equation 3.191. Term ccc(t) is the position vector linking observer
O and observer O+ as shown in Figure 3.36.

To describe any physical event in three dimensional space, we have to assign a frame of
reference (rectangular coordinate system) for each observers. If we choose a single inertia frame
(e.g. eeei) for both observers as shown in Figure 3.38, the vector uuu seen by observers O and O+ can
be resolved in this frame through:

uuu = uieeei; uuu+ = u+i eee+i (3.194)

Where uuu and eeei defines, respectively, the vectors uuu and basis eeei monitored by observer O, while uuu+

and eee+i defines the same vectors monitored by observer O+ with relation defined as:

uuu+ =QQQu; eee+i = Qeeei (3.195)

Substituting the above expressions into Equation 3.191, we get:

uuu+ =QQQu

u+i eee+i =QQQuieeei

u+i QQQeeei =QQQuieeei ! u+i = ui

(3.196)

We conclude that the components of vector uuu observed by two different observers and resolved in
the same frame are identical and independent of the observer as the projection of some vector on
some basis is a scalar value which does not change with changing the observer.

If we have two vectors uuu1 and uuu2 that transform according to the above rule like uuu+1 =QQQ1uuu1 and
uuu+2 =QQQ2uuu2 and a second order tensor AAA defined through dyadic product (uuu1
uuu2), this tensor can
be seen by both observers as follows:

AAA+ = uuu+1 
uuu+2 = (QQQ1uuu1)
 (QQQ2uuu2) =QQQ1(uuu1
uuu2)QQQT
2 (3.197)

For Cauchy stress tensor σσσ , it is written in index notation as σσσ = σi jeeei
eee j where eee+i = QQQeeei, it
follows that

σσσ
+ = σi jeee+i 
eee+j ; where σi j and σ

+
i j are identical as they are components (3.198)
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σσσ
+ = σi j (QQQeeei)
 (QQQeee j) =QQQ(σi jeeei
eee j)QQQT =QQQσσσQQQT (3.199)

O(0)=O(t)

O+(0)

e1

e2

E1

E2

t1

t2

R(θ)

R(0)=1

R(t)

C0

Ct

O +(t)

Figure 3.39
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R(t)

C0

Ct

O+(0)

O +(t)

O(0)=O(t)

Figure 3.40

� Example 3.14 Assume we have two frame of references shown in Figure 3.39, one is inertia
frame fixed in the space eeei and other is co-rotational or moving frame tttI attached to the body.
We note that the co-rotational frame tttI(t) is changing with time t and is identical to the material
frame EEEI at time (t = 0) such that:

tttI(t = 0) =EEE I (3.200)

Assume we have two observers; one fixed in the space (observer O) and the other attached to
the body (observer O+). The orientation of observer O+ is formed through the rotation of the
body with time R̄̄R̄R(t) superimposed on observer o such that R̄̄R̄R(t = 0) = 111 and they have the same
orientation at time t = 0. If the initial configuration of the body is C0 and is rotated by rotation
tensor R̄̄R̄R(t) to configuration Ct , the moving frame will be related to the material frame through:

tttI(t) = R̄̄R̄R(t)EEE I; or R̄̄R̄R(t) = tttI(t)
EEE I (3.201)

We can observe this tensor rotation through observer O+ as follows:

R̄̄R̄R(t)+ = tttI(t)+
EEE+
I (3.202)

As the two observers orientation are identical in the initial configuration C0 (RRR(t = 0) = 111) we
get EEE+

I =EEEI . This results can be observed in Figure 3.39 (both observers O and O+ are directed
in the same directions at C0), while in the final configuration Ct , the moving frame ttt i seen by the
two observers O(t), O+(t) follows this relation:

tttI(t)+ =QQQ(t)tttI(t) =RRR(t)TtttI(t) (3.203)

From above expression, Equation 3.202 will be:

R̄̄R̄R(t)+ = tttI(t)+
EEE+
I =QQQ(t)(tttI(t)
EEE I) =QQQR̄̄R̄R =RRRT R̄̄R̄R = 111 (3.204)
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as R̄̄R̄R and RRR are identical from Figure 3.39
�
RRR(t) =RRR(t)RRR(0) =RRR(t)

�
. Even if the orientation of

observer O+ is not identical to that of observer O in the initial configuration C0 as shown in
Figure 3.40, we get also the same above result R̄̄R̄R(t)+ = 111. As if we use the same above example
with both EEEI and observer O+ are formed through superimposing a rotation tensor RRR0 on eeei, it
results:

EEE i =RRR0eeei; EEE+
I =QQQ0EEE I; where QQQ0 =QQQ(t = 0) =RRRT

0 =RRR(t = 0)T (3.205)

For a rotation tensor R̄̄R̄R imposed on the body in configuration C0 to form configuration C1, the
observations by observers O and O+ will be:

R̄̄R̄R+ = ttt+I 
EEE+
I (3.206)

As ttt+I =QQQttttI and EEE+
I =QQQ0EEE I , we get

R̄̄R̄R+ =QQQttttI
EEE+
I =QQQtR̄̄R̄RQQQT

0 = 111 (3.207)

The last equality comes from the fact that QQQT
t =RRRt = R̄̄R̄RRRR0 = R̄̄R̄RQQQT

0 .
From above, rotation vector is called two-point tensor and transforms like vector field as follows:

RRR+ =QRQRQR (3.208)

Also rotation tensor RRR is composed of three orthonormal unit vectors, e.g. [RRR]I = [ttt1;ttt2;ttt3], each
vector transform like vector, so we can get the same findings of the above equation. �

In the same manner, deformation gradient FFF = FiIeeei
EEE I transforms like vector field (FFF+ =QFQFQF).
Using spectral decomposition for deformation:

FFF+ =RRR+UUU+ =QRUQRUQRU =QQQFFF (3.209)

as RRR+ =QQQRRR, while UUU is not effected with rotation (UUU+ =UUU) or from

FFF =
∂x
∂X

!FFF+ =

�
∂xxx
∂XXX

�+

=
∂xxx+

∂XXX
=QQQ

∂xxx
∂XXX

=QQQFFF (3.210)

As rigid body rotation transform vector dxxx through dxxx+ =QQQdxxx Similarly, the first Piola stress tensor
PPP = PiIeeei
EEE I transform like vector field (PPP+ =QPQPQP ) as:

PPP+ = JσJσJσ
+:FFF+�T

= JQσQJQσQJQσQTQQQFFF�T =QPQPQP (3.211)

Another type of second-order tensor is called material tensors or tensors parameterized only by
material coordinates only like stretch tensor UUU =UIJEEEI 
EEEJ , Green-Lagrangian strain tensor EEE,
and second Piola Kirchhoff SSS that transforms as follows:

EEE+ =
1
2

�
FFF+TFFF+�111

�
=

1
2
�
FFFTFFF�111

�
=EEE !FFF+TFFF+ =FFFTQQQTQFQFQF =FFFTFFF (3.212)

In the same manner:

SSS+ = JFFF+�1
σσσ

+:FFF+�T
= JFFF+�1QQQTQσQQσQQσQTQQQFFF�T = SSS (3.213)

All stresses and strains measure mentioned above are objective, while the time rate of change
of Cauchy tress is not, as differentiating σσσ+ =QσQQσQQσQT with time results in:

σ̇σσ
+ = Q̇σQQ̇σQQ̇σQT +Qσ̇QQσ̇QQσ̇QT +QσQ̇QσQ̇QσQ̇T 6=Qσ̇QQσ̇QQσ̇QT (3.214)
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Also we need to check the objectivity of different types of strain rates like ḞFF , LLL, DDD, and WWW as
follows:

FFF+ =QFQFQF $ ḞFF+
= Q̇FQ̇FQ̇F +QQQḞFF 6=QQQḞFF (3.215)

LLL+ = ḞFF+FFF+�1
= Q̇QQ̇QQ̇QT +QLQQLQQLQT 6=QLQQLQQLQT (3.216)

DDD+ =
LLL++LLL

2
= Q̇QQ̇QQ̇QT +QQ̇QQ̇QQ̇T +QQQ

�
L+LL+LL+LT

�
2

QQQT =QQQ

�
L+LL+LL+LT

�
2

QQQT =QDQQDQQDQT (3.217)

WWW+ = asym
�
LLL+
�
=QWQQWQQWQT +Q̇QQ̇QQ̇QT 6=QWQQWQQWQT (3.218)

We find that all the above time rate of change of strains mentioned above are non-objective and
do not follow the transformation rules except the rate of deformation DDD.

� Example 3.15 Lets assume a bar shown in Figure 3.33 with area A and subjected to axial
load PPP and aligned horizontally in the initial orientation, and its orientation is changing with
time t such that the bar only undergoes rigid body rotation. We need to write down the Cauchy
stress referred to two frame of reference; spatial frame and co-rotational frame attached to the
body

If the stress at the initial configuration and final configuration at time t are denoted by σσσ(0),
and σσσ(t), respectively, the relation between them will be:

σσσ(t) =RRR(t)σσσ (0)RRR(t)T (3.219)

Where R(t) infers the rotation tensor that defines the orientation of the bar. This orientation is a
function of the time t. To sense the values in the problem and describe it, we have to choose a
suitable coordinate system, e.g. coordinate system EEE, such that the Cauchy stress resolved in
this coordinate system at the initial and final configuration will be:

[σσσ (0)]EEE
EEE =

� P
A 0
0 0

�
(3.220)

[σσσ (t)]EEE
EEE =
h
RRR(t)σσσ (0)RRR(t)T

i
EEE
EEE

=

�
cos(θ) �sin(θ)
sin(θ) cos(θ)

�� P
A 0
0 0

��
cos(θ) sin(θ)
�sin(θ) cos(θ)

�
=

P
A

�
cos(θ)2 sin(θ)cos(θ)

sin(θ)cos(θ) sin(θ)2

� (3.221)

If we observe the same stress using the co-rotational frame attached to the body, the stress will
be called co-rotational stress resolved as follows:

[σ̌σσ (t)]EEE
EEE = [σσσ (t)]ttt
ttt (3.222)

=RRR(t) [σσσ (t)]EEE
EEERRR(t)T (3.223)

= [σσσ (0)]EEE
EEE (3.224)

=

� P
A 0
0 0

�
(3.225)

So we conclude that co-rotational Cauchy stress is an objective quantity as it is independent of
the bar orientation as follows: �

Also its time rate of change is objective such that it can follow the material constitutive relation
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in the rate form (e.g. for linear elastic material):

DDD =
1
E

h
(1+ν) ˙̆σσσ �ν trace

�
˙̆σσσ
�i
$ ˙̆σσσ =CCC : DDD (3.226)

We shall now introduce another type of stress measure known as Jamann stress rate σσσooo which is
considered as a push forward to the time rate of change of co-rotational Cauchy stress:

σσσ
ooo =RRR

�
˙̆σσσ
�

RRRT (3.227)

=RRR
�
QQQσσσQQQT �

;tRRR
T (3.228)

=RRR
�
RRRT

σσσRRR
�

;tRRR
T (3.229)

= σ̇σσ +RRRṘRRT
σσσ +σσσṘRRRRRT (3.230)

= σ̇σσ �ΩΩΩσσσ +σσσΩΩΩ (3.231)

We used (RRRRRRT = 111! ṘRRRRRT +RRRṘRRT = 000!ΩΩΩ = ṘRRRRRT ) in the above expression
In the same manner, for vector vvv, the co-rotational time rate of change of this vector vvvo is defined
as:

vvvooo =RRR
� ˙̆vvv
�
=RRR(QvQvQv)

;t =RRR
�
RRRTvvv

�
;t = v̇vv+RRRṘRRTvvv = v̇vv�ΩΩΩvvv (3.232)

Which RRR
�
RRRTvvv

�
;t

h
RRR
�
RRRT

σσσRRR
�

;tRRR
T
i

means rate change of spatial tensor vvv [σσσ ] taken by an observer
attached to the body. For a fixed observer in space, he or she needs to pull-back the object to the
material form RRRTvvv

�
RRRT

σσσRRR
�

to perform the usual derivative operation and then push-forward to the

spatial form RRR
�
RRRTvvv

�
;t

h
RRR
�
QQQσσσQQQT �

;tRRR
T
i

; or equivalently removing the spin effect WvWvWv [ΩΩΩσσσ �σσσΩΩΩ]

from the usual derivative v̇vv [σ̇σσ ] to have the same objective observation seen by an observer fixed in
the moving frame .Another application to co-rotated derivative of basis eeei attached to the body is
null

eeeo
i = ėeei�ΩΩΩeeei = 000 (3.233)

Such that:

ėeei =ΩΩΩeeei (3.234)

The objectivity of Jamann stress rate can be proven as follows:
For tensor σσσo observed by O and O+ as follows

σσσ
o = σ̇σσ �WWWσσσ +σσσWWW (3.235)

σσσ
+o

= ˙σσσ+�WWW+
σσσ

++σσσ
+WWW+ (3.236)

Where

WWW+ =QWWWQQWWWQQWWWQT +Q̇QQ̇QQ̇QT
σσσ

+ =QσσσQQσσσQQσσσQT
σ̇σσ

+ = Q̇̇Q̇QσσσQQQT +QQQσ̇σσQQQT +QQQσσσQ̇̇Q̇QT (3.237)

Substituting into Equation 3.236 results in:

σσσ
+o

= ˙σσσ+�WWW+
σσσ

+�σσσ
+WWW+

= Q̇̇Q̇QσσσQQQT +QQQσ̇σσQQQT +QQQσσσQ̇̇Q̇QT � �QQQWWWQQQT +Q̇QQ̇QQ̇QT �QQQσσσQQQT �QQQσσσQQQT �QWWWQQWWWQQWWWQT +Q̇QQ̇QQ̇QT �
=QQQσ̇σσQQQT �QQQWWWσσσQQQT �QQQσσσWWWQQQT = QQQσσσ

oQQQT

(3.238)
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From above equation, we conclude that Jamann stress rate is an objective rate.
Assume a bar shown in Figure 3.41 with cross section area A which is aligned horizontally in

the unstressed configuration C0 with material frame EEE attached to it, then rotated to configuration Ct

at time t with axial load P1 with length lt and co-rotational frame ttt attached to the body at the other
configuration Ct . If the bar is further stretched to lt+4t = lt + ∂ l

∂ t4t to form final the configuration
Ct+4t with final axial load P2. The co-rotational stress at two different times t; t +4t is defined as:

[σ̌σσ (t)]EEE
EEE =

� P1
A 0
0 0

�
as σ̌σσ (t) =QQQtσσσ tQQQT

t $σσσ t =RRRtσ̌σσ (t)RRRT
t (3.239)

[σ̌σσ (t +4t)]EEE
EEE =

� P2
A 0
0 0

�
(3.240)

as σ̌σσ (t +4t) =QQQt+4tσσσ t+4tQQQT
t+4t $σσσ t+4t =RRRt+4tσ̌σσ (t +4t)RRRT

t+4t

(3.241)

If the body co-rotational coordinate system rotates with rate θ̇θθ , the rotation tensor at time t +4t
will be:

RRRt+4t =RRR
�
θ̇θθ4t

�
RRRt =

�
111+ ėθėθėθ4t

�
RRRt = (111+ΩΩΩ4t)RRRt (3.242)

We assumed in the second equality in the above equation that θ̇θθ4t is infinitesimal due to the
infinitesimal change in time 4t such that (RRR

�
θ̇θθ4t

�
=
�

111+ ėθėθėθ4t
�

).
Using the following

(111+ΩΩΩ4t)T = (111�ΩΩΩ4t) (3.243)
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We can evaluate the time rate of change of Cauchy stress σ̇σσ as follows:

σ̇σσ =
σσσ t+4t �σσσ t

4t
=

RRRt+4tσ̌σσ (t +4t)RRRT
t+4t �RRRtσ̌σσ (t)RRRT

t

4t

=
(111+ΩΩΩ4t)

�
RRRt fσ̌σσ (t)+RRRt

t [C : DC : DC : D4t]RRRtgRRRT
t
�
(111�ΩΩΩ4t)�RRRtσ̌σσ (t)RRRT

t

4t

=
(1+ΩΩΩ4t)

�
RRRtσ̌σσ (t)RRRT

t +RRRt (RRRt
t [C : DC : DC : D]RRRt4t)RRRT

t
�
(1�ΩΩΩ4t)�RRRtσ̌σσ (t)RRRT

t

4t

=
(1+ΩΩΩ4t)(σσσ t +C : DC : DC : D)(1�ΩΩΩ4t)�σσσ t

4t

=
(ΩΩΩσσσ t �σσσ tΩΩΩ+(C : DC : DC : D))4t +O(4t2)

4t
'C : DC : DC : D+ΩΩΩσσσ t �σσσ tΩΩΩ!C : DC : DC : D = σ̇σσ �ΩΩΩσσσ t +σσσ tΩΩΩ =σσσ

o

σσσ
o =C : DC : DC : D

(3.244)

Such that the constitutive relation will be:

DDD =
1
E
[(1+ν)(σσσo)�ν trace(σσσo)] (3.245)

We used σ̌σσ (t +4t) = σ̌σσ (t)+RRRt
t [C : DC : DC : D4t]RRRt as the deformation rate DDD resolved in the co-rotational

frame of reference tttt at configuration C1 as follows:

[DDD]ttt
ttt =

�
∂ l
∂ t 0
0 0

�
(3.246)

While it is resolved in inertia frame eeei as follows:

[DDD]eee
eee =RRRt [DDD]ttt
ttt RRRT
t (3.247)

As from Equation 3.239 and Equation 3.240

[σ̌σσ (t +4t)]EEE
EEE � [σ̌σσ (t)]EEE
EEE =

� P2�P1
A 0
0 0

�
(3.248)

and from�
RRRT

t [C : DC : DC : D4t]RRRt
�

EEE
EEE =RRRT
t [C : DC : DC : D4t]EEE
EEERRRt = [C : DC : DC : D]ttt
ttt4t = [CCC]EEE
EEE :

�
∂ l
∂ t 0
0 0

�
4t (3.249)

Which, using the constitutive relation, gives the same findings of Equation 3.248.
Co-rotational deformation gradient rate of change FFFO. Deformation gradient is a two point tensor,
so co-rotational rate will be:

FFFo = ḞFF�ΩFΩFΩF (3.250)

The conjugate pairs PPP : ḞFF can be reduced to

PPP : ḞFF =PPP : (ΩFΩFΩF +FFFo) (3.251)

=PPP : ΩFΩFΩF +PPP : FFFo (3.252)

=PPP : FFFo +PFPFPFT : ΩΩΩ (3.253)

=PPP : FFFo (3.254)

PPP : ḞFF =PPP : FFFo (3.255)
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Note that PFPFPF is symmetric7 and ΩΩΩ is skew-symmetric, so we find that PFPFPFT : ΩΩΩ vanishes, (see
Equation 1.100) andZ

V0

PPP : ḞFFdV0 =

Z
V0

PPP : FFFodV0 (3.256)

So PPP : FFFo can be considered as conjugate pairs which was proven in the geometrically exact beam
theory in subsection 3.3.5.
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3.4.1 Second Piola Kirchhoff Stress update and force resultant in beam element
There are two methods to update second Piola Kirchhoff stresses, namely total Lagrangian and
updated Lagrangian formulations. Assume a rigid cross section of a beam shown in Figure 3.42
with Cauchy stress resolved in the inertia frame and co-rotational frame as follows:

1
σσσ = 1

σσσ i jeeei
eee j =
1
σ i j

1ttt i
 1ttt j (3.257)

While second Piola Kirchhoff stress tensor is defined as follows:

2
1SSS = 2

1Si j
1ttt i
 1ttt j (3.258)

Defining a stress vectors 1
0SSS1 and 2

0SSS1 at configurations C1 and C2 as shown in Figure 3.42 as follows:

1
0SSS1 =

1
0S1I

1tttI (3.259)
2
0SSS1 =

2
0S1I

2tttI (3.260)

7PFPFPF=JσσσTFFF�TFFFT = JσσσT is symmetric quantity due to the symmetry of Cauchy stress
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Where superscript signifies the time or configuration of measure, while subscript indicates the
reference configuration the property referred to. Due to the objectivity of second Piola Kirchhoff
stress, the update form of total Lagrangian formulation is defined as follows:

2
0SIJ =

1
0SIJ +4

�12
0 SIJ

�
(3.261)

Where the constitutive relation is defined as follows:

4�12
0 Si j

�
= 12

0 Ci jrs4
�12

0 Ers
�

(3.262)

The resultant forces and moments applied on beam section at configurations C1 and C2 are defined
as follows:

1FFF = 1Fieeei =
1F i

1ttt i (3.263)
1MMM = 1Mieeei =

1Mi
1ttt i (3.264)

The co-rotational components 1F i and 1Mi is defined as follows:

1F I =

Z
A

1
0S1IdA (3.265)

1MI =

Z
A

heXXXi
I

�1
0SSS1
�

1ttt i
dA =

Z
A

XJ
1
0S1K eJKIdA (3.266)

Where XXX = XIEEE I = X2EEE2 +X3EEE3 or
heXXXi

I
= [0 X2 X3] as shown in Figure 3.44, while

�
1
0SSS1
�

1ttt i
=

[10S11
1
0S12

1
0S13] and eJKI is Permutation symbol.
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The spatial components of Equation 3.263 and Equation 3.264 can be defined using (ttt i =
1
0RRR eeei) as

follows:

1Fi =
1
0RiI

1F I =
1
0RiI

Z
A

1
0S1IdA (3.267)

1Mi =
1
0RiI

1MI =
1
0RiI

Z
A

XJ
1
0S1K eJKIdA (3.268)

Where

1
0RRR = 1

0RiI eeei
EEE I =
1ttt i
EEE I (3.269)

1F1 =

Z
A

1
0S11dA (3.270)

1F2 =

Z
A

1
0S12dA (3.271)

1F3 =

Z
A

1
0S13dA (3.272)

1M1 =

Z
A

�
X2

1
0S13�X3

1
0S12

�
dA (3.273)

1M2 =

Z
A

X3
1
0S11dA (3.274)

1M3 =

Z
A
�X2

1
0S11dA (3.275)

In the same manner configuration C2, with:

2FFF = 2Fieeei =
2F i

2ttt i (3.276)
2MMM = 2Mieeei =

2Mi
2ttt i (3.277)

We get the following:

2Fi =
2
0RiI

2F I =
2
0RiI

Z
A

2
0S1IdA (3.278)

2Mi =
2
0RiI

2MI =
2
0RiI

Z
A

XJ
2
0S1K eJKIdA (3.279)

Where 2
0RRR = 2

0RiI eeei
EEE I =
2ttt i
EEE I .

Using Figure 3.43 to define the following force and moment resultants:

2FFF = 2Fi
1ttt i =

2F i
2ttt i (3.280)

2MMM = 2Mi
1ttt i =

2Mi
2ttt i (3.281)
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The components of forces and moment resultants can be defined as follows:

2Fi =
2
1RiI

2F I =
2
1RiI

Z
A

2
1S1IdA (3.282)

2Mi =
2
1RiI

2Mi =
2
1RiI

Z
A

X j
2
1S1 j eJKIdA (3.283)

Where

2
1RRR = 2

1RiI
1tttI
 1tttI =

2ttt i
 1tttI (3.284)

The update form of updated Lagrangian formulation is defined as follows:

2
1SIJ =

1
1SIJ +4

�12
1 SIJ

�
(3.285)

Where the constitutive relation is defined as follows:

4�12
1 Si j

�
= 12

1 Ci jrs4
�12

1 Ers
�

(3.286)
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� Example 3.16 If we have a beam shown in Figure 3.45 subjected to only axial loads with
0P, 1P and 2P and lengths 0l, 1l and 2l at configurations C0, C1 and C2, respectively, the only
generated second Piola Kirchhoff stress components is t

0S11 at configuration Ct at time t with
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corresponding Green Lagrange strain t
0E11 defined as follows:

0
0E11 =

0e11 (3.287)

1
0E11 =

1
2

1l2� 0l2

0l2 (3.288)

2
0E11 =

1
2

1l2� 0l2

0l2 (3.289)

The update form of total Lagrange formulation is defined as follows:

2
0S11 =

1
0S11 +4

�12
0 S11

�
(3.290)

1
0S11 =

0
0S11 +4

�01
0 S11

�
= 0

σ11 +4
�01

0 S11
�

(3.291)

Where 0e11 is the infinitesimal strain and 4�01
0 S11

�
and 4�01

0 S11
�

are defined as

4�01
0 S11

�
= 01

0 C1111
�1

0E11� 0e11
�

(3.292)

4�12
0 S11

�
= 12

0 C1111
�2

0E11� 1
0E11

�
(3.293)

For linear elastic material 12
0 C1111 = E, where E is Young modulus.

While The update form of updated Lagrange formulation is defined using Figure 3.46 as follows:

1
1E11 = 1e11 (3.294)

2
1E11 =

1
2

1l2� 1l2

1l2 (3.295)

2
1S11 =

1
1S11 +4

�01
1 S11

�
= 1

σ11 +4
�01

1 S11
�

(3.296)

Where ei j and σ i j are the co-rotational components or the components of the infinitesimal strain
and Cauchy stress resolved in the co-rotational frame 1ttt1 as shown in Figure 3.46. 4�01

1 S11
�

is
defined as

4�12
1 S11

�
= 12

1 C1111
�2

1E11� 1e11
�

(3.297)

�
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4. Energy Principles and Introduction to FEA

4.1 Introduction
4.1.1 Work

e1
e2

e3

A

Br

r+dr

F
dr

Figure 4.1

e1
e2

e3

A

B

Figure 4.2

Assume a particle moving through path AB with position vector rrr relative to fixed frame of
reference under an influence of force FFF , such that the infinitesimal work dW on the particle through
moving from position rrr to position rrr+drrr will be the dot product of the force vector at position rrr
and the infinitesimal movement drrr or the product of the displacement and force in displacement
direction.

dW =FFF :drrr = F1dr1 +F2dr2 +F3dr3 (4.1)

So total work done through the entire path AB will be:

W =

Z B

A
FFF :drrr (4.2)
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The work carries positive sign if projection of the force vector on displacement and displacement
vector has the same direction. Bear in mind that this quantity is a scalar value which does not
change with changing coordinate system, even if the components of drrr and FFF (vectors) depend on
the coordinate system chosen.

Like above, work done by moment vector MMM through an infinitesimal rotational spin dφφφ will be:

dW =MMM:dφφφ (4.3)

The total work done from point A to B will be:

W =

Z B

A
MMM:dφφφ (4.4)

See Appendix 4.5.5 for different types of moments and the corresponding work done for each type.
For example, the work done by particle’s weight mg elevated a distance y equal to �mgy. Also the
work done on linear elastic spring with stiffness k stretched or compressed by displacement x is
�1

2 kx2. The work is negative in both cases as the force and its displaced distance have different
direction. For flexible bodies, the total work performed on the body contains two parts, work done
by internal forces WI and other by external forces WE defined as:

W =WI +WE (4.5)

4.1.2 Power

The time rate of change of the work done by force FFF to move a particle through an infinitesimal
distance drrr for an infinitesimal time dt leads to definition of the power P given by:

P =
dW
dt

=FFF :
drrr
dt

=F:vF:vF:v (4.6)

Where vvv is velocity of the particle. As a result, the total work done through path AB can be
converted to time integral with interval [tA; tB] given by:

W =

Z B

A
FFF :drrr =

Z tB

tA
F:vF:vF:vdt =

Z tB

tA
Pdt (4.7)

Where tA and tB represent the start and end time of path AB spent by the particle. Newton’s second
law of motion for particle with mass m moving under an influence of force FFF is given by:

FFF = maaa (4.8)

So power exerted by force FFF contributes to change in kinetic energy K:E as follow:

P =
d
dt

�
1
2

mv2
�
=

d
dt

(K:E) (4.9)

From above equation or using principle of work and energy, work W is converted to a change in
kinetic energy as follows:

W =

Z tB

tA
Pdt =4K:E (4.10)
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4.1.3 Potential energy and conservative forces
A force FFF is considered conservative, if the work done by it is independent on the path taken, but
it depends only on the initial and final positions of the force, e.g. work done by particle weight
depends only on the vertical displacement. This work is stored in the weight as a potential energy,
such that if the weight mg lifted a distance y which means that negative work �mgy is exerted by
weight (as weight force is downward and the displacement is the opposite direction), the weight
acquires a positive potential energy (Π = mgy) as it has the potential or capacity of doing positive
work mgy when returning back down to its initial position so the change in potential energy is
defined as

4Π =�
Z B

A
FFF :drrr =�W (4.11)

Also, when elastic spring with stiffness k is stretched or compressed by distance x from its
unstretched position, an elastic potential energy is stored in the spring equal to 1

2 kx2 (linear elastic
spring), as in any deformed position, the spring has the potential to do positive work when moving
back to its undeformed position. From above equation, the conservative force FFF can be evaluated
from the gradient of its potential Π in the direction of its displacement as follows:

FFF (xxx) =�∇Π(xxx) where ∇(A) is the gradient o f a scalar A (4.12)

C (2,1)

B (2,0)

D(0,1)

A (0,0)

Figure 4.3

� Example 4.1 — Conservative force. Consider a force field FFF(x;y) = (y+2x)i+x j affecting
a particle moving from point A to point C shown in Figure 4.3, check whether the force is
conservative or not, then calculate the work done through two paths ABC and ADC.
The components of force FFF(x;y) are:

Fx = y+2x; Fy = x (4.13)

Applying Equation 4.12 to get the potential as follows:

Fx =�dΠ

dx
!Π =�yx� x2 + f1(y) (4.14)

Fy =�dΠ

dy
!Π =�yx� f1(x) (4.15)

So we can conclude that

Π =�yx� x2 +C where C is constant (4.16)
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So the force is conservative.
The work done through path AB is

W =

Z B

A
FFF :drrr =

Z 2

1
(y+2x):dx

����
y=0

=

 �
yx+

x2

2

�����x=2

x=0

!�����
y=0

= (2y+2)jy=0 = 2 (4.17)

Similarly, work done through path BC, AD, and DC is 1, 0, 3, respectively. so the work done
through path ABC and ADC is equal to 3 which makes the force FFF conservative.
�

� Example 4.2 — Non-conservative force. Force FFF = xyi+ yx2 is not conservative as

Fx =�dΠ

dx
!Π =�1

2
x2y+ f1(y) (4.18)

Fy =�dΠ

dy
!Π =�1

2
y2x2� f1(x) (4.19)

There is no potential function that can achieve the two equations which make the force field
nonconservative. �

Another example of non-conservative force is friction forces which depend on many parameters
like path length.

4.1.4 Conservation of energy
From Equation 4.10 and Equation 4.11, we get

4(Π+K:E) = 0 (4.20)

Conservation of energy states that the total energy (sum of the system potential energy Π and
kinetic energy K:E) for a conservative system remains stationary. Conservation of energy needs the
external forces to be conservative or have a field, so we can evaluate the change of its potential from
end points of the path moved. For flexible bodies, Another requirement to apply the conservation
of energy is that the body should be elastic, such that a unique internal forces can be extracted for
the given body deformation. In this case a unique force field will be a function of the deformation
and independent of the path, such that we can extract the internal potential (potential strain energy)
for any particular deformation.

� Example 4.3 Assume an object of mass m located at an earth gravity field and thrown upward
from level x1 with velocity v1 to reach level x2, what is its velocity at level x2? The object is
subjected to force field or gravity force (F (x) = mg) pointing downward (constant with x),
where g is the gravity acceleration of the earth.

The change in potential energy 4Π = �R x2
x1

F (x)dx = �R x2
x1
�mgdx = mg(x2� x1), the

negative sign of mg inside the integral due to the applied force is opposite in the direction to
displacement moved.

The change in kinetic energy K:E will be 4K:E = 1
2 mv2

2� 1
2 mv2

1 .
As the total energy is constant, we get.

mgx+
1
2

mv2 = constant (4.21)
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Also differentiating the equation, so the acceleration of the object (a) is as follow:

mgẋ+mvv̇ = mgv+mva = 0$ a =�g (4.22)

Also the power of the gravity force equals to the rate of change of kinetic energy which leads to
the same results.

mgv =F:vF:vF:v = P =
d
dt

�
1
2

mv2
�
= mva$ a =�g (4.23)

From the last above two equation, we can check that acceleration is identical to the gravity
acceleration. �

F

x

k

x

L

-x

mg

mg

A B
Figure 4.4

� Example 4.4 — Flexible body. Assume unstressed vertical linear elastic spring shown in
Figure 4.4 of length L and stiffness K then glued with gravity load mg to displace downward
distance mg=K, then this mass is pulled at distance x added to L (x+L) then left to vibrate
freely. We need to evaluate the mass velocity when spring reaches its unstressed length L.

When the mass is vibrating, it is subjected to two force fields, gravity force field and force
exerted from the spring equal to Kx where x is the distance the spring stretches, such that the
force field will be:

F (x) = mg+Kx (4.24)

The change in potential energy for the mass moving from point A to point B will be:

4Π =�
Z x2

x1

F (x)dx =�
�

mgx+
1
2

Kx2
�

(4.25)

The negative sign resulting from the above equation because the motion of the mass in the
direction of the force field. Note that the first term of the equation called increase in load
potential energy 4V , while the second term is called increase in the strain energy 4U .

The change in the kinetic energy 4K:E = 1
2 mv2

B� 1
2 mv2

A = 1
2 mv2

B, such that the total change
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of the energy of the system will be:

1
2

mv2
B�
�

mgx+
1
2

Kx2
�
= 0 (4.26)

�

4.1.5 Strain energy for different types of loading

εij

σij
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ε

σ
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2

(b)

Figure 4.5
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L

Figure 4.6

M z M z

z z
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y

Figure 4.7

M x

L
θx

Figure 4.8

Applying loads on elastic body results in internal stresses and strains. Strain (potential) energy
stored in the body per unit volume

�
U
�

is defined as the area under stress strain curve shown in
Figure 4.5a as follows:

U =

Z
ε f

0
σi jdε i j (4.27)

For linear elastic body shown in Figure 4.5b, this energy will be:

U =
1
2

σi jεi j =
1

2E
σ

2
i j (4.28)
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Stain energy for the total volume of the body will be:

U =

Z
V

�
U
�

dV =

Z
V

�Z
ε f

0
σi jdε i j

�
dV (4.29)

For linear elastic body, the total stain energy is:

U =

Z
V

1
2E

σ
2
i jdV (4.30)

Strain energy due to axial loading
Assume a linear elastic bar problem shown in Figure 4.6 with length L, area A and modulus of
elasticity E fixed at one support and subjected to axial load N at the other free end. The stress and
strain distributions along the bar is defined as follow:

σ =
N
A

(4.31)

ε =
σ

E
=

N
EA

(4.32)

Also the kinematic relation for the axial strain is defined as:

ε =
du
dx

= u0 (4.33)

U =

Z
V

1
2E

σ
2dV =

Z
V

1
2E

�
N
A

�2

dV =

Z L

0

 Z
A

1
2E

�
N
A

�2

dA

!
dx

=

Z L

0

1
2E

�
N
A

�2

A dx =

Z L

0

N2

2EA
dx

(4.34)

From Equation 4.32, it follows:

U =
1
2

Z L

0
EA
�
u0
�2 dx (4.35)

Strain energy due to bending moment
For a linear elastic beam directed along x direction subjected to moment Mz about its major axis z
with inertia Iz, the stress and strain distributions is defined as:

σ =�Mz

Iz
y (4.36)

ε =�σ

E
=

Mzy
EIz

(4.37)

Where y is the vertical distance away from the geometric natural axis ]of the beam. Also the strain
can be related to beam curvature v00 using this expression:

ε =�du
dx

= v00y (4.38)

U =

Z
V

1
2E

σ
2dV =

Z
V

1
2E

�
Mz

Iz
y
�2

dV =

Z L

0

Z
V

1
2E

�
Mz

Iz
y
�2

dA dx (4.39)

=

Z L

0

1
2E

�
Mz

Iz

�2�Z
A

y2dA
�

dx =

Z L

0

1
2E

�
Mz

Iz

�2

Iz dx =

Z L

0

M2
z

2EIz
dx =

Z L

0

1
2

EIz
�
v00
�2dx

(4.40)
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Strain energy due to shear stresses
For a linear elastic beam subjected to shear force Q with area A, length L and shear modulus of
elasticity G, using the concept of an equivalent shear area As = kA, where k is area shear factor.
The shear force is equal to the shear stress τNA calculated at the neutral axis times this area as
follows:

Q = τNAAs = kτNAA (4.41)

So the corresponding shear strain at the neutral axis will be:

γ =
τNA

G
=

Q
AsG

(4.42)

U =

Z
V

1
2E

σ
2dV =

Z L

0

Z
V

1
2G

�
Q
As

�2

dA dx =

Z L

0

Q2

2GAs
dx =

Z L

0

1
2

GAsγ
2dx (4.43)

Strain energy due to uniform torsion

free warping
at beam end M x

(a)

(b)

Figure 4.9

No warping
at beam end

Torsion for warping restrained beam

M x

(a)

B
H

B
H

d

(b)

θx

w f

(c)

Figure 4.10

For I-section shown in Figure 4.9a with length L, torsional rigidity GJ, fixed from axial rotation
at the left end and subjected to torsional moment Mx at the other end, the rate of beam twist β is
defined as:

β = θ
0
x =

Mx

GJ
(4.44)
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As the torsion moment is constant along the beam length, the rate of twist from above equation is
also constant with rotation θx at the right end defined as

θx = βL =
MxL
GJ

(4.45)

Mx is called ST. Venant or pure torque Msv = GJθ 0x with shear stress shown in Figure 4.9b, so the
strain energy is defined as:

U =

Z L

0

Mx
2

2GJ
dx (4.46)

Strain energy due to non-uniform (warping) torsion
In some cases, torsion can be carried by axial stresses in addition to shear stresses. This occurs
when the cross section is prevented from warping, which is supposed to happen in the section
when subjected to torsion as in Figure 4.10a at the left end of the beam. Warping out of plane
means that the axial displacement of fiber appears as shown in Figure 4.9a. Preventing section
from warping results in longitudinal stresses and corresponding torsional resistance called warping
torsion. Consider two beams in Figure 4.9a and Figure 4.10a subjected to moment Mx at the right
end, and restrained from twisting at the other end but one beam is warping restrained and the other
is not. The first warping free beam has the freedom to displace axially without any restriction and
exhibits a similar warping distribution at any cross section along beam length. Also the rate of
twist is constant across the beam length, and all the cross section is subjected to shear stresses.
While the warping-fixed beam shows that the rate of twist is not constant starting from null at the
wrapping-restrained section end reaching to its maximum at the right end which forces the two
flange of the beam to display laterally in a bending form. As a result, axial stresses is formed in the
bending flange and participates in resisting the applied torsion besides shear stresses. The torsion
portion resisted by axial stresses is called warping torsion which is defined as

Mw =V:d (4.47)

Where V is the horizontal shear force resulted due to the resistance of the flange to the bending and
d is the distance between two flange as shown in Figure 4.10b.

V =�dM f

dx
(4.48)

M f = EIy f
d2w f

dx2 (4.49)

From Figure 4.10c, w f =
θxd
2 , the warping torsion is defined as:

Tw =�dM f

dx
d =�EIy f

d3w f

dx3 d =�EIy f d2

2
d3θx

dx3 =�ECwθ
000
x (4.50)

Where Cw is defined as warping constant equal to Iy f d2

2 =
Iyd2

4 for beams with I-sections. So the
total torsion resistance will be:

T = Tsv +Tw = GJθ
0
x�ECwθ

000
x (4.51)

stress distribution across the flange will be:

σ =
M f

Iy f
z (4.52)
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From Equation 4.49 and w f =
θxd
2 , the stress distribution across the top flange will be:

σ = E
d2w f

dx2 z = E
d2

4
dθ

dx2 z = Edθ
00z (4.53)

So the resulting strain energy form the top flange UT will be:

UT =

Z
V

1
2E

σ
2dV =

Z L

0

1
8

Ed2 �
θ
00�2
�Z

A
z2dA

�
dx=

Z L

0

1
8

Ed2Iy f
�
θ
00�2 dx=

Z L

0

�
1
4

ECwθ
002
x

�
dx

(4.54)

Similarly the bottom flange stores the same strain energy, so the total strain energy for beam
subjected to torsion moment is defined as

U =

Z L

0

�
1
2

GJθ
02
x +

1
2

ECwθ
002
x

�
dx (4.55)

In finite element analysis, we can consider the rate of twist θ 0x as an additional DOF with a
force variable conjugate to it called bi-moment. Bi-moment B is considered an auxiliary quantity
represented by two equal and self-equilibrating moments appears at the two flange as shown in
Figure 4.10b and defined as:

B = M f d = EIy f
d2w f

dx2 d =
EIy f d2

4
d2θx

dx2 = ECwθ
00
x (4.56)

The objective of bi-moment is to formulate an expression similar to the one used in beam theory
Mz = EIz(v00).

For open cross section like I-sections, out-of-plane warping resistance is large compared to its
torsional rigidity and can not be neglected.

4.2 Virtual work
Any system restrained at some locations on its boundary and subjected to external forces takes
many configuration. The set of configurations that satisfies the geometric boundary condition is
called set of admissible configurations. For elastic bodies, there is only one equilibrium or true
configuration in this set that corresponds to these applied forces. We can also assume that the
admissible configuration is obtained by infinitesimal variations of the true configuration. These
displacement variations are completely imaginary or virtual and does not have any relation with
the true displacement. However, these variations do not violate the boundary conditions (B.C) as
shown in Figure 4.11a. Also the applied loads should be the same in the magnitude and direction
during these variations as shown in Figure 4.11b. Also it should be independent as shown in
Figure 4.11c(As it is a rigid body, the δv2 is related to δv1 and both displacements can not be used
together in formulating the virtual displacement of the beam). The principle of virtual work states
that, for a body configuration under equilibrium of external loads and for any virtual displacement
added to this equilibrium configuration, the sum of the virtual work exerted through this virtual
displacement vanishes. We can verify this principle via the following examples.

� Example 4.5 — Rigid body. Let us assume a rigid rectangular plate shown in Figure 4.12
with dimensions a and b subjected to external concentrated forces F1, F2, F3, and concentrated
moment M, then it undergoes three independent virtual displacements δu, δv , and δθ a. For
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F
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δv1Rigid bar
F

δv2

δv1Rigid bar

F δv
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δv Not Valid virtual displacement

Not Valid virtual displacement Valid
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(a)

Not Valid virtual displacement Valid

(b) The left case exhibits a change in load direction

F

δv2

δv1Rigid bar

(c) The virtual displacement δv1 and δv2 are dependent if the beam is rigid

Figure 4.11

equilibrium case, the resulting virtual work should vanish as follows:

δW = F1

�
�δu� 1

2
bδθ

�
+F2

�
�δv+

1
2

aδθ

�
(4.57)

+F3sinθ

�
δv+

1
2

aδθ

�
+F3cosθ

�
δu� 1

2
bδθ

�
= 0 (4.58)
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F3

θ

M

δθ
δu

δv

e1

e2
a

b

rigid

Figure 4.12

F

δv/2

δv
Rigid bar

R

R

Figure 4.13

(�F1 +F3cosθ)δu+(F2 +F3sinθ)δv+
�
�1

2
F1 b+

1
2

F2 a+
1
2

F3 asinθ � 1
2

F3 bcosθ

�
δθ = 0

(4.59)

As the virtual displacements are independent and arbitrary, so their coefficients will vanish also
as follows:

�F1 +F3cosθ = 0 (4.60)

F2 +F3sinθ = 0 (4.61)

�1
2

F1 b+
1
2

F2 a+
1
2

F3 asinθ � 1
2

F3 bcosθ = 0 (4.62)

From above, the principle of virtual work provides the three equilibrium equations. �

aWe note that any rigid planar element has three independent displacements; two displacements to express
displacement in x and y direction and the third one to expresses rotation. We can choose any three independent
displacements to express this motion like using two displacements in x direction and one in y direction, such that we
can fully describe the planar body motion

In some cases, the assumed virtual displacement could violate the boundary conditions as
shown in Figure 4.13. In this case, the reaction related to the violated boundary point will be
considered as an external loads and the virtual work will be defined as follows:

δW = Rδv+F
δV
2

= 0! R =
F
2

(4.63)

This violated virtual displacements is used to calculate the reactions of structures.
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Figure 4.16

� Example 4.6 — Flexible bodies. Assume a linear elastic spring with stiffness k and subjected
to external force F stretching the spring a displacement ∆ as shown in Figure 4.14. To evaluate
this displacement, we assume a virtual displacement.

The virtual work includes two components; one results from internal stresses WI and other
comes from the external loads δWext , such that the total virtual work will be:

δW = δWI +δWext (4.64)

Each component is calculated from the area shown in Figure 4.15

δW = (K∆)δ∆� (F)δ∆ = 0! ∆ =
F
K
; f or arbitrary δ∆ (4.65)

�

Virtual work principle is used for solving nonlinear problems and non conservative systems. The
above examples are very simple compared to its powerful use in solid mechanics and finite element
analysis. The next two examples provide an insight into its use in nonlinear analysis.



162 Chapter 4. Energy Principles and Introduction to FEA
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Figure 4.18

� Example 4.7 Assume a nonlinear elastic spring with such that the internal force is a function
of the spring elongation d (F = F(d)) as shown in Figure 4.17. This relation is irreversible such
that we cannot calculate the elongation for a particular force directlya. It is required to evaluate
the displacement d for applied external force F . In this example we will evaluate this force
using Newton Raphson method or Taylor’s theorem as follows:

First we start at a assumed trial displacement dtry and evaluate the corresponding force Ftry,
then applying Taylor’s Theorem after neglecting the higher order terms of 4d than first as
follows:

F = Ftry +
∂F
∂d

����
d=dtry

4d (4.66)

The ∂F
∂d

���
d=dtry

represents the slope of tangent at dtry which could be evaluated from function

F = F(d) and is called the tangent stiffness of the spring as shown in Figure 4.17. From the
above equation we can evaluate an approximate solution to 4d. Repeating this process using
dtry = dtry+4d many times leads to an accurate result for displacement d. Also it can be solved
using virtual work principle as follows:

As shown in Figure 4.18, we can assume the first trial solution is d(1) and it is required to
evaluate a better approximation for the displacement d(2). Applying a virtual displacement δd
on both cases. As shown in Figure 4.16a and Figure 4.16b, this virtual displacement is identical
in both cases and independent on 4d. The virtual work in the both cases will be:

δW jd=d(1) = δdF(1); δW jd=d(2) = δdF (4.67)

In the second case, the virtual work can be evaluated using Taylor’s expression as follows:

δW jd=d(2) = δW jd=d(1) +
∂δW
∂d

����
d=d(1)

4d (4.68)

As a result:

δdF = δdF(1)+δd
∂F(1)

∂d

�����
d=d(1)

4d (4.69)
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δd
�

F�F(1)
�
= δd

 
∂F(1)

∂d

�����
d=d(1)

4d

!
(4.70)

For an arbitrary displacement δd, we get an equation similar to Equation 4.66.

F�F(1) =
∂F(1)

∂d

�����
d=d(1)

4d (4.71)

The process above is called linearization of virtual work which is used to evaluate the tangent
stiffness of the structures. �

aIn most structures, if the displacement of the structure is known, we can evaluate the corresponding strains
and stresses which is integrated over the body volume to evaluate the external loads, but real problems have the
displacements unknowns for given external loads and this irreversible function (F = F(d)) is an example of a real
problem.

u1 u2

P1 P2

u1 u2

k1
k2

F1 F1

F2 F2Δ2=u2-u1

Δ1=u1

Figure 4.19

� Example 4.8 Assume two linear springs connected in series as shown in Figure 4.19 and
subjected to two concentrated loads P1 and P2 with corresponding displacements u1 and u2.
From equilibrium at each node, we get:

P2 = k2(u2�u1)

P1 +P2 = k1u1 ! P1 = k1u1� k2(u2�u1)
(4.72)

�
P1
P2

�
=

�
k1 + k2 �k2
�k2 k2

��
u1
u2

�
(4.73)

If the two springs are nonlinear, the forces generated in each spring are

F1 = 0:142
1 +41; F2 = 0:242

2 +42 (4.74)
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Figure 4.20

Where 41 and 42 represent the elongation undergone in each spring which are related to the
nodal displacements through:

41 = u1; 42 = u2�u1 (4.75)

So the forces in each spring will be:

F1 = 0:1u2
1 +u1; F2 = 0:2(u2�u1)

2 +(u2�u1) (4.76)

The nodal forces is related to the internal forces in springs as follows:

p2 = F2 = 0:2(u2�u1)
2 +u2�u1 (4.77)

p1 + p2 = F1 (4.78)

p1 = F1�F2 = 0:1u2
1 +u1�

�
0:2(u2�u1)

2 +u2�u1
�

(4.79)

So the stiffness of each spring is defined as:

k1 =
∂F1

∂41
= 0:241 +1 = 0:2u1 +1 (4.80)

k2 = 0:441 +1 = 0:4(u2�u1)+1 (4.81)

Using virtual work principle as in the previous example as follows:
Starting with trial solution u(1)

T
=
h

u(1)1 u(2)1

i
δW = δW ju=u(1) +

∂δW
∂u

����
u=u(1)

4u (4.82)

As shown from Figure 4.20, applying identical virtual displacements on the real displace-
ments before and after the current trail and rewriting the upper equation in terms of theses virtual



4.2 Virtual work 165

displacements as follows:

δu1P1 +δu2P2 = δu1P(1)
1 +δu2P(1)

2 +
∂δW

∂u

����
u=u(1)

4u (4.83)

�
δu1 δu2

�" P1�P(1)
1

P2�P(1)
2

#
=

∂δW
∂u

����
u=u(1)

4u (4.84)

But

∂δW
∂u

����
u=u(1)

=
∂ (δu1P1 +δu2P2)

∂u

����
u=u(1)

=
�

δu1 δu2
� " ∂P1

∂u1

∂P1
∂u2

∂P2
∂u1

∂P2
∂u2

#�����
u=u(1)

� 4u1
4u2

�
(4.85)

Then it follows:

�
δu1 δu2

� " P1�P(1)
1

P2�P(1)
2

#
�
"

∂P1
∂u1

∂P1
∂u2

∂P2
∂u1

∂P2
∂u2

#�����
u=u(1)

� 4u1
4u2

�!
= 0 (4.86)

As δu1 and δu2 are arbitrary, it follows that:"
P1�P(1)

1

P2�P(1)
2

#
�
"

∂P1
∂u1

∂P1
∂u2

∂P2
∂u1

∂P2
∂u2

#�����
u=u(1)

� 4u1
4u2

�
=

�
0
0

�
(4.87)

The second term is called stiffness matrix and can be defined using Equation 4.72 as follows:"
∂P1
∂u1

∂P1
∂u2

∂P2
∂u1

∂P2
∂u2

#�����
u=u(1)

=

�
k1 + k2 �k2
�k2 k2

�����
u=u(1)

(4.88)

While the first term of Equation 4.87 is called the unbalanced forces at nodes which approaches
zero with iterations as follow:
Assuming the nodal forces P1 = �0:1 and P2 = 1:2 and we need to evaluate the nodal dis-
placement due to nodal forces . Assuming the first iteration u(1)

T
=
�

0:5 1:5
�

and using
Equation 4.76, Equation 4.77 and Equation 4.80, the stiffness matrix and nodal forces will be:

�
k1 + k2 �k2
�k2 k2

�
=

�
0:4u2�0:2u1 +2 �0:4(u2�u1)�1
�0:4(u2�u1)�1 0:4(u2�u1)+1

�
"

P1�P(1)
1

P2�P(1)
2

#
=

� �0:1�0:1u2
1�2u1 +

�
0:2(u2�u1)

2 +u2
�

1:2�0:2(u2�u1)
2�u2 +u1

� (4.89)

�
k1 + k2 �k2
�k2 k2

�����
u=u(1)

=

�
2:5 �1:4
�1:4 1:4

�
&

"
P1�P(1)

1

P2�P(1)
2

#
=

�
0:575

0

�
(4.90)

Applying Equation 4.87� 4u1
4u2

�
=

�
0:5227
0:5227

�
(4.91)
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The next trial start with u(2) = u(1)+4u =

�
1:0277
2:0277

�
, the stiffness matrix and nodal forces

will be:�
k1 + k2 �k2
�k2 k2

�����
u=u(2)

=

� �2:6045 �1:4
�1:4 1:4

�
&

"
P1�P(2)

1

P2�P(2)
2

#
=

� �0:0273
0

�
(4.92)

Applying Equation 4.87� 4u1
4u2

�
=

� �0:0277
�0:0277

�
(4.93)

The next trial start with u(3) = u(2)+4u =

�
1
2

�
, the stiffness matrix and nodal forces will be:

�
k1 + k2 �k2
�k2 k2

�����
u=u(3)

=

� �2:6 �1:4
�1:4 1:4

�
&

"
P1�P(3)

1

P2�P(3)
2

#
=

�
0
0

�
(4.94)

The unbalance forces vanishes which mean the equilibrium configuration is reached. �

4.2.1 Stationary potential energy
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As stated in subsection 4.1.3 and Equation 4.20, for a conservative system (elastic and subjected
to conservative forces), there is no change in the total potential energy for static loading as follows:

δΠ = δU+δV = 0 (4.95)

where U and V is the elastic strain energy stored in the system and load potential energy, respectively.
In other words, the potential energy is stationary and it could be maximum or minimum. For stable
structures, it undergoes minimum value with respect to displacements.

� Example 4.9 Assume a linear elastic spring with stiffness K subjected to axial load F as
shown in Figure 4.21. Due to axial displacement x the strain energy induces is 1

2 kx2, while the
load potential will be �Fx , so the total potential will be:

Π =
1
2

kx2�Fx (4.96)
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Its variation will be:

δΠ =
dΠ

dx
δx = 0 (4.97)

For arbitrary displacement δx, dΠ

dx will vanish as follows:

dΠ

dx
= kx�F = 0! x =

F
k

(4.98)

Figure 4.22 shows each components of potential energy and the total energy for k = 1N=m and
F = 1N. The total potential reaches minimum value at x = 1. �

4.3 Variational approach

4.3.1 Calculus of Variance

Figure 4.23

If a function f (x) has an extremum (minimum or maximum) at a point xo in the interval
x = [a;b], the first derivative of this function at this point vanishes as follows:

d f
dx

����
x=xo

= 0 (4.99)

The function is considered maximum (minimum) at this point when

d2 f
dx2 < 0

�
d2 f
dx2 > 0

�
(4.100)
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For a differentiable function f (x;y) of two variables, the necessary condition for an extremum at
some point (x0;y0) is that the total differential of this function vanishes at this point as follows:

d f =
∂ f
∂x

dx+
∂ f
∂y

dy = 0 at x = x0 and y = y0 (4.101)

As x and y are linear independent (x and y are not related to each other), so for arbitrary values for
dx and dy, it follows that:

∂ f
∂x

= 0 ;
∂ f
∂y

= 0 at x = x0 and y = y0 (4.102)

For paraboloid z = x2 + y2 + 0:25 shown in Figure 4.23, its derivatives with respect to x and y
vanish at:

∂ f
∂x

= 2x = 0! x = 0 (4.103)

∂ f
∂y

= 2y = 0! y = 0 (4.104)

As shown in Figure 4.23, the surface tangents at point (0;0) in x and y directions vanish as shown
in red arrows with zero slope at point (0;0).
Variational methods seek the extremum of integrals of what is called functionals or function of
functions. Functional is definite integral of dependent function(s) and their derivatives that are
themselves functions of other independent variables. For example:

F =

Z b

a
I(y;z;y0;z0;y00; :::)dx (4.105)

y = y(x) and z = z(x) are dependent functions of independent variable x, and I(y;z) is functionals
or function of functions. The calculus of variance is used to calculate this dependent function(s)
that make the functional stationary value. For example, in the real structures, the total potential
energy should reach minimum value at the equilibrium configuration. For example, if functional F
is given by:

F =

Z b

a

�
u0+2u2�dx (4.106)

it could be written as:

F =

Z b

a
φ
�
u;u0

�
dx (4.107)

Where u= u(x) is dependent function of independent variable x. The purpose of calculus of variance
is to evaluate the function u(x) that make functional F stationary value. First we will introduce
variational operator (δ ), such that δF is called the first variation of functional F . Variational
operator (δ ) operates like differential operator (d), but does not depend on the independent variable,
such that x is fixed during variation of function δu and its derivative δu0, such that the first variation
of functional δF and differential dF are defined as:

δF =
∂F
∂u

δu+
∂F
∂u0

δu0 (4.108)

dF =
∂F
∂u

du+
∂F
∂u0

du0+
∂F
∂x

dx (4.109)
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Variational calculus operates similar to differential calculus as follows:

δ (F1�F2) = δF1�δF2 (4.110)

δ (F1F2) = δF1 F2 +F1 δF2 (4.111)

Also (δ ) can be interchanged with differential operator or integral operator as follows:

δ

�
du
dx

�
=

d (δu)
dx

; δ

�Z b

a
u dx

�
=

Z b

a
δu dx (4.112)

For functional F =
R b

a φ (u;v;w)dx defined in terms of several dependent functions u, v, and w, its
variation

δF =δFu+δFv+δFw (4.113)

Functional is called linear (quadratic) functional as follow

F (αu) = αF (u)
�
F (αu) = α

2F (u)
�

(4.114)

� Example 4.10 F =
R
(au+bu0+ cw)dx is a linear functional, while F =

R �
au2 +bu02 + cw002

�
dx

is a quadratic functional. �

The first variation δF also called Gateaux derivative of function in direction δu takes these
forms

δF (uuu;δuuu) = DδuuuF (uuu) = DF (uuu;δuuu) = DF (uuu) [δuuu] =
d

dε
F (uuu+δuuu)j

ε=0 (4.115)

Note 4.1 The following expressions are useful for nonlinear analysis:

∇∇∇(δuuu) =
∂ (δuuu)

∂xxx
=

∂ (δuuu)
∂XXX

∂XXX
∂xxx

=∇∇∇0 (δuuu)FFF�1 (4.116)

∇∇∇(δvvv) =
∂ (δvvv)

∂xxx
=

∂ (δvvv)
∂XXX

∂XXX
∂xxx

=∇∇∇0 (δvvv)FFF�1 (4.117)

Using the above expressions:

δFFF = δ

�
∂uuu
∂XXX

+111
�
=

∂ (δuuu)
∂XXX

=∇∇∇0 (δuuu) =∇∇∇(δuuu)FFF (4.118)

δḞFF = δ

�
∂vvv
∂XXX

�
=

∂ (δvvv)
∂XXX

=∇∇∇0 (δvvv)! δ Ḟ =∇∇∇(δvvv)FFF (4.119)

δεεε =
1
2

δ
�
∇∇∇uuu+∇∇∇uuuT �= 1

2

�
∇∇∇(δuuu)T +∇∇∇(δuuu)

�
(4.120)
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δDDD =
1
2

δ
�
∇∇∇vvv+∇∇∇vvvT �= 1

2

�
∇∇∇(δvvv)T +∇∇∇(δvvv)

�
=

1
2

�
δḞFFFFF�1 +FFF�T

δḞFFT
�

(4.121)

using Equation 4.120, we reach:

δEEE =
1
2

δ
�
FFFTFFF�1

�
=

1
2
�
δFFFTFFF +FFFT

δFFF
�
=

1
2

FFFT
�

∇∇∇(δuuu)T +∇∇∇(δuuu)
�

FFF =FFFT
δεεεFFF (4.122)

�

� Example 4.11

F =

Z �
c1u2 + c2u

�
u0
�2

+ c3u00+ c4uv
�

dx (4.123)

We find that the above expression can be expressed as follows:

F =

Z
φ
�
u;u0;u00;v

�
dx (4.124)

With variation:

δF = δFu+δFv =

Z �
∂φ

∂u
δu+

∂φ

∂u0
δu0+

∂φ

∂u00
δu00
�
+

�
∂φ

∂v
δv
�

dx (4.125)

=

Z ��
2c1u+ c2

�
u0
�2

+ c4v
�

δu+
�
2c2u u0

�
δu0+ c3δu00

�
+(c4uδv)dx (4.126)

�

In structural problems, variational approach is used to find the displacement (dependent) function
that make the potential energy stationary value (principle of minimum potential energy).

x, u

y, v

P

q

F

f
L

Figure 4.24

� Example 4.12 The total potential energy of a fixed beam shown in Figure 4.24 with length
L, bending rigidity EIz and axial rigidity EA subjected to axial load P, transverse load F at its
right end x = L, distributed axial load f and transverse loads q is defined using Equation 4.95,
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Equation 4.35 and Equation 4.40 as follows:

Π =U +V =

Z �
1
2

EAu02 +
1
2

EIzv00
2�qv� f u

�
dx�Fv(L)�Pu(L) (4.127)

The variation in the total potential energy will be:

δΠ =

Z L�1
2

EAu0δu0+
1
2

EIzv00δv00�qδv� f δu
�

dx�Fδv(L)�Pδu(L) (4.128)

�

x

u

u

u=u+εδu

u

δu
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ub

Figure 4.25
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Figure 4.26

Let us assume a beam with true (equilibrium) configuration u(x) needed to be evaluated. We
can get what is called an admissible configuration u by applying an infinitesimal variation ε to the
true configuration in the direction δu as shown in Figure 4.25 as follows:

u = u+ εδu (4.129)

ε is very small variation, such that it does not disturb the equilibrium. δu is an arbitrary kine-
matically admissible function that satisfies the geometric boundary condition (GBC) as shown in
Figure 4.26. δu is an assumed or imaginary (displacement) function field and does not have any
relation with the true configuration. We are not interested in all functions u, but the one that satisfies
the geometric boundary condition. These geometric boundary condition can be defined as follows:

δujsu
= 0 or ujSu = ujSu (4.130)

Where Su represents the location of restrained boundary. The above equation means that the
assumed displacements must be equal to the assigned displacements at this restrained boundary. As
shown in the Figure 4.26.
There is an infinite number of admissible configurations even for the same δu via changing ε .
Using Taylor series, the change 4F in a functional F =

R b
a φ (u;u0)dx due to disturbance ε in
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direction of δu will be defined as:

4F =

Z b

a
φ
�
u+ εδu;u0+ εδu0

�
dx�

Z b

a
φ
�
u;u0

�
dx

=
∂F
∂u

εδu+
1
2

∂ 2F
∂u2 (εδu)2 + � � �+ ∂F

∂u0
εδu0+

1
2

∂ 2F
∂u02

�
εδu0

�2
+ : : :

=

0BBB@ ∂F
∂φφ

δu+
∂F
∂u0

δu0| {z }
δF

1CCCAε +

0BB@1
2

∂ 2F
∂u2 (δu)2 +

1
2

∂ 2F
∂u02

�
δu0
�2| {z }

δ 2F

1CCAε
2 + : : :

= δFε +δ
2Fε

2 + : : :

(4.131)

For a functional to be stationary or extremum (minimum or maximum) at a particular configura-
tion, the first variation of the functional δF should vanish, while the second variation δ 2F defines
if the function is minimum (maximum) at this configuration as follows:

δF = 0; δ
2F > 0 (δ 2F < 0) (4.132)

So we get:

0 =δF =
∂F
∂u

δu+
∂F
∂u0

δu0 =
Z b

a

�
∂φ

∂u
δu+

∂φ

∂u0
δu0
�

dx (4.133)

Using integration by part for the second term, it follows:

0 =

Z b

a

�
∂φ

∂u
� d

dx

�
∂φ

∂u0

��
δudx+

∂φ

∂u0
δu
����b
a

(4.134)

Generally, the last term ∂φ

∂u0 δu vanishes at boundaries as for geometric boundary conditions δu
vanishes, while for essential boundary conditions ∂φ

∂u0 vanishes (see the next example), so the above
equation will be:Z b

a

�
∂φ

∂u
� d

dx

�
∂φ

∂u0

��
δudx = 0 (4.135)

Using the following Lemma for any arbitrary function δu:

I f
Z b

a
Gδudx = 0; it f ollows that G = 0 at any point on the domain o f integral [a;b] (4.136)

While, for two independent arbitrary functions δu, and δv,

i f
Z b

a
(Gδu+Hδv)dx = 0$Both G and H vanish at any point on the domain o f integral [a;b]

(4.137)

As a result of this Lemma, it follows:

∂φ

∂u
� d

dx

�
∂φ

∂u0

�
= 0 (4.138)

This equation is Euler equation of functional. Of all admissible functions, there is only one solution
that satisfies the above equation which express the true function that minimize the functional F .
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x, u
Pq

L
EA

Figure 4.27

� Example 4.13 Let us assume a rod shown in Figure 4.27 with length L and axial rigidity EA
and loaded with axial load P and with distributed axial load q. Using Figure 4.27, the total
potential energy will be:

Π =

Z L

0

�
1
2

EAu02�qu
�

dx�Pu(0) (4.139)

The equilibrium path that makes δΠ = 0 as follows:

0 = δΠ =

Z L

0

�
EAu0δu0�qδu

�
dx�Pδu(0) (4.140)

Using integration by part over the first term leads to:

0 = δΠ = EAu0δu
��
L� (EAu0+P)δu

��
0�
Z L

0

�
d
dx

�
EAu0

�
+q
�

δudx (4.141)

At the left end x = 0, using Equation 4.32 and Equation 4.33 it follows:

EAu0 (0)+P = 0 (4.142)

This condition is called the essential boundary condition, while δujL vanishes to satisfy the
geometric boundary condition leading to finally:Z L

0

�
d
dx

�
EAu0

�
+q
�

δudx = 0 (4.143)

Using the above lemma, it follows:

d
dx

�
EAu0

�
+q = 0 (4.144)

The above equation corresponds to the Euler Equation 4.138. �

� Example 4.14 For a hinged-hinged beam shown in Figure 4.28 with length L, bending rigidity
EI and axial rigidity EA subjected to axial load P at the right end, Moments M0 and ML at its
ends, distributed axial load qo and transverse loads q, the total potential energy of the beam is
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M1

M1
x, u

y, v

Pqo

L

q

Figure 4.28

defined using Equation 4.95, Equation 4.35 and Equation 4.40 as follows:

Π =

Z L

0

�
1
2

EAu02 +
1
2

EIxv002�qou�qv
�

dx�M0θ0�MLθL (4.145)

Its variation will vanish (see subsection 4.2.1) as follows:

δΠ =

Z L

0

�
EAu0δu0+EIzv00δv0�qoδu�qδv

�
dx�Pδu(L)�M0δθ0�MLδθL = 0 (4.146)

Integrating once and twice by part for the first and second term, respectively.

δΠ =�
Z L

0

�
EAu00+qo

�
δudx+

Z L

0

�
EIzv0000�q

�
δvdx

+
�
EAu0

�
δu
��L
0 �Pδu(L)� �EIzv000+Pv0

�
δv
��L
0 +
�
EIzv00�M

�
δv0
��L
0

(4.147)

As δu δv and δv0 are arbitrary and independent so their coefficients vanish. This leads to the
following differential equations associated with simple beam.�

EAu00+qo
�
= 0; x = [0;L]

�
EIzv0000�q

�
= 0; x = [0;L] (4.148)

The boundary conditions at ends may be essential or geometric as follows:�
EAu0�P

�
= 0 or δu = 0 at x = 0;L�

EIzv00�M
�
= 0 or δv0 = 0 at x = 0;L

(4.149)

In this beam, the left end has two GBC and one EBC as follows:

δu = 0jx=0 ; δv = 0jx=0 ;
�
EIzv00�M

���
x=0 = 0! EIzv00(0) = M0 (4.150)

Similarly, the right end has one GBC and two EBC as follows:

δv = 0jx=L ;
�
EAu0�P

���
x=L = 0! EAu0(L) = P;

�
EIzv00�M

���
x=L = 0! EIzv00(L) = ML

(4.151)

For the same above beam, if we need to evaluate the buckling load P (Stability problem), term
u(L) should be split into two parts; part due to axial strain

R
u0dx and other due to beam bowing

(shortening due to bending) 1
2

R
v02dx. The last part comes from the change in length of the

beam. For an infinitesimal beam ds, the change in its length will be ds�dx =
p

dx2 +dy2 =

dx

r
1+
�

dy
dx

�2
= dx

p
1+ v02�dx. Using Taylor series and neglecting higher order effect, the
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change in length will be 1
2 v02dx. Integrating this term over the length results in the bowing effect

as follows:

u(L) =
1
2

Z
v02dx (4.152)

Then the potential energy will be:

Π =

Z L

0

�
1
2

EAu02 +
1
2

EIzv00
2� 1

2
Pv02�Pu0�qou�qv

�
dx�M0θ0�MLθL (4.153)

δΠ=

Z L

0

�
EAu0δu0+EIzv00δv00�Pv0δv0�Pδu0�qoδu�qδv

�
dx�M0δθ0�MLδθL (4.154)

Integrating once by part the first and third terms, and twice by part the second term leads to:

δΠ =�
Z L

0

�
EAu00+qo

�
δudx+

Z L

0

�
EIzv0000�q+Pv00

�
δvdx

+
�
EAu0�P

�
δu
��L
0 �

�
EIxv000+Pv0

�
δv
��L
0 +
�
EIzv00�M

�
δv0
��L
0

(4.155)

As δu, δv and δv0 are arbitrary and independent, so their coefficients vanish.�
EAu00+qo

�
= 0; x = [0;L] (4.156)

�
EIzv0000�q+Pv00

�
= 0; x = [0;L] (4.157)

The second differential equation expresses the beam buckling (Eigen value problem). The
boundary conditions at ends may be essential (EBC) or geometric (GBC) as follows:�

EAu0�P
�
= 0 or δu = 0 at x = 0;L�

EIzv000+Pv0
�
= 0 or δv = 0 at x = 0;L�

EIzv00�M
�
= 0 or δv0 = 0 at x = 0;L

(4.158)

In this beam, the left end has two GBC and one EBC as follows:

δu = 0; δv = 0;
�
EIzv00�M

���
x=0 = 0! EIzv00(0) = M0 (4.159)

Similarly, the right end has one GBC and two EBC as follows:

δv= 0;
�
EAu0�P

���
x=L = 0!EAu0(L)=P;

�
EIzv00�M

���
x=L = 0!EIzv00(L)=ML (4.160)

�

Differential equation of motion associated with continuum body can also be derived from
variational principles as follow:

� Example 4.15 The total potential energy contains the stored strain energy and external loads
potential energy. The external loads include surface loads ttt and body forces fff as shown in
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Figure 4.29

Figure 4.29, so the total potential will be:

δΠ = δU +δV =

Z
V

σσσ :δεεε dV �
Z

V
fff �:δuuu dV �

Z
SΓ

ttt:δuuu dA (4.161)

To include the dynamic effect, we use fictitious body force fff � = fff �ρ üρ üρ ü. Boundary SΓ represents
the loaded (not constrained) boundary of the body. For symmetric tensor σσσ , it follows using
Equation 1.100:Z

V
σσσ :δεεεdV =

Z
V

σσσ :δ

�
∇∇∇uuu+∇∇∇uuuT

�
2

dV =

Z
V

σσσ :δ (∇∇∇uuu)dV =

Z
V

σσσ :∇∇∇(δuuu) dV (4.162)

Using divergence theorem and Equation 1.198:Z
V

σσσ :∇∇∇(δuuu) dV =

Z
Su

δuuu:(σ :nσ :nσ :n) dA0 +

Z
SΓ

δuuu:(σ :nσ :nσ :n) dA0�
Z

V
δuuu:(∇:σ∇:σ∇:σ) dV0 (4.163)

Then the variation in the total potential energy will be:

δΠ =

Z
Su

δuuu:(σ :nσ :nσ :n) dA0 +

Z
SΓ

δuuu:(σ :nσ :nσ :n�ttt) dA0�
Z

V
δuuu:(∇:σ∇:σ∇:σ + fff �) dV0 = 0 (4.164)

Which leads to Euler equation of motion, and natural and geometric boundary conditions as
follows:

∇:σ∇:σ∇:σ + fff � = 000 on V
ttt�nnn:σσσ = 000 on boundary SΓ

uuujSu = uuu on boundary Su as δuuujSu = 000
(4.165)

�
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� Example 4.16 For Lagrangian differential equation of motions PPP : FFFO are considered conju-
gate pairs as stated in Equation 3.256 where FFFO = ḞFF�WFWFWFZ

V0

PPP : ḞFF dV0 =

Z
V0

PPP : FFFO dV0 (4.166)

δΠ = δU +δV =

Z
V0

PPP : δ
�

F
�

F
�

F dV0�
Z

V0

fff �0:δuuu dV0�
Z

SΓ0

ttt0:δuuu dA0 (4.167)

Where fff �0 and ttt0 are the body force per unit volume of the initial configuration and traction

stress affecting the area of the same configuration, respectively, while δ
�

F
�

F
�

F is defined as

δ
�

F
�

F
�

F = δFFF�δφφφFFF =
∂ (δxxx)

∂XXX
�fδφφφ

∂xxx
∂XXX

=
∂ (δuuu)

∂XXX
�fδφφφ

∂xxx
∂XXX

(4.168)

Where fδφφφ = δRRRRRRT and SΓ0 initial boundary of stressZ
V

PPP : δFFFO dV0 =

Z
V

PPP :
∂ (δuuu)

∂XXX
dV0�

Z
V

PPP :
�

δφφφ � ∂xxx
∂XXX

�
dV0 (4.169)

Using divergence theorem and Equation 1.198:Z
V

PPP :
∂ (δuuu)

∂XXX
dV0 =

Z
SΓ0

δuuu:(P:NP:NP:N) dA0�
Z

V
δuuu:(∇∇∇0:PPP) dV0 (4.170)

Where N is normal to body boundary surface SΓ0 at initial configuration For PPP = [ T1 T2 T3 ],
and from Equation 1.205Z

V
PPP :
�

δφφφ � ∂xxx
∂XXX

�
dV0 =

Z
V

δφφφ :

�
∂xxx
∂Xi

�Ti

�
dV0 (4.171)

δΠ =

Z
SΓ0

δuuu:(P:NP:NP:N)dA0�
Z

V
δuuu:∇∇∇0:PPP dV0�

Z
V

δφφφ :

�
∂xxx
∂Xi

�Ti

�
dV0 (4.172)

�
Z

V0

fff �0:δuuu dV0�
Z

SΓ0

ttt0:δuuu dA0 (4.173)

=

Z
SΓ0

δuuu:(P:NP:NP:N�ttt0)dA0�
Z

V
δuuu:(∇∇∇0:P+ fff �0) dV0�

Z
V

δφφφ :

�
∂xxx
∂Xi

�Ti

�
dV0

(4.174)

Euler Equations or balance of linear momentum in the material form (balance of angular
momentum)

∇∇∇0:PPP+ fff �0 = 0
�

∂x
∂Xi

�Ti = 0
�

on V0 (4.175)

Natural boundary condition

ttt0�P:NP:NP:N = 0 on boundary SΓ0 (4.176)

�
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Note that the variational approach produces the differential equations and natural (essential)
boundary conditions, but it does not provide the function shape that minimizes the functional
(potential energy). However, for some complicated systems, it is very hard to get the controlling
differential equation, and implementing variational principle will requires the help of other methods
such as Rayleigh Ritz or weighted residual methods which find an approximate solution to these
complicated problems (see the next sections).

4.3.2 Rayleigh Ritz method
This method uses an assumed solution for dependent function u such that it satisfies the boundary
conditions. This assumed function is generally polynomial as follows: 

u =
nX

i=0

aiφi = a0 +a1x+a2x2 : : :

!
(4.177)

Which converts the variational functional Π to simple differential function of parameters ai as
follows:

Π = Π(a0;a1;a2; : : :) (4.178)

To make Π extremum, δΠ should vanish as follows:

0 = δΠ =
∂Π

∂a0
δa0 +

∂Π

∂a1
δa1 +

∂Π

∂a2
δa2 + : : : : (4.179)

As δai are independent variables, it yields that their coefficients vanish as follows:

∂Π

∂ai
= 0 f or i = 0;1;2; : : : (4.180)

The assumed solution may be approximate, but its accuracy can be increased with increasing
the order of polynomial function.

x, u

y, v

P
q

EI z

Figure 4.30

� Example 4.17 Assume a beam shown in Figure 4.30 with flexural rigidity EIz and subjected
to uniform distributed load q, and its required to find the deflection function using Rayleigh Ritz
method.
First, assume a polynomial function for the lateral displacement as follows:

v = a1x4 +a2x3 +a3x2 +a4x+a5 (4.181)

As the assumed solution should follows the boundary conditions v(0) = 0 and v(L) = 0, it leads
to:

v = a1(x4� xL3)+a2(x3� xL2)+a3(x2� xL) (4.182)
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As the virtual axial and lateral displacements are independent we can neglect the potential of
loads in the axial direction, the total potential equation will be:

Π =

Z L

0

�
1
2

EIzv00
2�qv

�
dx

=

�
72
5

L5a2
1 +6L3a2

2 +2La2
3 +18L4a1a2 +6L2a2a3 +8L3a1a3

�
EIz

+
3
10

qL5a1 +
1
4

qL4a2 +
1
6

qL3a3

(4.183)

As ∂Π

∂ai
vanishes for i = 0;1;2; : : : , it follows:

∂Π

∂a1
!144

5
L5a1 +18L4a2 +8L3a3 +

3
10EIz

L5q = 0

∂Π

∂a2
!18L4a1 +12L3a2 +6L2c+

1
4EIz

L4q = 0

∂Π

∂a3
!8L3a1 +6L2a2 +4La3 +

1
6EIz

L3q = 0

(4.184)

Or in matrix form24 144
5 L5 18L4 8L3

18L4 12L3 6L2

8L3 6L2 4L

3524 a1
a2
a3

35=

264 � 3
10EIz

L5q
� 1

4EIz
L4q

� 1
6EIz

L3q

375 (4.185)

Solving the above equation for ai leads to the following displacement function

v =
qx
�
L3�2�L� x2 + x3

�
24EIz

(4.186)

Which corresponds to the exact solution. �

P

P

x

y, v

Figure 4.31

Also Rayleigh Ritz method can be used to solve stability problems and determining the buckling
loads.

� Example 4.18 Assume beam shown in Figure 4.31 with assumed solution defined as follows:

v = a1 +a2x+a3x2 (4.187)

To satisfy the GBC (v(0) = v0(0) = 0), the assumed solution will be v = a3x2, neglecting the
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potential of loads in the axial direction, the total potential energy will be defined as follows:

Π =

Z L

0

�
1
2

EIzv00
2� 1

2
Pv02

�
dx =

Z L

0

�
1
2

EIz(2a3)
2� 1

2
P(2a3x)2

�
dx (4.188)

= 2a2
3EIL� 2

3
a2L3P =

�
2� 2λ

3

�
a2

3EIL (4.189)

Assume PL2

EI = λ

δΠ = 0 =
∂Π

∂a2
δa2 $ ∂Π

∂a2
= 0$ λ = 3 (4.190)

While the exact solution is PL2

EI = λ = 2:47, using higher order polynomial equation v =
a1 + a2x+ a3x2 + a4x3 increases the accuracy of calculated buckling loads. In this case, to
satisfy the GBC, displacement function will be v = a3x2 +a4x3 and using the same procedures
results in λ = 2:49 which is very close to the exact solutions when using polynomial equations
with higher order.
�

x, u

y, v

P
u

Figure 4.32

� Example 4.19 For beam shown in Figure 4.32, assume a polynomial function for lateral
displacement of forth degree as follows:

v = a0 +a1x+a2x2 +a3x3 (4.191)

Satisfying GBC:

v(0) = 0;v(L) = 0 (4.192)

This results in

v = a2
�
x2� xL

�
+a3(x3� xL2) (4.193)

Substituting into Equation 4.189 results in:

Π =

Z L

0

�
1
2

EIz(a2 +6a3x)2� 1
2

P
�
a2 (2x�L)+a3(3x2� l2�2

�
dx

=
�
2La2

2 +6L3a2
3 +6L2a3a2

�
EIz +

�
1
6

L3a2
2 +

2
5

L5a2
3 +

1
2

L4a3a2

�
P

(4.194)
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Using Rayleigh Ritz principle results in:

∂Π

∂a2
= 0! 4La2 +6L2a3�

�
1
3

L3a2 +
1
2

L4a3

�
P
EI

= 0

∂Π

∂a3
= 0! 6L2a2 +12L3a3�

�
1
2

L4a2 +
4
5

L5a3

�
P
EI

= 0
(4.195)

Assuming PL2

EI = λ result in this matrix form:24 �
4� λ

3

�
L

�
6� 1λ

2

�
L2�

6� λ

2

�
L2

�
12� 4λ

5

�
L3

35� a2
a3

�
=

�
0
0

�
(4.196)

The non-trivial solution for above equation is that the determinant of the left matrix vanishes as
follows:������

�
4� λ

3

�
L

�
6� 1λ

2

�
L2�

6� λ

2

�
L2

�
12� 4λ

5

�
L3

������= 0 (4.197)

Leads to λ1 =
PL2

EI = 12; PL2

EI = λ 2 = 60. While the exact solution λ1 = π2 = 9:81; λ2 = 4π2 =
39:24. Increasing the order of polynomial function leads to more accurate results. �

Note 4.2 Rayleigh Ritz method gives upper bound value for calculated load P because assuming
a solution other than the exact one provides more constraint to the displacement which in turn
results in higher stiffness of the problem and higher load capacity. �

4.3.3 Weighted residual methods
These methods are used for the system of known governing differential equation. Let us assume a
system with known differential equation like beam defined as follows:

EIzv0000�q = 0 (4.198)

Generally, the differential equation is called the strong form. If we choose an approximate
polynomial function 

v =
nX

i=0

aiφi = a0 +a1x+a2x2 : : :

!
(4.199)

That satisfies the GBC like Rayleigh Ritz method, for the above equation, it will produce an error e
gien by:

e(x) = EIzv0000�qφ0 (4.200)

The above error does not have to vanish as we substitute with an approximate solution. Integrating
error over the beam domain results in the total error ET as follows:

ET =

Z
e(x)2 dx (4.201)

The error is squared to make sure that the internal error at any point on the beam domain; either be
positive or negative; contributes to the total error. This method represents one type of weighted
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residual methods called least-square method. We are concerned in Minimizing the total error as
follows:

0 = δET =

Z
e(x)δe dx (4.202)

Generally, weighted residual methods are obtained through this general expression:Z
e(x)δw dx = 0 (4.203)

Where w is called the weight function. One of the weighted residual methods that is generally
used in the structural analysis is called Galerkin method, in which weight functions w equal to
the functions used to approximate the solution δv, but δv can be evaluated from variations of its
parameters δai from Equation 4.199 as follows:

δw = δv =
∂v
∂ai

δai (4.204)

For independent parameters δai and using Equation 4.203 and Equation 4.204, we get the following:

Z
e(x)

∂v
∂ai

dx = 0; f or i = 0;1;2; : : : : (4.205)

To include the natural boundary conditions, Galerkin variational equation can be written in this
form: XZ

e(x)δv dx+
X

j(x)δv = 0 (4.206)

Where j(x) represents the natural boundary condition.

x, u

y, v

P

Figure 4.33

� Example 4.20 Solve the differential equation

v00 (x)+ v(x) = 0 on x = [0;1] (4.207)

With these geometric boundary conditions v(0) = 0 and v(1) = 1. First, we assume the
polynomial function for the solution v = a1 + a2x + a3x2. Satisfying geometric boundary
condition leads to:

v = x+a3
�
x2� x

�
(4.208)

e(x) = v00 (x)+ v(x) = 2a3 + x+a3
�
x2� x

�
(4.209)

∂v
∂a3

= (x2� x) (4.210)
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Applying Galerkin method results in:

0 =

Z 1

0
e(x)

∂v
∂ai

dx =

Z 1

0

�
2a3 + x+a3

�
x2� x

� �
(x2� x) dx = 0 (4.211)

Solving the above equation leads to a3 = � 5
18 Also the Galerkin can be applied to structural

systems. �

� Example 4.21 Let us us assume the beam shown in Figure 4.33. Substituting the differ-
ential equations into Equation 4.148 and natural boundary conditions in Equation 4.149 in
Equation 4.206 results in:Z L

0

�
EAu00+qo

�
δudx+

Z L

0

�
EIzv0000�q+Pv00

�
δvdx (4.212)

+
�
P�EAu0

�
δu
��L
0 +
�
EIv00�M

�
δv0
��L
0 = 0 (4.213)

As δu and δv are independent variables, we could neglect the coefficients of variational axial
displacement δu as follows:Z L

0

�
EIzv0000�q+Pv00

�
δvdx+(EIv00�M)δv0jL0 = 0 (4.214)

The chosen equation must have a derivative up to 4th order to be used in evaluating (v0000) as
follows:

v = a1 +a2x+a3x2 +a4x3 +a5x4 (4.215)

For the beam satisfying GBC, it follows:

y(0) = 0! a1 = 0; y0 (0) = 0! a2 = 0 (4.216)

y(L) = 0! a3 =�
�
a4L+a5L2� (4.217)

Also we can use essential boundary conditiona (y00 (L) = 0) as the moment vanishes at this
end (see Equation 4.38) which results in:

y00 (L) = 0! 2a3 +6a4L+12a5L2 = 0! v =
a5

2
�
3L2x2�5Lx3 +2X4� (4.218)

e(x) = EIxv0000�q+Pv00= EI (48a5)+P
�
6L2�30Lx+24x2��a5 (4.219)

∂v
∂a5

=
1
2
�
3L2x2�5Lx3 +2X4� (4.220)

Applying Galerkin method using Equation 4.206 results in:

0=

Z L

0
e(x)

∂v
∂ai

dx= a5

Z L

0

�
EI (48)+P

�
6L2�30Lx+24x2���1

2
�
3L2x2�5Lx3 +2X4��dx

(4.221)



184 Chapter 4. Energy Principles and Introduction to FEA

Which results in:�
36
5

L5EI� 12
35

PL3
�

a5 = 0! P =
21EI

L2 (4.222)

While the exact solution P = 20:2EI
L2 �

aUsing essential boundary conditions is not necessary, but we can implement them to simplify the problem

4.3.4 Weak form
The above example required the solution to be 4th order differentiable, but we can elevate this
condition using what is called the weak form corresponding to the differential equation.

� Example 4.22 Let us assume this differential equation defined as:

v00 (x)+ v(x) = 0 (4.223)

This above form is called the strong form. Using Galerkin method, it follows:Z �
v00 (x)+ v(x)

�
δv dx = 0 (4.224)

Using integrating by part for the first term results in:

v0δv
��b
a�

Z ��v0 (x)δv0+ v(x)δv
�

dx = 0 (4.225)

The above equation is called the weak form corresponding to the differential Equation 4.223. If
we integrating the above expression again by part, it leads to:Z �

v(x)δv00+ v(x)δv
�

dx+ v0δv
��b
a� vδv0

��b
a = 0 (4.226)

�

The first term of expressions Equation 4.223 and Equation 4.225 need the function v to be 2nd

differentiable, while expression Equation 4.224 requires this function to be only 1st differentiable
which alleviate the condition required for the assumed solution chosen. Generally, in Galerkin
method, it is preferred to use the weak form in which the function δv0 and the weight functions
v0 (x) have the same order of derivative. We also note that the weak form is identical to the first
variation of the potential energy, so the weak form is also called the variational form. For the two
hinged beam in Figure 4.28, using the Galerkin method (see Equation 4.206), we reach to the same
result in Equation 4.147. Using integration by part leads to the following weak form:

δΠ =

Z L

0

�
EAu0δu0+EIzv00δv00�Pv0δv0�Pδu0�qoδu�qδv

�
dx�M0δθ0�MLδθL (4.227)

Note that integration by part is used twice for the bending strain energy such that v00; and δv00

have the same degree of differentiable equation degree, so it reduce the requirement for using high
order polynomial approximation solution (just polynomial of second order). Also we note that
using the weak form in Galerkin method or Rayleigh Ritz method leads to identical results for
the same polynomial function used for the assumed displacement, but Rayleigh Ritz method is
better used for problems with known formulations for the total potential energy, while Galerkin
method is used for problems with available governing differential equations. Using variational
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methods when solving geometrically complex structures to get an approximate solution is not a
proper way, as there will be a large number of dependent variables, which is impossible to find a
suitable differential equation or a formulation for the total potential energy. In this case, we are
force to use finite element method through dividing the body into small parts and applying the
variational principles over each part.

4.4 Using energy principles in dynamic problems
4.4.1 Introduction

We will first introduce the linear momentum LLL, angular momentum HHHc about point c and their rate
of change with time defined as

LLL =

Z
vvv dm ! L̇LL =

Z
aaa dm =

X
FFF (4.228)

HHHc =

Z
xxxc�vvv dm ! ḢHHc =

Z
xxxc�aaa dm =

X
MMMc (4.229)

Where vvv and aaa are velocity and acceleration of infinitesimal point with mass dm. The last
equality in the two above equations represents the Newton’s second law of motion in which

P
FFF

and
P

MMMc define the resultant forces and moment about point c. Angular momentum of body about
an arbitrary point c can be calculated in terms of angular momentum about its center of gravity
(point o) as follows:

HHHc =HHHo +xxxco� LLL or ḢHHc =HHHo +xxxco� L̇LL (4.230)

where HHHo =
R

xxxo�aaa dm is the angular momentum around mass centroid and xco represents a
position vector from point c to point x as shown in Figure 4.34.

� Example 4.23 Assume a rigid body shown in Figure 4.35 rotating about point c with center of
gravity o with angular velocity ωωω and angular acceleration ω̇ωω . As it is a rigid body, the velocity
of point o is vvvo =ωωω�xxxco, then LLL, L̇LL, HHHc and ḢHHc are defined as follows:

LLL = mvvvo ! L̇LL = mv̇vvo = m(ω̇ωω�xxxco +ωωω� ˙xxxco) (4.231)

= m(ω̇ωω�xxxco +ωωω� (ωωω�xxxco)) (4.232)

= m(ω̇ωω�xxxco�ωωω
2xxxco) (4.233)

a Where vvvo and m are the velocity of its mass centroid and the total mass of the object. If point
o is located on the c, the net force on the body (L̇LL) vanishes and it rotates to infinity.

HHHc =

Z
xxx�vvv dm =

Z
xxx� (ωωω�xxx)dm =

Z �
(x:xx:xx:x)111�xxTxxTxxT �

ωωωdma

=

Z 0@(x2
1 + x2

2 + x2
3)

24 1 0 0
0 1 0
0 0 1

35�
24 x2

1 x1x2 x1x3
x1x2 x2

2 x2x3
x2x3 x1x3 x2

3

351Aωωωdm

=

Z 0@24 x2
2 + x2

3 �x1x2 �x1x3
�x1x2 x2

1 + x2
3 �x2x3

�x2x3 �x1x3 x2
1 + x2

2

351Aωωωdm

(4.234)
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For rigid bodies, ω has the same value over the body volume which results in:

HHHc =

Z 0@24 x2
2 + x2

3 �x1x2 �x1x3
�x1x2 x2

1 + x2
3 �x2x3

�x2x3 �x1x3 x2
1 + x2

2

351Adm ωωω = IIIp ωωω (4.235)

�

aThe last equality comes from this expression (a�b)� c = ((a:c)b� (b:c)a)

� Example 4.24 For line element like beama as shown in Figure 4.36, the angular momentum
around its mass centroid o (using x = (0;x2;x3)) will be:

HHHo =

Z L

0
ωωω

8<:
Z 0@24 x2

2 �x1x2 0
�x1x2 x2

1 0
0 0 x2

1 + x2
2

351Aρ dA

9=;dx =

Z L

0
IIIB

p ωωω dx

Where IIIB
p =

Z 0@24 x2
2 �x1x2 0

�x1x2 x2
1 0

0 0 x2
1 + x2

2

351Aρ dA

(4.236)

Where ρ is the beam density at point (x1;x2) located on the cross section. �

aAssuming that the plane section remains the same after deformation, so it can be considered rigid in section
direction
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For planar elements subjected to angular velocity perpendicular to its plane as shown in
Figure 4.37, the magnitude of angular momentum around its mass centroid will be:

Hc = ω

Z
A

�
x2

1 + x2
2
�

mdA = Ip ω where m is mass per unit area: (4.237)

With direction perpendicular to the element plane. Figure 4.38 shows values of mass moment of
inertia Ip for some planer elements around its mass centroid. To evaluate the Ip around other point
than the mass centroid, we use parallel axis theorem which states:

I = Io +md2 (4.238)

where Io and I are the mass moment of inertia around the point of interest and centroid point,
respectively. m and d are the total mass of the element and the distance between point of interest
and centroid point.
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� Example 4.25 Assume rectangular rigid plate shown in Figure 4.39 with mass m and dimen-
sions shown supported with hinge and cable, we need the force induced in the hinge after cutting
the cable.
For angular momentum about hinge (point c); using Equation 4.237 and parallel axis theorem
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results in:

2�mg =
X

M = Ḣc = ω̇

Z
x2dm = ω̇

�
Io +md2�= ω̇

�
m
�

a2 +b2

12

�
+m(2:5)2

�
=

25
3

ω̇m

(4.239)

From linear momentum:

Rxeee1 +(Ry�mg)eee2 =
X

F = ma (4.240)

Velocity of rotating plate is defined as vvv = ωωω �xxx, where xxx is a position vector from hinge
location to plate centroid, so the acceleration will be aaa = ω̇̇ω̇ω �xxx+ωωω � (ωωω�xxx), but its initial
angular velocity is zero at the time of releasing the plate, so for xxx = (2;1:5;0), ωωω = (0;0;ω),
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the acceleration will be aaa = ω̇̇ω̇ω�xxx = (1:5;�2;0)ω̇ , then the above equation will be:

R1eee1 +(R2 +mg)eee2 =
X

F = ma = mω̇�xxx = mω̇(1:5e1�2e2) (4.241)

From the Equation 4.239, R1 =
9

25 mg and R2 =�37
25 mg.

�

� Example 4.26 Assume a massless rigid bar with properties shown in Figure 4.40. If the
system is in static equilibrium in this condition, the spring stretch 4=

Fspring
k = 0:5mg

k . The mass
m is pulled down a distance y then released to produce free vibration for the mass, as a result,
the angular momentum time rate of change around point o will be:X

Mo = Ḣc !
�

mgL� k
�

2y+
mg
2k

�
L
�

eee3 = r�mÿ! mÿ�4ky = 0 [Equation o f motion]

(4.242)

�

4.4.2 Virtual work in dynamic analysis
We will use the same principles used in section 4.2. In addition, we will add the virtual work
resulting from inertia forces as shown in the following example.

� Example 4.27 Let us us assume two rigid bars shown in Figure 4.41 connected with an
internal hinge supported by hinge at A and roller at B subjected to axial load P and excited with
varied lateral loads varied with time x

2L f (t) and it is required to write the equation of motion.
Applying virtual lateral displacement δv added to the the true lateral displacement v as shown
in Figure 4.42 leads to virtual work defined as:

δW =�m
�

2
3

v̈
�

δv�m(2L)
v̈
2

δv
2
� m(2L)3

12

�
v̈

2L

��
δv
2L

�
� kvδv

+

�
f (t)(2L)

2

��
2δv

3

�
+Nδu(D) = 0

(4.243)

The first two terms represent the virtual work resulting from the inertia forces for mass m and
bar mass m, while the third one represents the inertia couple resulting from rotation of the bar by
angle v

2L . From Equation 4.152 and Figure 4.43, the variation of axial displacement at end D is
δu(D) =

P viδvi
Li

, where the sum is done over each rigid element with length Li and difference
in lateral displacement between its ends vi, so δu(D) = vδv

2L + vδv
3L and the resulting equation of

motion will be:�
2
3

ma+
4
9

m
�

v̈+
�

k� 5N
6L

�
v =

2
3

f (t)L (4.244)

�

4.4.3 Hamilton’s principle
Let us assume a particle with mass m moving along a real path shown in Figure 4.44 from point A at
time t1 to point B at time t2, such that the particle position at any time t is xxx(t) = (x1(t);x2(t);x3(t))
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and subjected to force F varied with time FFF(t) = (F1(t);F2(t);F3(t)). During this real path, the
inertia forces, structural forces and external forces are in equilibrium (d’Alembert’s principle). If
the particle path is subjected to virtual displacement δxxx(t), the virtual work of these forces must
vanish as follows:

[FFF�mẍxx(t)] :δxxx(t) = 0 (4.245)

Integrating the above equation over the path results in:Z t2

t1
(FFF :δxxx�mẍ:δxxx)dt = 0 (4.246)

Using integration by part over the second term leads to:Z t2

t1
(FFF :δx+mẋxx:δ ẋxx)dt�mẋxxδxxxjt2t1 = 0 (4.247)

The last term vanishes as δxxx = 0 at t1 and t2. The second term equal toZ t2

t1
(mẋxx:δ ẋxx)dt =

Z t2

t1
δ

�
1
2

mẋxx2
�

dt =
Z t2

t1
δT dt (4.248)

Where T is the kinematic energy of the particle, while force FFF(t) may be conservative FFFc(t) or
nonconservative FFFnc(t) or both as follows:

FFF(t) =FFFc(t)+FFFnc(t) (4.249)

We can define a potential energy Π for the conservative forces using Equation 4.12 as follows:

∂Π

∂x
=�FFFc !FFFc:δx = δΠ (4.250)

From above, Equation 4.247 will be:Z t2

t1
δ (Π�T )dt�

Z t2

t1
δWnc = 0 (4.251)

Where the total potential energy Π = U +V includes stored strain energy U in elastic bodies
and potential energy of external conservative loadsV , while δWnc =FFFnc:δxxx represents the virtual
work done by nonconservative forces like friction, damping, external forces varied with time, etc.
Hamilton’s principle can be used to solve linear and nonlinear, static and dynamic problems.
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� Example 4.28 Assume a rigid block shown in Figure 4.45 with mass m vibrating in xxx direction
under the influence of external dynamic loading f (t) and tied with linear elastic spring with
stiffness k. We can use Hamilton’s principle to solve for the equation of motion as follows. The
total potential energy results from the spring ( 1

2 kx2), the kinematic energy T equals to ( 1
2 mẋ2),

while the variation in work done by non conservative (external dynamic) force δWnc is f (t):δx,
so applying Hamilton’s Equation 4.251 results in:Z t2

t1
δ

�
1
2

kx2� 1
2

mẋ2)dt
�
�
Z t2

t1
f (t):δx = 0 (4.252)

Z t2

t1
kx:δx�mẋ:δ ẋ� f (t):δxdt = 0 (4.253)

Using integration by part for the second term yields:Z t2

t1
kx:δx+mẍ:δx� f (t):δxdt +mẋ:δxjt2t1 = 0 (4.254)

The last term vanishes yielding the equation of motion as follows:

mẍ+ kx = f (t) (4.255)

�

It can also be applied to static analysis as shown in the next example. In this condition, the kinematic
energy T vanish and Hamilton’s equation reduces to:

δΠ�δWnc = 0 (4.256)

which reduces to the virtual work principle for static problems.

� Example 4.29 Let us assume a mass m rested on the ground as shown in Figure 4.46 (state
1), then lifted a distance L (state 2) by a rigid tie (change in its length is negligible), and put
on a linear elastic spring with stiffness K and unstressed length L very slowly (to neglect the
developed kinetic energy) until the force in the tie vanishes and the mass weight entirely rested
on the spring (state 4).
In state 2, the body acquires gravitational potential energy 4Π from lifting the weight, while
the tie force (external source) exerts work 4Wnc defined as:

4Π =4V = mgL; 4Wnc = mgL (4.257)

From above equation, Hamilton’s principle is achieved (4Π�4Wnc = 0).
State 3 is an intermediate state between state 2 and state 4 when the spring carries a part of

the weight (kx) when compressed distance x. At that position, there is a reduction in gravitational
potential energy of the weight by (4V =�mgx) from state 2, but another potential energy is
stored in the spring ( 1

2 kx2), so the change in total potential energy from state 2 to state 3 is:

4Π =
1
2

kx2�mgx (4.258)
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The work done by the tie force Ft is the area of force-displacement history for the tie as shown in
Figure 4.47. The force in tie in state 2 and state 4 is mg and zero, respectively, while, in state 3,
the force in tie becomes (Ft = mg� kx) (mg minus the force carried by the spring), so the work
done by the tie force is the hatched area in Figure 4.47 defined as follow:

4Wnc =�area =

�
kx2

2
�mgx

�
(4.259)

The negative sign is used as the force direction and mass displacement have different directions.
From Equation 4.258, the variation in total potential energy and work done by non conservative
force (tie force) are identical which prove the validation of Hamilton’s principle4Π�4Wnc = 0.
At state 4; the spring carries the weight of the mass and compressed to (∆ = mg

k ), so the variation
in total potential from state 2 to state 4 will be:

4Π =
1
2

k∆
2�mg∆ =�0:5mg∆ (4.260)

While the work done by tie force will be:

4Wnc =�area = (�0:5mg∆) ! 4Wnc =4Π (4.261)

The last equality can be derived directly using Hamilton’s principle without need to evaluate the
work done by non-conservative forces4Wnc. For structural systems with complicated loads, it is
hard to find the work done by external loads, so we can use Hamilton’s principle (4Wnc =4Π)
in the static problems. �
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� Example 4.30 Assume a beam shown in Figure 4.48 with length L, mass m per unit length
and bending stiffness EIz subjected to distributed dynamic load q(t), it is required to evaluate
the equation of motion, its total potential, kinematic energy and variation in nonconservative
work are defined as:

Π =U =
1
2

Z L

0
EIzv00

2dx; T =
1
2

Z L

0
mv̇2dx; δWnc =

Z L

0
q(t)δvdx (4.262)

Applying Hamilton’s Equation 4.251 results inZ t2

t1

�Z L

0

�
EIzv00δv00�mv̇δ v̇�q(t)δv

�
dx
�

dt = 0 (4.263)

Using integration by part twice for the first term as follow:Z L

0

�
EIzv00δv00

�
dx = EIzv00δv0jL0 �EIzv000δvjL0 +

Z L

0
EIzv0000δvdx (4.264)

The first and second terms (boundary terms) generally vanishes as the left and right moment
vanishes (0 = M = EIv00), also (δv) vanishes as each end is restrained from lateral displacement
(GBC). Using integration by part once for the second term in Equation 4.263 results inZ t2

t1

�Z L

0
(mv̇δ v̇)dx

�
dt =

Z L

0

�Z t2

t1
(mv̇δ v̇)dt

�
dx =

Z L

0

�
mv̇δvjt2t1 �

Z t2

t1
(mv̈δv)dt

�
dx

(4.265)

The first term in the last equality vanishes. Using the above expressions, the Hamilton’s
Equation 4.263 reduces to:Z t2

t1

�Z L

0

�
EIzv0000+mv̈�q(t)

�
δvdx

�
dt = 0 (4.266)

which yields the beam equation of motion as follows:

EIzv0000+mv̈�q(t) = 0 (4.267)

�

4.4.4 Lagrange equations of motion
Assuming a displacement function that satisfies the geometric boundary conditions like the one
used in subsection 4.3.2

�
u =

Pn
i=0 aiφi = a0 +a1x+a2x2 : : :

�
, the kinematic energy and potential

energy will be converted to functions of parameters ai and ȧi as follows:

T = T (ai; ȧi); Π = Π(ai) (4.268)

And their variation will be:

δT =
∂T
∂ai

δai +
∂T
∂ ȧi

δ ȧi; δΠ =
∂Π

∂ai
δai (4.269)

While the variation in the nonconservative work can be defined as follows:

Wnc = F�
i δai (4.270)
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Using Hamilton’s Equation 4.251, it follows:Z t2

t1

��
∂Π

∂ai
� ∂T

∂ai
�F�

i

�
δai� ∂T

∂ ȧi
δ ȧi

�
dt = 0 (4.271)

Integrating by part the forth term results in:Z t2

t1

��
∂Π

∂ai
� ∂T

∂ai
+

d
dt

�
∂T
∂ ȧi

�
�F�

i

�
δai

�
dt� ∂T

∂ ȧi
δai

����t2
t1

= 0 (4.272)

The last term vanishes as δuuu at t1 and t2 is null as follows:

∂Π

∂ai
� ∂T

∂ai
+

d
dt

�
∂T
∂ ȧi

�
�F�

i = 0 (4.273)

This equation is called Lagrange equations of motion.
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� Example 4.31 Let us assume a beam fixed at the left end, while the right end is subjected to
axial load P and lateral dynamic uniform distributed load q(t) as pictured in Figure 4.49. The
beam mass per unit length is m. Assuming a suitable displacement function that satisfies the
GBC as follows:

v = a1x2 +a2x3 (4.274)

Using virtual work method or Hamilton’s equation and Equation 4.152 results in the weak form
of equation of motion for the beam as follows:Z L

0

�
EIzv00δv00� pv0δv0�q(t)δv+mv̈δv

�
dx = 0 (4.275)

From the displacement function, v0 = 2a1x + 3a2x2, v00 = 2a1 + 6a2x and v̈ = ä1x2 + ä2x3.
Substituting these functions into the above equation results in:

�
δa1 δa2

�
m

"
L5

5
L6

6
L6

6
L7

7

#�
ä1
ä2

�

+
�

δa1 δa2
�(

EIz

"
4L3

3
3L4

2
3L4

2
9L5

5

#
�P

�
4L 6L2

6L2 12L3

�)�
a1
a2

�

=
�

δa1 δa2
�

q(t)

"
L3

3
L4

4

#

(4.276)
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δa:M�ä+δa:(K�+K�
g )a = δa: f (t)� (4.277)

Where M�, K�, K�
g , and f (t)� represent the generalized mass, generalized elastic stiffness,

generalized geometric stiffness matrix, and generalized force vector, respectively, defined as:

M� = m

"
L5

5
L6

6
L6

6
L7

7

#
(4.278)

K� = EIz

"
4L3

3
3L4

2
3L4

2
9L5

5

#
(4.279)

K�
g =�P

�
4L 6L2

6L2 12L3

�
(4.280)

f (t)� = q(t)

"
L3

3
L4

4

#
(4.281)

�

4.5 Introduction to finite element method

This method implements the same idea used for variational methods through using approximate
functions, but these functions are used for subdomains of the body or finite elements with simple
shapes that allows us to use a simple approximate polynomial function for it (not all domain).
Generally, the subdomains are chosen to be similar in shape, so we can use the same calculation
procedures for each subdomains making the solution systemic. Also, when using Rayleigh Ritz
or Galerkin method, the undetermined parameters are ai (coefficients of assumed polynomial
function), while, in finite element method (FEM), they are in terms of a common property between
the adjacent elements in the domain at prescribed points, e.g. the displacements. As these elements
share the same nodes and from continuity, they have the same displacements at these nodes. In
this case, undetermined parameters are known property like displacements which is considered an
advantage to reduce the time of post-processing analysis. We will provide how to use FEM in 1-D
elements in the following sections.

4.5.1 Finite element analysis (FEA) of simple bars
Shape function

Let us assume a bar with uniform axial distributed load (f) divided into subdomains, each one of
length L. If the prescribed points for each element are three, the number of degree of freedom DOF
for each element will be the number of (DOF) associated with each node times the number of nodes
per element which shall be three. Similarly, like Rayleigh Ritz, we will define an approximate
solution of polynomial function over the element as follows:

u =
nX

i=1

uiNi(x) (4.282)

In FEA approximate function, the parameters used will be in terms of the nodal displacement ui

of the element associated with the DOF (i), while n the number of DOF per element and, in this
case, Ni represents what is called the shape function. For example, Let us assume a bar element of
2 nodes, so the number of DOF, local displacements, and shape function per element shall be two.
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Using the following approximate linear solution for axial displacement:

u =
2X

i=1

aiφi = a1φ1 +a2φ2 = a1 +a2x (4.283)

applying the boundary condition using u(x1) = u1 ! u1 = a1 and u(x2) = u2 ! u2 = a1 + a2x
results in the approximate solution in terms of displacement at ends as follows:

u =
�

1� x
L

�
u1 +

x
L

u2 =
nX

i=1

uiNi(x) (4.284)

So the shape functions associated with each DOF for two-node element will be:

N1(x) =
�

1� x
L

�
; N2(x) =

x
L

(4.285)

The shape function is shown in Figure 4.50, from above equation the properties of shape function

L

u1 u2

u2u1

L

L

N1

N2

Figure 4.50

x3x1 x2

z 3=1z 1=-1 z 2=0

La b

Figure 4.51

are:

Ni (x j) = δi j ! N1 (x1) = N2 (x2) = 1; N1 (x2) = 0; N2 (x1) = 0 (4.286)

We can us what is called normalized or natural coordinate with range ξ = [�1;1] instead of using
the local coordinate x = [x1;x2], such that ξ = 2x

L �1 and the shape function in terms of natural
coordinates will be:

N1(ξ ) =
1
2
(1�ξ ) ; N2(ξ ) =

1
2
(1+ξ ) (4.287)

If we need to use larger number of nodes per element, we can follow the same above procedures or
use Lagrange interpolation formula defined as follows:

Ni (x) =
n�1Y

j=1; j 6=i

�
x� x j

xi� x j

�
(4.288)
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And in terms of natural coordinate, it will be:

Ni (ξ ) =
n�1Y

j=1; j 6=i

�
ξ �ξ j

ξi�ξ j

�
(4.289)

u3u1 u2

1

1

1

N1

N3

N2

Figure 4.52

� Example 4.32 Assume a line element of 3 nodes not equally spaced as shown in Figure 4.51a.
If the local coordinates of element nodes are x1, x2 and x3, the corresponding natural coordinates
are ξ1 = �1, ξ2 = 0 and ξ3 = 1, respectively with shape function defined for each node in
Figure 4.52 as follows:

N1 (ξ ) =
2Y

j=1; j 6=1

�
ξ �ξ j

ξi�ξ j

�
=

�
ξ �ξ2

ξ1�ξ2

��
ξ �ξ3

ξ1�ξ3

�
=

1
2

ξ (ξ �1)

N2 (ξ ) =
2Y

j=1; j 6=2

�
ξ �ξ j

ξi�ξ j

�
=

�
ξ �ξ1

ξ2�ξ1

��
ξ �ξ3

ξ2�ξ3

�
= 1�ξ

2

N3 (ξ ) =
2Y

j=1; j 6=3

�
ξ �ξ j

ξi�ξ j

�
=

�
ξ �ξ1

ξ3�ξ1

��
ξ �ξ1

ξ3�ξ1

�
=

1
2

ξ (ξ +1)

(4.290)

�

aThe distance between any two subsequent nodes a or b should not be less than or equal to 1
4 the element length

to avoid singularity problems

Stiffness matrix and load vector

� Example 4.33 For n-node element shown in Figure 4.53 with axial stiffness (EA), length L
and distributed axial load q, and from Equation 4.140, the variation of total potential energy or
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L

u1 u2 ui un Local
disp.

U1
U i Global

disp.

L

P1 P2 Pi Pn

External
forces

Total
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N-nodded finite element

Finite element

q q qq

Figure 4.53

L
P1 P2

q

Figure 4.54

L
P1 P3

q
P2

q

Figure 4.55

the weak form for the bar problem is defined as follows:

δΠ=

Z L

0

�
EAu0δu0�qoδu

�
dx�P1δu1�P2δu2 � � ��Pnδun =

Z L

0

�
EAu0δu0�qoδu

�
dx�

nX
i=1

Piδui

(4.291)

u0 =
nX

j=1

u jN0
j (x) δu =

nX
i=1

δuiNi (x) δu0 =
nX

i=1

δuiN0
i (x) (4.292)

δΠ =

Z L

0

0@EA
nX

j=1

u jN0
j (x)

nX
i=1

δuiN0
i (x) �qo

nX
i=1

δuiNi (x)

1Adx�
nX

i=1

Piδui (4.293)

Using index notation

δΠ = δui

�Z L

0

�
EAN0

i (x)N0
j (x)

�
dx
�

| {z }
ke

i j

u j�δui

�Z L

0
(qoNi (x))dx+Pi

�
| {z }

Fe
i

= δui:
�
ke

i j:u j�Fe
i
�
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(4.294)

Where ke
i j and Fe

i are called the stiffness matrix and load vector, respectively, defined as:

ke
i j =

Z L

0

�
EAN0

i (x)N0
j (x)

�
dx; Fe

i =

Z L

0
(qoNi (x))dx+Pi (4.295)

we not that the stiffness matrix is symmetric as ke
i j = ke

ji. For two-node element shown in
Figure 4.54, the stiffness matrix and load vector are defined as:

[Ni (x)] =
� �

1� x
L

� x
L

�
(4.296)

�
N0

i (x)
�
=
� � 1

L
1
L

�
(4.297)

�
ke

i j
�
=

�Z L

0

�
EAN0

i (x)N0
j (x)

�
dx
�
=

EA
L

�
1 �1
�1 1

�
(4.298)

[Fe
i ] =

Z L

0
(qoNi (x))dx =

q0L
2

�
1
1

�
+

�
p1
p2

�
(4.299)

While, for three-node element shown in Figure 4.55, it will be:

ξ =
2x
L
�1;dξ =

2dx
L

(4.300)

[Ni (ξ )] =
� 1

2 ξ (ξ �1) 1�ξ 2 1
2 ξ (ξ +1)

�
(4.301)

�
N0

i (ξ )
�
=
�

ξ � 1
2 �2ξ ξ + 1

2

�� dξ

dx
=
�

ξ � 1
2 �2ξ ξ + 1

2

�� 2
L

(4.302)

�
ke

i j
�
=

�Z L

0

�
EAN0

i (x)N0
j (x)

�
dx
�
=

�Z 1

�1

�
EAN0

i (ξ )N0
j (ξ )

��L
2

dξ

��
(4.303)

=
EA
3L

24 7 �8 1
�8 16 �8
1 �8 7

35 (4.304)

[Fe
i ] =

Z L

0
(qoNi (x))dx =

q0L
6

24 1
4
1

35+

24 p1
p2
p3

35 (4.305)

�
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Assembly of elements and applying boundary conditions

P1 P2 P3 P4

u1 u2 u3 u4

F2

u1 u2

u2 u3

u3 u4

F1
(1) (1)

F2F1
(2) (2)

F2F1
(3) (3)

1

2

3

Figure 4.56

� Example 4.34 Let us assume three two-node bars subjected only to joint loads Pi as shown in
Figure 4.56. Using Equation 4.294, the resulting variation of potential energy for element e will
be:

δΠ
e = δui:ke

i j:u j�δui:Fe
i = δu1:(ke

11u1 + ke
12u2)+δu2:(ke

21u1 + ke
22u2)�δu1:Fe

1 �δu1:Fe
2

(4.306)

Summing this variation of three elements, such that the total variation of body potential energy
should vanish as follows:

0 =
mX

e=1

δΠ
e = δu1:

�
k1

11u1 + k1
12u2

�
+δu2:

�
k1

21u1 + k1
22u2

��δu1:F1
1 �δu2:F1

2

+δu2:
�
k2

11u2 + k2
12u3

�
+δu3:

�
k2

21u2 + k2
22u3

��δu2:F2
1 �δu3:F2

1

+δu3:
�
k3

11u3 + k3
12u4

�
+δu4:

�
k3

21u3 + k3
22u4

��δu3:F3
1 �δu4:F3

1

(4.307)

=
�

δu1 δu2 δu3 δu4
�8>><>>:
2664

k1
11 k1

12 0 0
k1

21 k1
22 + k2

11 k2
12 0

0 k2
21 k2

22 + k3
11 k3

12
0 0 k3

21 k3
22

3775
2664

u1
u2
u3
u4

3775�
2664

F1
1

F1
2 +F2

1
F2

2 +F3
1

F3
2

3775
9>>=>>;= 0

(4.308)

=
�

δu1 δu2 δu3 δu4
�
(Ku�Pext) = 0 (4.309)

Note that F1
2 +F2

1 gives the sum of the forces over node 2 coming from the both elements
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sharing this node with external load P2 as shown in fig , so the total external loads will be:

Pext =

2664
P1
P2
P3
P4

3775=

2664
F1

1
F1

2 +F2
1

F2
2 +F3

1
F3

2

3775 (4.310)

So we reach finally

=
�

δu1 δu2 δu3 δu4
�
(Ku�Pext) = 0 (4.311)

As δui is an arbitrary displacement for i = 1; 2; 3; 4, we get the following equation (equilibrium
equation):

Ku = Pextt (4.312)

�

The above equation can not be solved directly, as shown in Figure 4.56, the deflection vector u
includes known geometric boundary condition u1 , while the rest displacements (ui, for i = 2;3;4)
are unknown. Similarly, the load vector Pext , P1 is unknown, (Pi, for i = 2;3;4) are known. As a
result, we shall divide the degree of freedom into two parts; free DOF (f) and restrained DOF (r)
at which GBC is defined and reactions needs to calculated. Similarly we will divide the stiffness
matrix, load and displacement vector in the same manner as follows:�

Krr Kr f

K f r K f f

��
ur

u f

�
=

�
Pr

Pf

�
! Krr ur +Kr f u f = Pr

K f r ur +K f f u f = Pf
(4.313)

The underlined terms are known like the restrained displacement ur and loads at free points Pf .
Using the second equation in above equation, u f will be:

K f f u f = Pf �K f r ur ! u f = K�1
f f (Pf �K f r ur) (4.314)

After calculating the u f , we can evaluate the reaction at restrained nodes Pr form the first equation
in Equation 4.313.

10N

u1 u2 u3

LL

EA 2EA

Figure 4.57

� Example 4.35 Let us assume a bar with properties shown in Figure 4.57 with EI
L = 100N=m.

The right end is subjected to force 10N, while the left end has initial axial displacement
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u1 = 0:01m.

�
k1

i j
�
=

(EA)1

L1

�
1 �1
�1 1

�
= 100

1 2�
1 �1
�1 1

�
1
2

(4.315)

�
k2

i j
�
= 200

�
1 �1
�1 1

�
= 200

2 3�
1 �1
�1 1

�
2
3

(4.316)

[K] = 100

1 2 324 1 �1 0
�1 3 �2
0 �2 2

35 1
2
3

(4.317)

�
k2

i j
�
= 200

�
1 �1
�1 1

�
= 200

2 3�
1 �1
�1 1

�
2
3

(4.318)

2 3

[K f f ] = 100
�

3 �2
�2 2

�
2
3

;

1

K f r = 100
� �1

0

�
2
3

(4.319)

Pf =

�
0
10

�
2
3

; ur = 0:01 (4.320)

K f f u f = Pf �K f r ur ! u f = K�1
f f (Pf �K f r ur) (4.321)

= 1=200
�

3 2
2 3

���
0
10

�
�100

� �1
0

�
�0:01

�
(4.322)

=

�
0:11
0:16

�
m (4.323)

�

Euler Bernoulli beam

The shape functions defined in Lagrange interpolation use one type of degree of freedom, e.g
displacements at nodal points or their derivatives like rotation in beams not both. There is another
type of interpolation that uses both types. For example, Let us assume two-node Euler Bernoulli
beam shown in Figure 4.58 with four DOF (lateral displacement and rotation for each node), with
approximate solution for lateral deformation defined as follows:

v(x) = a0 +a1x+a2x2 +a3x3 =
4X

i=1

uiNi (x) (4.324)
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The displacements associated with each DOF are defined as follows:

ui =
�

v1 θ1 v2 θ2
	T (4.325)

Using the following boundary condition:

v1 = v(0) = a0; v2 = v(L) = a0 +a1L+a2L2 +a3L3;

θ1 = v0 (0) = a1; θ2 = v0 (L) = a1 +2a2L+3a3L2 (4.326)

which results the following shape functions:

Ni (x) =
�

1�3r2 +2r3 x(1� r)2 3r2�2r3 x(r2� r)
�

(4.327)

Where r = x
L , and these shape functions above are called Hermite cubic interpolation functions as

shown in Figure 4.59.
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Figure 4.59

δΠ =

Z L

0

�
EIxv00δv00�qδv

�
dx�Q1δv1�Q2δv2�M1δv01�M2δv02 (4.328)

v00 =
4X

j=1

u jN00
j (x) δv =

4X
i=1

δuiNi (x) δv00 =
4X

i=1

δuiN00
i (x) (4.329)

δΠ =

Z L

0

0@EIx

4X
j=1

u jN00
j (x)

4X
i=1

δuiN00
i (x) �qo

4X
i=1

δuiNi (x)

1Adx�
4X

i=1

Piδui (4.330)

Ni (x)
00 =

1
L2

�
6+12r L(4�6r) 6�12r L(6r�2)

�
(4.331)
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Using index notation

δΠ = δui

�Z L

0

�
EIxN00

i (x)N00
j (x)

�
dx
�

u j| {z }
ke

i j

�δui

�Z L

0
[qoNi (x)]dx+Pi

�
| {z }

Fe
i

= δui:ke
i j:u j�δui:Fe

i

(4.332)

The stiffness matrix

ke
i j =

Z L

0

�
EIzN00

i (x)N00
j (x)

�
dx =

EIz

L

2664
12 6L �12 6L
6L 4L2 6L 2L2

�12 �6L 12 �6L
6L 2L2 6L 4L2

3775 (4.333)

The load vector

Fe
i =

Z L

0
(qoNi (x))dx+Pi =

26664
qL
2

�qL2

12
qL
2

qL2

12

37775+

2664
Q1
M1
Q2
M2

3775 (4.334)

Beam torsional stiffness matrix
As stated in section 4.1.5 and section 4.1.5, there are two types of torsion; pure torsion and warping
torsion. For a two-node beam element with torsional rigidity GJ and length L shown in Figure 4.60,
if we neglect the warping torsion and assume a linear interpolation for angle of twist as follows:

�
ke

i j
�
=

GJ
L

�
1 �1
�1 1

�
(4.335)

which is similar to bar stiffness subjected to axial load in Equation 4.298 If we take into account
the warping rigidity ECw, the angle of twist can be represented by a cubic polynomial similar to
beam interpolation function as follows:

θx (x) = a0 +a1x+a2x2 +a3x3 =
4X

i=1

uiNi (x) (4.336)

Using two degree of freedom θx; θ 0x for each end shown in Figure 4.61 as follows:

M x2
θx2

M x1
θx1

L

GJ

Figure 4.60

Bx2
θ'x2

Bx1
θ'x1

M x2
θx2

M x1
θx1

L

ECw

GJ

Figure 4.61

ui =
�

θx1 θx2 θ 0x1 θ 0x2
	T (4.337)

Using Equation 4.327, the shape functions will be:

Ni (x) =
�

1�3r2 +2r3 3r2�2r3 x(1� r)2 x(r2� r)
�

(4.338)
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Ni (x)
0 =
h

�6r+6r2

L
6r�6r2

L 1�4r+3r2 3r2�2r
i

(4.339)

Using Equation 4.46 and Equation 4.55, the variation in stored potential energy will be:

δU =

Z L

0
GJθ

0
xδθ

0
x +ECwθ

00
x δθ

00
x dx = δui:ke

i j:u j (4.340)

So, the resulting stiffness matrix will be:

ke
i j =

Z L

0

�
GJN0

i (x)N0
j (x)+ECwN00

i (x)N00
j (x)

�
dx (4.341)

[K] =
GJ
L

2664
1:2 1:2 0:1L 0:1L
�1:2 1:2 �0:1L �0:1L
0:1L �0:1L 2=15L �1=30L2

0:1L �0:1L �1=30L2 2=15L

3775+
ECw

L3

2664
12 �12 6L 6
�12 12 �6L �6L
6L �6L 4L2 2L2

6L �6L 2L2 4L2

3775
(4.342)

Warping resistance using the above stiffness leads to a good approximation to the exact solution.
Sufficient number of elements can converge to the exact solution. Warping resistance can be used
for open section with sufficient warping resistance like wide steel I-section, while we can neglect it
for open section with component elements meeting at a point like angles and tee sections. Also
the above stiffness matrix can apply for a number of finite element beams that form a straight line,
such that beam ends can be warping fixed or free as shown in Figure 4.9a and Figure 4.10a, while
taking the effect of the corner beam-column connection is beyond our scope of study.

4.5.2 Flexibility matrix Di j, and Forced based FEA
The flexibility matrix Di j is equivalent to the inverse of stiffness matrix Ki j for element formulation
defined as follows:

Ki j:u j = Fi ! Di j:F j = ui (4.343)

We can reach the flexibility matrix in another form. Suppose if we have a beam with fixed right
end and free left end subjected to M1; Q1 shown in Figure 4.62, the shear force and moment at any
section x, lying from the left end as shown in Figure 4.62 will be:

Q = Q1 (4.344)

M = M1� xQ1 =
� �x 1

�� Q1
M1

�
= NiFi (4.345)

At the right end, the shear force and moment will be Q2 =�Q1; M2 = LQ1�M1 or:�
Q2
M2

�
= [φ ]

�
Q1
M1

�
(4.346)

Where

[φ ] =

� �1 0
L �1

�
(4.347)
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Figure 4.62

Also �
Q1
M1

�
=

� �1 0
�L �1

��
Q2
M2

�
(4.348)

Using principle of virtual work, using virtual force instead of virtual displacement results in:

δΠ
� =

Z L

0

�
EIzv00δv00

�
dx�δQ1v1�δM1v01 (4.349)

Substituting v00 = M
EIz

;δv00 = δM
EIz

into the above equation results in:

δΠ
� =

Z L

0

�
MδM

EIz

�
dx�δQ1v1�δM1v01 (4.350)

= δF i:

Z L

0

�
NiN jδM

EIz

�
dx:Fj�δF i:ui (4.351)

δΠ
� is called complementary virtual work.

δF i [Di jFj�ui] = 0 (4.352)

Where Di j is the flexibility matrix corresponding to forces Q1 and M1 defined as:

[Di j] =

Z L

0

�
NiN jδM

EIz

�
dx =

1
EIz

"
L3

3 �L2

2
�L2

2 L

#
(4.353)

So we get:

Di jFj = ui (4.354)

So the stiffness matrix is:

[K] = [D]�1 = EIz

� 12
L3

6
L2

6
L2

4
L

�
(4.355)
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This is the stiffness matrix for the left two DOF (compare it with Equation 4.333). To get the total
stiffness matrix of the beam, it can be divided into two parts; part associated with the left two DOF
and another associated with the right two DOF.�

Fl
Fr

�
=

�
Kll Klr
Krl Krr

��
ul
ur

�
(4.356)

or

fl = kllul + klrur (4.357)

fr = krlul + krrur (4.358)

Where

Fl =

�
Q1
M1

�
; Fr =

�
Q2
M2

�
; ul =

�
v1
θ1

�
; ur =

�
v2
θ2

�
(4.359)

In this case, kll refers to K in Equation 4.355. From Equation 4.346, we get fr = [φ ] fl . Substituting
it into Equation 4.358 results in:

[φ ] fl = krlul + krrur (4.360)

Multiplying Equation 4.357 by [φ ], and subtracting it from the above equation results in:

0 = (φkll� krl)ul +(φklr� krr)ur (4.361)

As ul; ur are independent terms, their coefficients vanish for nontrivial solution as follows:

krl = φkll; φklr = krr (4.362)

From symmetry of stiffness matrix, it will be

K =

�
Kll kllφ

T

φkll φkllφ
T

�
(4.363)

With kll = K, we get the total stiffness as follows::

K = EIz

2664
12
L3

6
L2 �12

L3
6
L2

6
L2

4
L � 6

L2
2
L

�12
L3 � 6

L2
12
L3 � 6

L2
6
L2

2
L � 6

L2
4
L

3775 (4.364)

The above method used in formulating the stiffness matrix is called forced-based finite element
method, while the traditional method described in subsection 4.5.1 is called displacement-based
finite element method. There is another method that combine using these two previous methods
called Mixed finite element which is described in subsection 4.5.5.

Timoshenko beam
For thick beams shown in Figure 4.63, the angle between section normal n and the tangent to beam
centerline changes after deformation. This change is defined as shear deformation (γxy = v0�θ )
and the deformation field follows this expression:

u(x;y) =�yφ (x) (4.365)

v(x;y) = v(x) (4.366)
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Figure 4.63

Such that the axial and shear strains and stresses and their resultants are defined as follows:

εxx =�yθ
0! σxx = Eεxx !Mx =�

Z
A

σxxydA = EIzθ
0 (4.367)

γxy = v0�θ ! τxy = Gγxy ! Q =

Z
A

τxydA = GAsγxy = kSGAγxy (4.368)

And the corresponding variations in strain energy are defined as

δΠbending =

Z L

0

�
EIzθ

0
δθ

0�dx (4.369)

δΠshear =

Z L

0
(kSGAγxyδγxy)dx =

Z L

0

�
kSGA

�
v0�θ

�
δ
�
v0�θ

��
dx (4.370)

Such that the total variation in potential energy will be:

δΠ =

Z L

0

�
EIzθ

0
δθ

0+kSGA
�
v0�θ

�
δ
�
v0�θ

��qδv
�

dx�Q1δv1�Q2δv2�M1δθ1�M2δθ2

(4.371)

Where Q1, Q2, M1 and M2 are beam end forces. Using linear Lagrange interpolation function for
lateral displacement v and section rotation θ in terms of the two ends DOF as follows:

v =
2X

i=1

viNi (x) =
� �

1� x
L

� x
L

�� v1
v2

�
(4.372)

θ =
2X

i=1

θiNi (x) =
� �

1� x
L

� x
L

�� θ1
θ2

�
(4.373)

Or generally, the lateral displacement will be:

v =
4X

i=1

uiN1
i (x) =

� �
1� x

L

�
0 x

L 0
�2664

v1
θ1
v2
θ2

3775 (4.374)
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With variation:

δv0 =
4X

i=1

δuiN1
i
0
(x) (4.375)

Similarly, section rotation θ and its derivative with respect to beam length x (θ 0) will be:

θ =
4X

i=1

uiN2
i (x) =

�
0
�
1� x

L

�
0 x

L

�2664
v1
θ1
v2
θ2

3775 (4.376)

θ
0 =

4X
j=1

u jN2
j
0
(x) =

�
0 � 1

L 0 1
L

�2664
v1
θ1
v2
θ2

3775 (4.377)

And variations defined as:

δθ =
4X

i=1

δuiN2
i (x) δθ

0 =
4X

i=1

δuiN2
i
0
(x) (4.378)

For end beam lateral displacements v1, v2 and section rotations θ1, θ2 , the linear interpolation for
lateral displacement and section rotation forces the beam to displace as shown in Figure 4.64.
The resulting variation in total potential energy will be:

δΠ =

Z L

0

0BBBBBBB@
EIz

4P
j=1

u jN2
j
0
(x)

4P
i=1

δuiN2
j
0
(x)

+kSGA
4P

j=1
u j

�
N1

j
0
(x)�N2

j (x)
�

δ

4P
i=1

δui

�
N1

i
0
(x)�N2

i (x)
�

�qo

nP
i=1

δuiN1
i (x)

1CCCCCCCA
dx�

nX
i=1

Piδui

(4.379)

Substituting with the interpolation functions in Equation 4.372 to Equation 4.378 results into the
following stiffness matrix:

k =
EIz

12λL3

2664
12 6L �12 6L
6L 4L2 (1+3λ ) �6L 2L2 (1�6λ )
�12 �6L 12 �6L
6L 2L2 (1�6λ ) �6L 4L2 (1+3λ )

3775 (4.380)

Where

λ =
EIz

KsGAL2 (4.381)

But the above formulation and the assumed deformed shape in Figure 4.64 can not be used for thin
beams (Bernoulli beam theory). As thin beam exhibit zero shear deformation as follows:

0 = γxy = v0�θ ! v0 = θ (4.382)

v0 =
2X

i=1

viNi (x) =
v1� v2

L
(4.383)
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Figure 4.64

The tangent to beam centerline in the above equation is constant which contradicts the linear
interpolation function assumed for the lateral displacement in Equation 4.374, so assuming a linear
interpolation for lateral displacement and section rotation produces inconsistent beam element.
The linear interpolation for lateral displacement forces section rotation to be constant all over the
beam which leads to zero curvature (change in section rotation θ 0 = 0). Zero curvature means
no bending deformation or bending strain energy (

R L
0 (EIzθ

0δθ 0)dx = 0) and the beam exhibits
only shear deformation, as shown in the beam deformed shape at the lower part of Figure 4.65.
This deformed shape shows that, for zero lateral displacement, the rotation is varied linearly
(θ = (1�x=L)θ1+(x=L)θ2), while v0 is horizontal. This shape is different from the expected shape
of deformation for Bernoulli beam as shown in the upper part of Figure 4.65. This problem is
called shear locking. We remark that for any bending element like beam or shell element, using
Lagrange interpolation function of the same order for deflection and rotation produces shear lock,
especially for thin elements. To solve this problem, we need to choose a consistent interpolation

M M

M M

Expected shape

Shear locking
Figure 4.65: Shear locking is expected when using linear interpolation functions for both lateral
displacement and section rotation in Bernoulli beam theory
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θ1 θ2

v1 v2v3

Figure 4.66: Consistent interpolation element

for both v and θ , such that lateral displacement derivative v0 and section rotation θ should have
the same interpolation function. For example, if we choose a linear interpolation function for
section rotation, we need to assume a quadratic interpolation function for lateral displacement.
We need to an additional node (e.g. at beam element mid-span) with lateral displacement as an
undetermined parameter and the beam element will have five degree of freedom as shown in
Figure 4.66. This element is called consistent interpolation element with interpolation functions
defined using Equation 4.290 as follows:

v =
2X

i=1

viNi (x) =
� 1

2 ξ (ξ �1) 1�ξ 2 1
2 ξ (ξ +1)

�24 v1
v3
v2

35 ; (4.384)

θ =
2X

i=1

θiNi (x) =
�
(1�ξ ) ξ

�� θ1
θ2

�
(4.385)

Where ξ = x
L , and the stiffness matrix can be evaluated like the same above procedures using

Equation 4.379, but the element will have five DOF (two rotational at ends and three lateral
displacements)

Another way to solve shear locking is to make both v0 and θ to be constant instead of being
linearly varied as stated in the previous five-DOF element. Using an average section rotation
θ � = (θ1+θ2)

2 as a constant value in evaluating shear stiffness, the variation in total potential energy
will be:

δΠ =

Z L

0

�
EIzθ

0
δθ

0+kSGA
�
v0�θ

��
δ
�
v0�θ

���qδv
�

dx�Q1δv1�Q2δv2�M1δθ�M2δθ

(4.386)

And the interpolation function is defined as:

v =
4X

i=1

uiN1
i (x) =

� �
1� x

L

�
0 x

L 0
�2664

v1
θ1
v2
θ2

3775 (4.387)

δv0 =
4X

i=1

δuiN1
i
0
(x) (4.388)

θ
� =

4X
i=1

uiN3
i (x) =

�
0 1

2 0 1
2

�2664
v1
θ1
v2
θ2

3775 (4.389)
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θ
0 =

4X
j=1

u jN2
j
0
(x) =

�
0 � 1

L 0 1
L

�2664
v1
θ1
v2
θ2

3775 (4.390)

θ =
4X

i=1

uiN2
i (x) =

�
0
�
1� x

L

�
0 x

L

�2664
v1
θ1
v2
θ2

3775 (4.391)

θ � can not be used in Equation 4.386, as for constant value for θ �, it results that (θ 0� = 0) will
vanish resulting no bending stiffness.
The resulting variation in total potential energy in Equation 4.386 will be:

δθ
� =

4X
i=1

δuiN3
i (x) δθ

0 =
4X

i=1

δuiN2
i
0
(x) (4.392)

δΠ =

Z L

0

0BBBBBBB@
EIz

4P
j=1

u jN2
j
0
(x)

4P
i=1

δuiN2
j
0
(x)

+kSGA
4P

j=1
u j

�
N1

j
0
(x)�N3

j (x)
�

δ

4P
i=1

δui

�
N1

i
0
(x)�N3

i (x)
�

�qo

4P
i=1

δuiN1
i (x)

1CCCCCCCA
dx�

4X
i=1

Piδui

(4.393)

Substituting with the interpolation functions in Equation 4.387 to Equation 4.390 results into the
following stiffness matrix:

K =
EIz

12λL3

2664
12 6L �12 6L
6L 3L2 (1+4λ ) �6L 3L2 (1�4λ )
�12 �6L 12 �6L
6L 3L2 (1�4λ ) �6L 3L2 (1+4λ )

3775 (4.394)

These findings can be achieved through evaluating the integral corresponding to shear deformation

in Equation 4.393

"R L
0 kSGA

4P
j=1

u j

�
N1

j
0
(x)�N3

j (x)
�

δ

4P
i=1

δui

�
N1

i
0
(x)�N3

i (x)
�

dx

#
using one

Gauss integration point (at mid-point) and the interpolation functions defined in Equation 4.372 to
Equation 4.378 without the need to define a separate interpolation function for section rotation θ �,
as the rotation at beam mid-point from Equation 4.391 is θ

�L
2

�
= 1

2 θ1 +
1
2 θ2 is equivalent to using

an average value for rotation (θ � = (θ1+θ2)
2 ). This type of integration used in evaluating the finite

element stiffness is called reduced integration.
For a beam free of body forces, this element does not lock but does not also yield the exact

displacements as the section rotation θ is assumed to be varied linearly, while the curvature and
moment have to be linearly varied for Bernoulli beam (see Hermite cubic interpolation functions
in Equation 4.324 and Equation 4.327). This lower polynomial interpolation function used effect
solution accuracy. Using reduced integration with finer mesh (by increasing the number of finite
elements for each beam), solution will converge to more accurate results.

Another way to evaluate the stiffness matrix free of shear locking is to use forced-based
finite element procedures (see stiffness matrix derived for Bernoulli beam from Equation 4.343 to
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Equation 4.364). The complementary virtual work of shear force is defined as:

Π
� = Π =

Z L

0

Q2

2GAs
dx (4.395)

With variation:

δΠ
� =

Z L

0

QδQ
GAs

dx =
L

GAs
δQ1Q1 (4.396)

As seen in Figure 4.62, Q = Q1, δQ = δQ1. Adding the resulting shear flexibility to bending
flexibility in Equation 4.355 yields:

D =
1

EIz

"
L3

3 �L2

2
�L2

2 L

#
+

1
GAs

�
L 0
0 0

�
=

1
EIz

" � 1
3 +λ

�
L3 �L2

2
�L2

2 L

#
(4.397)

Where λ = EIz
GAsL2 . The stiffness matrix corresponding to the first DOF at the left end of the beam.

K = D�1 =
EIz

L3 (12 λ +1)

�
12 6L
6L 4L2(3 λ +1)

�
(4.398)

Using the same procedures from Equation 4.357 to Equation 4.363, we get the total stiffness as
follows:

K =

2664
12 6L �12 6L
6L 4L2 (1+3λ ) �6L 2L2 (1�6λ )
�12 �6L 12 �6L
6L 2L2 (1�6λ ) �6L 4L2 (3λ +1)

3775 (4.399)

For a beam free of body forces, this formulation for stiffness matrix gives the exact solution for
displacements and section rotations even if we use one finite element for each beam of the structure,
unlike using reduced integration in which it requires a finer mesh for structure to force the solution
to converge to the exact solution.

For very thin beam (λ ! 0), the stiffness matrix in the above equation will be identical to the
one used for the Bernoulli beam element in Equation 4.333.

4.5.3 Formulation of continuum mechanics incremental equations of motion
Total and updated Lagrangian formulation
As stated in chapter 3, we use Lagrangian description in solid bodies especially when they are
subjected to large displacements and rotations. Consider a body shown in Figure 4.67 with initial
configuration C0 and then subjected to some external forces yielding configuration C1. Assume that
the deformation is known until this configuration C1, while the deformation in configuration C2 is
unknown, such that a material point P attached to this body has coordinates P0 = (0X1;

0X2;
0X3),

P1 = (1X1;
1X2;

1X3) and P2 = (2X1;
2X2;

2X3) in configuration C0, C1 and C2, respectively. If the
coordinate system used remains constant during body motion, the coordinates of point P in different
configurations are related through following:

1Xi =
0Xi +

1ui
2Xi =

0Xi +
2ui

ui =
2ui� 1ui

(4.400)

Where 1ui,2ui and ui represent the incremental displacements from configuration C0 to C2, C0 to C2
and C1 to C2, respectively. The superscript is used generally to define the configuration at which the



214 Chapter 4. Energy Principles and Introduction to FEA

e1

e2

e3O

Configuration corresponding to the
variation in displacement δu on 2u

δu

P(2x1,2x2,2x3)

P(0x1,0x2,0x3)

Configuration C0
Surface area 0S
Volume 0V

Configuration C1
Surface area 1S
Volume 1V

Configuration C2
Surface area 2S
Volume 2V

1X i=0X i+1ui
2X i=0X i+2ui

ui=2ui-1ui for i=1, 2, 3

Figure 4.67: Body motion

property is measured. Applying virtual (variational) displacement δu on the unknown configuration
C2 that satisfies the boundary conditions to get an admissible configuration shown in Figure 4.35.
These virtual displacements undergo virtual strain denoted by δ 2εεε and virtual work defined using
Equation 4.161 integrated over the unknown configuration C2 as follows:

2
δΠ = 2

δΠint� 2
δΠext =

Z
2V

2
σi jδ

2
εi j d2V �

Z
2V

2 f �i δ
2ui d2V �

Z
2SΓ

2tiδ 2ui d2A = 0 (4.401)

Where 2σσσ is Cauchy stress at configuration t2 and δ 2εεε defines the infinitesimal virtual strain referred
to configuration C2 defined as follows:

δ
2
εi j =

1
2

�
∂δui

∂ 2X j
+

∂δu j

∂ 2Xi

�
(4.402)

In Equation 4.401, we face two problems. First, we can not evaluate the integration over unknown
volume 2V and second, Cauchy stress can not be used in an incremental analysis as its rate is not an
objective (see section 3.4), such that there is no direct expression for the increment in stress 4σσσ

from configuration C1 to C2 that satisfies the following equation:
2
σσσ = 1

σσσ +4σσσ (4.403)

Therefore, we should use an alternative expression for the internal virtual work. We can write the
internal virtual work in the material form as follows:

2
δΠint =

Z
0V

2
0Si jδ

2
0Ei j d0V (4.404)
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Where 2
0Si j represents second Piola-Kirchhoff stress tensor and and 2

0Ei j is Green-Lagrange strain
tensor. The superscript 2 indicates that they are measured at configuration C2, while subscript 0
signifies that they are referred to configuration C0. Green-Lagrange strain tensor is defined as:

2
0Ei j =

1
2
�2

0Ui; j +
2
0U j;i +

2
0Uk;i

2
0Uk; j

�
; where m

n Ui; j =
∂ mui

∂ nX j
(4.405)

While its variation will be:

δ
2
0Ei j =

1
2
�
δ

2
0Ui; j +δ

2
0U j;i +δ

2
0Uk;i

2
0Uk; j +

2
0Uk;i δ

2
0Uk; j

�
(4.406)

From above equations, the alternative virtual work is expressed in terms of a known configuration.
Also the displacement U in Equation 4.405 is differentiated with respect to known configuration.
In addition, we can decompose second Piola-Kirchhoff stress and Green-Lagrange strain tensors
because of their objective rate as follows:

2
0Si j =

1
0Si j + 0Si j;

2
0Ei j =

1
0Ei j + 0Ei j (4.407)

Where

1
0Ei j =

1
2
�1

0Ui; j +
1
0U j;i +

1
0Uk;i

1
0Uk; j

�
(4.408)

Substituting Equation 4.405 and the above equation into Equation 4.407, we get the increment in
Green-Lagrange strain as follows:

0Ei j =
1
2
�

0Ui; j + 0U j;i +
1
0Uk;i 0Uk; j + 0Uk;i

1
0Uk; j

�
+

1
2
�

0Uk;i 0Uk; j
�

(4.409)

The above increment can be decomposed to two parts as follows:

0Ei j = 0ei j + 0ηi j (4.410)

0ei j =
1
2

0B@0Ui; j + 0U j;i +
1
0Uk;i 0Uk; j + 0Uk;i

1
0Uk; j| {z }

initial displacement effect

1CA (4.411)

0ηi j =
1
2 0Uk;i 0Uk; j (4.412)

With the variations δ 0ei j and δ 0ηi j defined as:

δ 0ei j =
1
2
�
δ 0Ui; j +δ 0U j;i +

1
0Uk;i δ 0Uk; j +δ 0Uk;i

1
0Uk; j

�
; δ 0ηi j =

1
2
�
δ 0Uk;i 0Uk; j + 0Uk;iδ 0Uk; j

�
(4.413)

Also from Equation 4.407, the variation δ 0Ei j is defined as:

δ
2
0Ei j = δ 0Ei j +δ

1
0Ei j = δ 0Ei j (4.414)

The first term in Equation 4.410 (0ei j) defines the linear incremental strain in 0Ui; j (see Equa-
tion 4.411) as 1

0Ui; j =
∂ 1ui
∂ 0X j

is known and considered constant through applying ui or Ui; j, while the
second term (0ηi j) is nonlinear incremental strain denoted as seen in Equation 4.412.

As shown in Figure 4.67, the displacement field 1ui can be interpolated in terms of nodal
point variables (degree of freedom) which may be displacements or rotations or both. For body
undergoing large rotation, 1ui will be a linear function in nodal point displacement and a nonlinear
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one in nodal point rotation (see Equation 2.179), which in turn makes a part of 0ei j associated with
nodal point rotation to be nonlinear and 0ηi j is not the full story of all nonlinear strain increment.
Also we need to note that the external forces are assumed constant during displacement increment.
Some loads like pressures are deformation dependent and it will add additional stiffness to the total
stiffness (see Appendix 4.5.5). The resulting principle of virtual work is:Z

0V
0Si jδ 0Ei j d0V +

Z
0V

1
0Si jδ 0ηi j d0V = 2

δΠext �
Z

0V

1
0Si jδ 0ei j d0V (4.415)

For given variation δui, the right hand side in the above is known, while the left hand side contains
unknown displacement increments which is responsible for the stiffness matrix. Deriving the
stiffness matrix requires that neglecting all higher-order terms in Ui, such that all linear terms in Ui

remain. This process is called linearization which leads to:�t
0K 0U

�
δ 0Ui =

�2R� 1F
�

δ 0Ui ! t
0K 0U = 2R� 1F (4.416)

Where t
0K, 0U , 2R and 1F are the stiffness matrix, incremental displacement, external applied

force at configuration C2 and internal forces at configuration C1, respectively. The following term
1
0Si jδ 0ηi j is linear in 0Ui as 1

0Si j is known from the configuration C1, while the term ηi j is linear in
0Ui and δ 0Ui as seen in Equation 4.413. The term 0Si jδ 0Ei j is non-linear in 0Ui, as the first part
0Si j is generally nonlinear function in δ 0Ei j according to the constitutive relation, so neglecting
higher order will make δ 0Ei j a linear function in 0Ui as follows:

0Si j =
∂ t

0Si j

∂ t
0Ers

����
t1

0Ers +higher order terms (4.417)

The above equation can be expanded using Taylor series. The term 0Ers = 0ers + 0ηrs is quadratic
function in 0Ui because of the nonlinearity of 0ηrs as stated in Equation 4.412, which requires
neglecting 0ηrs. By equating ∂ t

0Si j
∂ t

0Ers

���
t1

with 0Ci jrs, the resulting linear term 0Si j will be:

0Si j = 0Ci jrs0ers (4.418)

while the second part δ 0Ei j contains linear and non-linear terms as follow:

δ 0Ei j = δ 0ei j|{z}
constant

+δ 0ηi j| {z }
linear

(4.419)

As the first part of is linear, second part is needed to be constant by neglecting the second term in the
above equation, such that term 0Si jδ 0Ei j can be linear only through the following approximation:

0Ci jrs0ers| {z }
linear

δ 0ei j|{z}
constant

= 0Ci jrs0ersδ 0ei j| {z }
linear

(4.420)

So the final linearized equation of Equation 4.415 can be written as follows:Z
0V

0Ci jrs 0ersδ 0ei j d0V +

Z
0V

1
0Si jδ 0ηi j d0V| {z }

linear

= 2
δΠext �

Z
0V

1
0Si jδ 0ei j d0V| {z }

Constant

(4.421)

The left side of the above equation is responsible for the material and geometric stiffness matrices,
while the right side represents out of balance virtual work term. This term, the difference between
the external virtual work and internal virtual work, can be reduced by performing some iterations in
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which the solution step is repeated until this difference can be neglected within a certain convergence
measure as follows:Z

0V
0C(k�1)

i jrs 0e(k)rs δ 0ei j d0V +

Z
0V

2
0S(k�1)

i j δ 04η
(k)
i j d0V = 2

δΠext�
Z

0V

2
0S(k�1)

i j δ
2
0ε

(k�1)
i j d0V (4.422)

The superscript k indicates the iteration at which the term is calculated.
The last term (

R
0V

2
0S(k�1)

i j δ 2
0ε

(k�1)
i j d0V ) corresponds to the current internal stresses in th element at

configuration C1. Although, we are forced to use linearization (approximation through neglecting
higher order terms) to get the stiffness matrix in the predictor phase of the finite element analysis,
we can achieve the exact solution as long as the unbalance force is evaluated accurately in the
corrector phase. These exact results can be guaranteed through calculating accurately the last term
of the unbalance virtual work equation (

R
0V

2
0S(k�1)

i j δ 2
0ε

(k�1)
i j d0V ) . This term is an essential quantity

that controls the final results of the finite element analysis that we have to calculate accurately, as
our ultimate goal is equilibrating this term with 2δΠext . If we mistake in calculating this term, the
analysis will converge to a wrong solution. However, the approximation used in evaluating the
stiffness matrix has no effect on the solution results and just increases the number of iterations to
for solution to converge or reach the equilibrium state in the loading step.

Equation 4.421 can be simplified using the symmetry property of second Piola Kirchhoff stress
tensor (using Equation 1.100) and Equation 4.413 as follows:

1
0Si jδ 0ηi j =

1
0Si j

�
δ 0Uk;i 0Uk; j

�
1
0Si jδ 0ei j =

1
0Si j

�
δ 0Ui; j +

1
0Uk;i δ 0Uk; j

� (4.423)

The above formulation is called Total Lagrangian (TL) Formulation in which the initial config-
uration C0 is used as a reference configuration. We can use instead the last converged configuration
C1 as a reference configuration which leads to so-called Updated Lagrangian (UL) Formulation. In
this formulation, the internal virtual work will be defined as:

2
δΠint =

Z
0V

2
1Si jδ

2
1Ei j d0V (4.424)

Which 2
1Si j and 2

1Ei j are conjugate pairs defined as follows:

2
1SSS = det(2

1FFF)2
1FFF�1 �2

σσσ
�T 2

1FFF

2
1EEE =

1
2

�
2
1FFF

T 2
1FFF�111

� (4.425)

With

2
1Fi j =

∂ 2Xi

∂ 1X j
=

∂ui

∂ 1X j
+δi j = 1Ui; j +δi j (4.426)

We get

2
1Ei j =

1
2
�

1Ui; j + 1U j;i + 1Uk;i 1Uk; j
�

(4.427)

2
1Ei j can be split into two terms as stated before:

1Ei j = 1ei j + 1ηi j =
1
2
(1Ui; j + 1U j;i)+

1
2
�

1Uk;i 1Uk; j
�

(4.428)

1ei j =
1
2
(1Ui; j + 1U j;i) (4.429)

1ηi j =
1
2
�

1Uk;i 1Uk; j
�

(4.430)
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With variation define as:

δ 1Ei j =
1
2
�
δ 1Ui; j +δ 1U j;i +δ 1Uk;i 1Uk; j + 1Uk;i δ 1Uk; j

�
(4.431)

δ 1ei j =
1
2
(δ 1Ui; j +δ 1U j;i) (4.432)

δ 1ηi j =
1
2
�
δ 1Uk;i 1Uk; j + 1Uk;iδ 1Uk; j

�
(4.433)

Second Piola Kirchhoff stress tensor at the current configuration can be resolved into two compo-
nents:

2
1Si j =

1
1Si j + 1Si j =

1
σi j + 1Si j (4.434)

As from Equation 4.425, 1
1Si j =

1σi j. Virtual work equation will be:Z
1V

1Si jδ 1Ei j d1V +

Z
1V

1
σi jδ 1ηi j d1V = 2

δΠext �
Z

1V

1
σi jδ 1ei j d1V (4.435)

Linearization of the above equation results in:Z
1V

1Ci jrs 1ersδ 1ei j d1V +

Z
1V

1
σi jδ 1ηi j d1V = 2

δΠext �
Z

1V

1
σi jδ 1ei j d1V (4.436)

With incremental form defined as:Z
2V (k�1)

2C(k�1)
i jrs 2e(k)rs δ 2ei j d2V +

Z
2V (k�1)

2
σ

(k�1)
i j δ 2η

(k)
i j d2V = 2

δΠext�
Z

2V (k�1)

2
σ

(k�1)
i j δ 2e(k�1)

i j d2V

(4.437)

The difference between updated Lagrangian (UL) and total Lagrangian (TL) formulations is that
TL formulation includes initial displacement effect as stated in Equation 4.411 which makes the
stress-displacement matrix more complicated than UL formulation, but they gave the same results.

Lagrangian formulation of displacement-based finite elements
For a general body described in the previous section, the linearized virtual work Equation 4.421
can be written in terms of the nodal point variables (displacement rotation) as follows:Z

0V
0Ci jrs 0ersδ 0ei j d0V = δ ûuu

�Z
0V

1
0BLBLBL

T
0CCC 1

0BLBLBL d0V
�

ûuuZ
0V

1
0Si jδ 0ηi j d0V = δ ûuu

�Z
0V

1
0BNLBNLBNL

T 1
0SSS1

0BNLBNLBNL d0V
�

ûuuZ
0V

1
0Si jδ 0ei j d0V = δ ûuu

�Z
0V

BLBLBL
T 1

0Ŝ̂ŜS d0V
� (4.438)

Where 1
0BLBLBL and 1

0BNLBNLBNL is the linear and nonlinear strain-displacement transformation matrices. Term
0CCC defines stress-strain constitutive relation. 1

0SSS and Ŝ̂ŜS are matrix and vector of second Piola
Kirchhoff stress. While vectors ûuu and δ ûuu signify the nodal point variables nodes and their variations,
respectively, defined as follows:

ûuu =
�
u1

1 u1
2 ::: u1

i ::: u1
m j u1

2 u2
2 ::: j un

1::: un
m
�T

(4.439)

δ ûuu =
�
δu1

1 δu1
2 ::: δu1

i ::: δu1
m j δu1

2 δu2
2 ::: j δun

1::: δun
m
�T

(4.440)

Where m is the number of DOF associated with each node of the finite element, while n is the
number of nodes in the finite element, such that u j

i defines the displacement at node j associated with
DOF i at this node. Generally, m = 3 for continuum finite element (three nodal point displacement
at each node) and m = 6 for structural element (three nodal point displacement and three nodal
point rotation at each node).
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� Example 4.36 Assume a three-node curved truss element shown in Figure 4.68. As the only
stress considered in truss element is the normal stress on its cross section, we are interested in
the corresponding longitudinal Green Lagrangian strain E11. Assume an infinitesimal vector
d0sss of the truss element at the initial configuration C0 along its centroid and is deformed to d1sss
in the deformed configuration C1, such that E11 is defined using its expression in chapter 3 as
follows:

d1s2�d0s2 = 21
0E11d0s2 (4.441)

Where d0s and d1s represent the arc length of undeformed and deformed infinitesimal vectors
d0sss, d1sss, respectively. If the truss has initial position 0XXX and is subjected to displacement vector
1uuu reaching to position 1XXX in the deformed configuration C1, the length square of d0s and d1s
can be defined as follows:

(d0s)2 = d0sss:d0sss = d0XXX i:d0XXX i

(d1s)2 = d1sss:d1sss = d1XXX i:d1XXX i

d0Xi =
d0Xi

d0S
d0S

d1Xi =
d1Xi

d0S
d0S =

�
d0Xi

d0S
+

d1ui

d0S

�
d0S

(d1s)2� (d0s)2 =

�
2

d0Xi

d0S
d1ui

d0S
+

d1ui

d0S
d1ui

d0S

�
(d0s)2 = 2E11(d0s)2

(4.442)

Then, we get the axial strain as follows:

1
0E11 =

d0Xi

d0S
d1ui

d0S
+

1
2

d1ui

d0S
d1ui

d0S
(4.443)
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In the same manner, the element is deformed to the final configuration C2 through additional
displacement ui, such that the Green-Lagrange strain will be:

2
0E11 =

d0Xi

d0S
d(1ui +ui)

d0S
+

1
2

d(1ui +ui)

d0S
d(1ui +ui)

d0S
(4.444)

The incremental in this strain 0E11 =
2
0E11� 1

0E11 will be:

d0Xi

d0S
dui

d0S
+

d1ui

d0S
dui

d0S
+

1
2

dui

d0S
dui

d0S
(4.445)

The increment in strain can be decomposed into linear 0e11 and nonlinear part 0η11 as follows:

0e11 =
d0Xi

d0S
dui

d0S
+

d1ui

d0S
dui

d0S
=

d1Xi

d0S
dui

d0S
(4.446)

0η11 =
1
2

dui

d0S
dui

d0S
(4.447)

Where the arc length at the initial configuration 0S(ξ ) can be defined in terms of natural
coordinate ξ = [�1;1] using Lagrange interpolation functions as follows:

0S(ξ ) =
nX

j=1

N j(ξ )
0S j (4.448)

N j(ξ ) is the interpolation function defined for three-node element (see Equation 4.290). In the
same manner, the following vectors can be interpolated as follows:

0Xi(ξ ) =
nX

j=1

N j(ξ )
0X j

i =NNN:0X̂̂X̂X

1Xi(ξ ) =
nX

j=1

N j(ξ )
1X j

i =NNN:1X̂̂X̂X

ui(ξ ) =
nX

j=1

N j(ξ )u
j
i =NNN:û̂ûu

(4.449)

With N j(ξ ) defined in Equation 4.290 and NNN defined as:

NNN = [N1(ξ )I3 j N2(ξ )I3 j ::: j Nn(ξ )I3] ; I3 =

24 1 0 0
0 1 0
0 0 1

35
0X̂̂X̂X =

�0X1
1

0X1
2

0X1
3 ::: 0X3

1
0X3

2
0X3

3
�T

1X̂̂X̂X =
�1X1

1
1X1

2
1X1

3 ::: 1X3
1

1X3
2

1X3
3
�T

1û̂ûu =
�
u1

1 u1
2 u1

3 ::: u3
1 u3

2 u3
3
�T

(4.450)

Where 0X̂̂X̂X , 1X̂̂X̂X and 1û̂ûu represents the initial and final position, and displacement at point j in i
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direction, such that

d1Xi

d0S
=

dξ

d0S
d1Xi

dξ
(4.451)

=
dξ

d0S

nX
j=1

N j;ξ (ξ )
1X j

i (4.452)

=
dξ

d0S
NNN

;ξ
1X̂̂X̂X (4.453)

Similarly:

dui

d0S
=

dξ

d0S

nX
j=1

NNN
;ξ û̂ûu (4.454)

Note that subscript (,ξ ) in N j;ξ signifies the derivative of N j with respect to the natural coordinate
ξ . Equation 4.446 and Equation 4.447 can also be interpolated as follows:

0e11 =
d1Xi

d0S
dui

d0S
(4.455)

=

�
dξ

d0S

�2 �
NNN

;ξ
1X̂̂X̂X
�
:
�
NNN

;ξ û̂ûu
�

(4.456)

=

�
dξ

d0S

�2�
1X̂̂X̂XTNNNT

;ξ
NNN

;ξ û̂ûu
�

(4.457)

0η11 =
1
2

�
dξ

d0S

�2�
û̂ûuTNNNT

;ξ
NNN

;ξ û̂ûu
�

(4.458)

With variations defined using Equation 4.438 as follows:

δ 0e11 =

�
dξ

d0S

�2�
1X̂̂X̂XTNNNT

;ξ
NNN

;ξ δ û̂ûu
�
=BLBLBLδ û̂ûu

δ 0η11 =

�
dξ

d0S

�2�
û̂ûuTNNNT

;ξ
NNN

;ξ δ û̂ûu
�
=

1
2

û̂ûuTBNLBNLBNL
TBNLBNLBNLδ û̂ûu

(4.459)

Where BLBLBL and BNLBNLBNL are defined as:

BLBLBL =

�
dξ

d0S

�2�
1X̂̂X̂XTNNNT

;ξ
NNN

;ξ

�
(4.460)

BNLBNLBNL =

�
dξ

d0S

��
NNN

;ξ

�
(4.461)

While second Piola Kirchhoff stress vector is defined as:

1
0Ŝ̂ŜS =

�1
0S1

11
1
0S2

11
1
0S3

11
�T

(4.462)
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Where 1
0Si

11 is the second Piola Kirchhoff longitudinal stress tensor at node i. The corresponding
nonzero stress 1

0S11 can be a function of strain 1
0E11, such that the tangent stress-strain relation is

defined as follows:

0C1111 =
∂ 1

0S11

∂ 1
0E11

; or 41
0S11 = 0C111141

0E11 (4.463)

For linear elastic material, 0C1111 will be identical to Young’s modulus. As the axial stress is
constant over the cross section A, volume integration in Equation 4.464 can be simplified to a
line integral as follows:Z

0V
0Ci jrs 0ersδ 0ei j d0V =

Z
0V

0C1111 0e11δ 0e11 d0V = δ ûuu
�Z

0S

1
0BLBLBL

T
0CCCA 1

0BLBLBL d0S
�

ûuuZ
0V

1
0S11δ 0η11 d0V =

Z
0V

1
0Si jδ 0ηi j d0V = δ ûuu

�Z
0S

1
0BNLBNLBNL

T 1
0SSSA 1

0BNLBNLBNL d0S
�

ûuuZ
0V

1
0Si jδ 0ei j d0V =

Z
0V

1
0S11δ 0e11 d0V = δ ûuu

�Z
0S

BLBLBL
T 1

0Ŝ̂ŜSA d0S
�

(4.464)

The integration of above expressions is generally performed using Gauss integration. �
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Newton Raphson linearization
Assume a body shown in Figure 4.69 with initial configuration C0, and it is required to find its
equilibrium configuration under the applied external forces. The principle of virtual work in terms
of second Piola Kirchhoff stress tensor states that:

δW (uuu;δuuu) =
Z

V
SSS:δEEE dV �

Z
V

fff �:δuuu dV �
Z

SΓ

ttt:δuuu dA = 0 (4.465)

Assuming a trial solution uuuk and using Taylor series to evaluate incremental solution4u that makes
variation in total potential vanish as follows:

δW (uuuk +4uuu;δuuu) = δW (uuuk;δuuu)+DδW (uuuk;δuuu)[4uuu]+higher order terms = 0 (4.466)

Where DδW (uuuk;δuuu)[4uuu] represents the directional derivative of virtual work in direction 4uuu.
We need to note that, in the first term of the above equation (δW (uuuk +4uuu;δuuu)), uuu is changed to
uuuk +4uuu, while solution variation δuuu is not as shown in Figure 4.69. See 4.7 and 4.8 for further
explanation. Linearization means neglecting higher order terms and the above expression reduces
to:

δW (uuu;δuuu)+DδW (uuu;δuuu)[4uuu] = 0 (4.467)

Assuming the external forces is deformation independent during incremental displacement 4uuu, the
directional derivative of virtual work in direction 4uuu will correspond only to the internal virtual
work defined as:

δWint(uuu;δuuu) =
Z

V
SSS:δEEE dV (4.468)

With directional derivative defined as:

DδWint(uuu;δuuu)[4uuu] =
Z

V
DSSS[4uuu]:δEEE dV +

Z
V

SSS:DδEEE[4uuu] dV (4.469)

Using Equation 4.118 and Equation 4.122, we can get the following

δEEE =
1
2

�
∇∇∇0(δuuu)TFFF +FFFT

∇∇∇0 (δuuu)
�

D(δEEE) [∆uuu] =
1
2

�
∇∇∇0(δuuu)T

∆FFF +∆FFFT
∇∇∇0 (δuuu)

�
=

1
2

�
∇∇∇0(δuuu)T

∇∇∇0 (∆uuu)+∇∇∇0(∆uuu)T
∇∇∇0 (δuuu)

� (4.470)

In the above expression, we used4(δuuu) = 0 as the variation δuuu remains the same after incremental
displacement 4uuu as state before in Figure 4.69. From symmetry of second Piola Kirchhoff stress
tensor and using Equation 1.100, it results in:

SSS:
�

1
2

�
∇∇∇0(δuuu)T

∇∇∇0 (∆uuu)+∇∇∇0(∆uuu)T
∇∇∇0 (δuuu)

��
= SSS : ∇∇∇0(δuuu)T

∇∇∇0 (∆uuu) (4.471)

Using constitutive stress-strain relation DSSS[4uuu] =CCC :4EEE and Equation 4.469 results in:

DδWint(uuu;δuuu)[4uuu] =
Z

V
4EEE[4uuu] : CCC : δEEE dV +

Z
V

SSS : ∇∇∇0(δuuu)T
∇∇∇0 (∆uuu) dV (4.472)

The first term
R

V 4EEE[4uuu] : CCC : δEEE dV signifies the source of material stiffness, while second oneR
V SSS : ∇∇∇0(δuuu)T

∇∇∇0 (∆uuu) dV represents the geometric stiffness of the body. The above expression
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gives identical findings to the one used in Lagrangian formulation Equation 4.421 in the previous
section. If the external force is deformation dependent (changes with body deformation), it
will contribute to the directional derivative and produce what is called load stiffness matrix (see
Appendix 4.5.5).
Also, virtual work principle can be rewritten in terms of first Piola Kirchhoff stress tensor as follows:

δW (uuu;δuuu) =
Z

V
PPP:δFFF dV �

Z
V

fff �:δuuu dV �
Z

SΓ

ttt:δuuu dA = 0 (4.473)

In this case, the direction derivative of internal virtual work in direction of 4uuu will be:

DδWint(uuu;δuuu)[4uuu] =
Z

V
DPPP[4uuu]:δFFF dV +

Z
V

PPP:DδFFF [4uuu] dV (4.474)

Using constitutive stress-strain relation DPPP[4uuu] =CCC :4FFF and Equation 4.118, the above equation
will be:

DδWint(uuu;δuuu)[4uuu] =
Z

V
4FFF :CCC : δFFF dV +

Z
V

PPP : D(∇∇∇0 (δuuu)) [4uuu] dV (4.475)

As stated before, the virtual displacement δuuu does not change during the incremental displacement
4uuu, it yields D(δuuu) [4uuu] = 0 which forces the second term to vanish and the above equation
reduces to:

DδWint(uuu;δuuu)[4uuu] =
Z

V
4FFF :CCC : δFFF dV (4.476)

4.5.4 Co-rotational approach
The main purpose of co-rotational formulation is to decompose the body displacement into a rigid
body and pure deformation parts. The pure deformation part is responsible for the internal forces.
It is measured with respect to element triad as stated in subsection 2.3.1. The merit of using
co-rotational approach is to separate material and geometric nonlinearities in deriving formulations
for internal forces and tangent stiffness.

For a two-node beam element Figure 2.44 as stated in subsection 2.3.1 variation in the natural
deformation measured with respect to the moving (element) triad EEE is defined as

[δdddl] =BBB[δdddg] (4.477)

The natural deformation is responsible for the internal forces in the local coordinate system fff l
and local tangent stiffness KKKl , while the internal forces calculated in the global coordinate system
fff g can be calculated through equating the variational work performed by two forces through its
corresponding displacement as follows:

δW = δdddl fff l = δdddg fff g (4.478)

We note that rotations in δdddl and δdddg are incremental spin (non-additive rotation δφφφ ), as the
moment is work conjugate to the incremental spin not the change in rotation vector (additive
rotation vector) δθθθ . From Equation 4.477, the local and global internal forces are related through:

fff g =BBBT fff l (4.479)

The global tangent stiffness KKKg will be defined from the variation of the global internal forces with
respect to the global displacement as follows:

δ fff g =BBBT
δ fff l =KKKgδdddg +δ

�
BBBT fff l

� jconstant fff l (4.480)
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Where

δ fff l =KKKlδdddl =KKKlBBBδdddg (4.481)

δ
�
BBBT fff l

� jconstant fff l =
∂
�
BBBT fff l

�
∂dddg

δdddg (4.482)

So the resulting general stiffness matrix will be:

KKKg =BBBTKKKlBBB+
∂
�
BBBT fff l

�
∂dddg

�����
constant fff l

(4.483)

Two dimensional beam element
If we have two dimensional beam element as mentioned in subsection 2.3.1, using Equation 2.319
and Equation 2.319 and for , the second term of tangent stiffness will be:

δ
�
BBBT fff l

� jconstant fff l = δbbbT
1 n�δbbbT

2 (m1 +m2=ln) (4.484)

Where the local internal forces fff l include the beam axial force n and end moments m1 and m2 and
defined as follows:

[ fff l] =
�

n m1 m2
�T (4.485)

The variation in bbb1 and bbb2 can be evaluated as follows:

δbbbT
1 = bbbT

2 δβ =
1
ln

bbbT
2 bbb2 δdddg (4.486)

δbbbT
2 =�bbbT

1 δβ =� 1
ln

bbbT
1 bbb2 δdddg +

∂bbbT
2

∂ ln
δ ln =� 1

ln
bbbT

1 bbb2 δdddg�bbbT
2 bbb1δdddg (4.487)

So, we get:

δ
�
BBBT fff l

� jconstant fff l =
1
ln

�
bbbT

2 bbb2n+
�
bbbT

1 bbb2 +bbbT
2 bbb1
� (m1 +m2)

ln

�
δdddg (4.488)

And the resulting stiffness matrix will be:

KKKg =BBBTKKKlBBB+
1
ln

�
bbbT

2 bbb2n+
�
bbbT

1 bbb2 +bbbT
2 bbb1
� (m1 +m2)

ln

�
(4.489)

Three dimensional beam element
As stated in Equation 2.355, the variation in natural deformation is related to the variation of the
global displacement through the following:

[δdddl] =PEPEPET
4 [δdddg]

III (4.490)

So the following term will be:

δ
�
BBBT fff l

� jconstant fff l = δ

0@EEE4[rrrT PPPT
1 PPPT

2 ]

24 n
mmm1
mmm2

351A
= δ (EEE4)

0@[rrrT PPPT
1 PPPT

2 ]

24 n
mmm1
mmm2

351A+EEE4
�
δ
�
rrrT n
�
+δ

�
PPPT

1 mmm1
�
+δ

�
PPPT

2 mmm2
��

(4.491)
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Where

δ
�
rrrT n
�
= 0 (4.492)

δPPPT
1 = δPPPT

2 =�δAAAT (4.493)

As AAA is function only of the beam length, we get:

δAAAT =
∂AAAT

∂ ln
δ ln =

∂AAAT

∂ ln
rrrET

4 [δdddg]
III (4.494)

Where

∂AAA
∂ ln

=
1

ln2

24 0 0 0 0 0 0
0 0 �1 0 0 0
0 1 0 0 0 0

0 0 0 0 0 0
0 0 1 0 0 0
0 �1 0 0 0 0

35 (4.495)

So we get the following:

δ
�
PPPT

1 mmm1
�
+δ

�
PPPT

2 mmm2
�
=

∂AAAT

∂ ln
(mmm1 +mmm2)rrrET

4 [δdddg] (4.496)

As δ ln = rrrET
4 [δdddg] is a scalar term it can be flipped with any vector or tensor terms. assuming that:

2664
NNN1
MMM1
NNN2
MMM2

3775=

0@[rrrT PPPT
1 PPPT

2 ]

24 n
mmm1
mmm2

351A (4.497)

And from

[δEEE4]
III = [δfφφφ e4]

IIIEEE4 =EEE4[δfφφφ e4]
EEEEEET

4 EEE4 =EEE4[δfφφφ e4]
EEE (4.498)

Where

δfφφφ e4 =

26664
δfφφφ e 000 000 000

000 δfφφφ e 000 000
000 000 δfφφφ e 000
000 000 000 δfφφφ e

37775 (4.499)

and from Equation 2.351, We get

[δEEE4]
III

2664
NNN1
MMM1
NNN2
MMM2

3775=EEE4[δfφφφ e4]
EEE

2664
NNN1
MMM1
NNN2
MMM2

3775 (4.500)

=�EEE4

2664
Ñ̃ÑN1
M̃̃M̃M1
Ñ̃ÑN2
M̃̃M̃M2

3775 [δφφφ e]
EEE (4.501)

=�EEE4

2664
Ñ̃ÑN1
M̃̃M̃M1
Ñ̃ÑN2
M̃̃M̃M2

3775AEAEAET
4 [δdddg]

III (4.502)
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So the stiffness matrix will be:

KKKg =EEE4

0BB@PPPTKKKlPPP+
∂AAAT

∂ ln
(mmm1 +mmm2)rrr�

2664
Ñ̃ÑN1
M̃̃M̃M1
Ñ̃ÑN2
M̃̃M̃M2

3775AAA

1CCAEEET
4 =EEE4 (KKKL)EEET

4 (4.503)

Where PPP, and AAA are defined in Equation 2.358 and Equation 2.343, respectively, and KKKL defines the
total local stiffness as follows:

KKKL =PPPTKKKlPPP+
∂AAAT

∂ ln
(mmm1 +mmm2)rrr�

2664
Ñ̃ÑN1
M̃̃M̃M1
Ñ̃ÑN2
M̃̃M̃M2

3775AAA (4.504)

4.5.5 Mixed finite element

For a linear elastic body subjected to body force f Bf Bf B with constrained boundary at SU . The remaining
free boundary SΓ is subjected to traction forces FFFSΓ , such that the total potential energy is defined
as:

Π =
1
2

Z
V

εεε
TCεCεCεdV �

Z
V

uuuT f Bf Bf BdV �
Z

SΓ

uuuSΓ
T

fff SΓdA (4.505)

with strain-displacement relation and displacement boundary conditions:

εεε = ∂εu∂εu∂εu; uuujSU = uuu (4.506)

where ∂ε ia a differential operator on displacement uuu to get the strain components ε , uuu represents
the vector of prescribed displacements at SU . In displacement-based finite element solution, the
stationary of potential energy (with respect to the displacements) makes its variation on uuu that
achieves the prescribed displacements to vanish. Also it should be noted that the solution variables
are only displacements, while other variables like strains and stresses are evaluated in the post-
processing stage. There are other extended variational principles that use not only displacements
but also other variables such as stresses and/or strain as a primary variables so-called mixed finite
element method. In this method, the variational principle is rewritten using Equation 4.505 and
Equation 4.506 as follows:

Π = Π�
Z

V
λελελε

T (εεε�∂εu∂εu∂εu)dV �
Z

SU

λUλUλU
T �uuuSU �uuu

�
dv (4.507)

Where λελελε and λUλUλU are considered as Lagrange multipliers which are implemented to insure the
conditions Equation 4.506. To make sure that each term of the above equation has the same units,
Lagrange multipliers λελελε and λUλUλU can be considered, respectively, as the stresses σσσ and traction stress
vector over boundary SU , fff SU , so the extended potential energy will be:

ΠHW = Π�
Z

V
σσσ

T (εεε�∂εu∂εu∂εu)dV �
Z

SU

fff SU T �
uuuSU �uuu

�
dv (4.508)
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This potential functional is called Hu-Washizu functional. Stationary of this functional requires
δΠHW = 0 as follows:

0 =δΠHW =

Z
V

δεεε
T (CεCεCε�τττ)dV �

Z
V

δσσσ
T (ε�∂εuε�∂εuε�∂εu)dV +

Z
V
(∂εδu∂εδu∂εδu)T

σσσ| {z }
Stiffness terms

�
Z

V
δuuuT f Bf Bf BdV| {z }

Body force terms

�
Z

V
δuuuT f Bf Bf BdV �

Z
SΓ

δuuuSΓ
T

fff SΓdA�
Z

SU

�
δuuuSU T

fff SU +δ fff SU T �
uuuSU �uuu

��
dA| {z }

Boundary terms

(4.509)

1 3 2

11
x, u

Figure 4.70

� Example 4.37 Assume a three-node truss element shown in Figure 4.70. Consider a parabolic
approximation for displacement and linear approximation of stress and strain as follows

uuu(x) =NNN(x)ûuu (4.510)

σσσ(x) =NNN(x)σ̂σσ (4.511)

εεε(x) =NNN(x)ε̂εε (4.512)

Where

NNN =

�
1
2
(1+ x)x

1
2
(x�1)x 1� x2

�
(4.513)

NNN =

�
1
2
(1+ x)

1
2
(1� x)

�
(4.514)

ûuu = [u1 u2 u3]
T (4.515)

σ̂σσ = [σ1 σ2]
T (4.516)

ε̂εε = [ε1 ε2]
T (4.517)

The stiffness part of Equation 4.509 will be: δε̂εε
T �R

V NNNTCNCNCNdV
�
ε̂εε�δε̂εε

T �R
V NNNTNNNdV

�
σ̂σσ

While the second term will be: �δσ̂σσ
T �R

V NNNTNNN dV
�
ε̂εε +δσ̂σσ

T �R
V NNNTBBBdV

�
ûuu

The third term is: δ ûuuT �R
V BBBTNNN dV

�
σ̂σσ

(4.518)

Where

BBB =

��
1
2
+ x
� �

x� 1
2

�
�2x

�
(4.519)
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The stiffness part of Equation 4.509 will be:

�
δ ûuu δε̂εε δσ̂σσ

�24 000 000 KuσKuσKuσ

000 KεεKεεKεε KεσKεσKεσ

KuσKuσKuσ
T KεσKεσKεσ

T 000

3524 ûuu
ε̂εε

σ̂σσ

35 (4.520)

Where

KεεKεεKεε =

Z
V

NNNTCNCNCNdV (4.521)

KuσKuσKuσ =

Z
V

BBBTNNNdV (4.522)

KεσKεσKεσ =

Z
V

NNNTNNNdV (4.523)

substituting for BBB and NNN in Equation 4.523 results in

KεεKεεKεε = EA
3

�
2 1
1 2

�
; KuσKuσKuσ = A

6

24 5 1
�1 �5
�4 4

35 ; KεσKεσKεσ = A
3

�
2 1
1 2

�

By eliminating the stress and strain degree of freedom (ε̂εε , σ̂σσ ), Equation 4.520 becomes:

[δu1 δu2 δu3]
T
�

EA
6

�24 7 1 �8
1 7 �8
�8 �8 16

3524 u1
u2
u3

35!K =
EA
6

24 7 1 �8
1 7 �8
�8 �8 16

35 (4.524)

The stiffness matrix obtained above is identical to the one obtained from displacement-based
truss element Equation 4.304 as it assumes a parabolic interpolation for displacement Equa-
tion 4.301 and consequently a linear strain distribution in Equation 4.302.
The degree of interpolation for each degree of freedom should be ’wisely’ chosen. �

� Example 4.38 If we assume a parabolic displacement, linear strain, and constant stress
assumptions, the interpolation functions will be:

uuu =NNNû̂ûu; εεε(x) =NNN(x)ε̂εε where N;NN;NN;N are as stated before

εεε(x) = TTT (x)ε̂εε; σ̂σσ = σ3; TTT = [1]
(4.525)

with

KεεKεεKεε =
R

V NNNTCNCNCNdV ; KuσKuσKuσ =
R

V BBBTTTT dV ; KεσKεσKεσ =
R

V NNNTTTT dV

KεεKεεKεε = EA
3

�
2 1
1 2

�
; KuσKuσKuσ =

24 A
�A
0

35 ; KεσKεσKεσ =

� �A
�A

�

And the resulting stiffness will be:

K =
EA
2

24 1 �1 0
�1 1 0
0 0 0

35 (4.526)
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The resulting element reduces to a two-node truss displacement-based element Equation 4.298
which is not sufficient for a three-node truss. �

The extended variational principle can include only displacements and strains as primary
variables unlike Hu-Washizu functional which includes stress as unknown variable in addition to
displacements and strains. This functional is called Hellinger-Reissner proved from Equation 4.508
and using ε =C�1σε =C�1σε =C�1σ as follows:

ΠHR =

Z
V

�
�1

2
σσσ

TCCC�1
σσσ +σσσ

T
∂εu∂εu∂εu�uuuT fbfbfb

�
dV�

Z
Su

fff S f T
uuuS f dA�

Z
Su

fff Su T �
uuuSu �uuu

�
dA| {z }

Boundary terms

(4.527)

Applying divergence theorem on the second term results in:Z
V

σσσ
T

∂εu∂εu∂εudV =

Z
S
εuεuεuT (σσσnnn)dV �

Z
V

∂εσ∂εσ∂εσ
TuuudV (4.528)

Where S = SΓ +SU . Including the stationary of potential functional leads to:

0 =δΠHR =

Z
V

h
δσσσ

T ��CCC�1
σσσ +∂εu∂εu∂εu

��δuuuT
�

∂εσ∂εσ∂εσ + f bf bf b
�i

dV

�
Z

SΓ

δuuuSΓ
T �

fff SΓ �σnσnσn
�

dA�
Z

SU

h
δuuuSU T �

fff SU �σnσnσn
�
+δ fff SU T �

uuuSU �uuu
�i

dA
(4.529)

We get:

Stress-strain relation ∂εu∂εu∂εu =CCC�1σσσ on V
Equilibruim equation ∂εσ∂εσ∂εσ + f bf bf b = 0 on V
prescribed tractions fff SΓ =σnσnσn on SΓ

Boundary equilibruim fff SU =σnσnσn on SU

prescribed displacements uuuSU = uuu on SU

(4.530)

θ1

θ2

w2w1 z, w

x, u

L /2L /2
Figure 4.71

� Example 4.39 Assume a two-node Timoshenko beam shown in Figure 4.71. Consider the
transverse displacement and beam rotation are distributed linearly, while shear strain is constant
over the beam γ̂xz

w =NŵNŵNŵ θ =Nθ̂Nθ̂Nθ̂ ; NNN =
� �1

2 � x
L

� � 1
2 +

x
L

� �
(4.531)

u =�zθ =�zNNNθ̂θθ (4.532)
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The assumed strains are:

εxx =
∂u
∂x

=�z
� � 1

L
1
L

�
=�zBBBθ̂θθ (4.533)

γxz = γ̂ (4.534)

While applying operator on displacement uuu results in:

εxx =
∂u
∂x

=�zBBB = εxx; γxz =
∂u
∂ z

+
∂w
∂x

=NNNθ̂̂θ̂θ �BŵBŵBŵ (4.535)

Neglecting the boundary terms in Equation 4.527 to be:Z
V

�
�1

2
�

εxx γxz
�� E 0

0 G

��
εxx

γxz

�
+
�

εxx γxz
�� E 0

0 G

��
εxx

γxz

��
dV =

Z
V

uuuT f bf bf bdV

(4.536)

Taking the variation of above equation results inZ
V

δεxxEεxx +δγxzGγxz +δγxzG
�
γxz� γxz

�
dV =

Z
V

δuuuT f bf bf bdV (4.537)

substituting Equation 4.535 into the above equation results in:Z
V

�
δθ̂̂θ̂θ

TBBBT EBBBθ̂̂θ̂θ +δθ̂̂θ̂θ
TNNNT Gγ̂̂γ̂γ�δ ŵ̂ŵwTBBBT GBBBT GBBBT Gγ̂̂γ̂γ + γ̂̂γ̂γ

T GNNNθ̂̂θ̂θ � γ̂̂γ̂γ
T GBBBŵ̂ŵw� γ̂̂γ̂γ

T Gγ̂̂γ̂γ

�
dV

=

Z
V

δuuuT f bf bf bdV

�
δŵww δθ̂θθ δγ̂γγ

�0@Z
V

24 000 000 �BBBT G
000 BBBT EBBB NNNT G

�GBBB GNNN �G

35dV

1A24 ŵww
θ̂θθ

γ̂γγ

35
=
�

δŵww δθ̂θθ δγ̂γγ
�24 Q̂QQ

M̂MM
0

35
(4.538)

The resulting stiffness will be:

K =

Z
V

24 000 000 �BBBT G
000 BBBT EBBB NNNT G

�GBBB GNNN �G

35dV =

266664
0 0 0 0 �GA
0 0 0 0 GA
0 0 EI=L �EI=L GAL=2
0 0 �EI=L EI=L GAL=2

�GA GA GAL=2 GAL=2 �GAL

377775
(4.539)

Applying static condensation on γ̂γγ in Equation 4.538, the resulting stiffness matrix will be:

K =

2664
GA
L �GA

L �GA
2

GA
2

�GA
L

GA
L �GA

2
GA
2

�GA
2 �GA

2
GAL

4 + EI
L

GAL
4 � EI

L
GA
2

GA
2

GAL
4 � EI

L
GAL

4 + EI
L

3775 (4.540)
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If we assumed a linear variation in transverse shear strain γxz instead of the constant one assumed
in Equation 4.534 and repeated the above equations with new assumed γxz, it results in:

K =

2664
GA
L �GA

L �GA
2

GA
2

�GA
L

GA
L �GA

2
GA
2

�GA
2 �GA

2
GAL

3 + EI
L

GAL
6 � EI

L
GA
2

GA
2

GAL
6 � EI

L
GAL

3 + EI
L

3775 (4.541)

Which exhibits a stiffer behavior. This behavior exaggerates for thin elements (beam depth <<
its length), so this previous assumption results in shear locking as stated in subsection 4.5.2. Also
the same stiffness matrix in Equation 4.541 will be obtained if we use the displacement-based
finite element formulation.

Using last row of Equation 4.539 in conjunction with Equation 4.538 result that

GAL
�

w2�w1

L
+

θ1 +θ2

2
� ˆγxz

�
= 0!� ˆγxz =

w2�w1

L
+

θ1 +θ2

2
(4.542)

�

The resulting assumed constant shear strain is equal to the shear strain at the beam midpoint if
evaluated from Equation 4.535 at x = 0.

θ, Mθ, M

Figure 4.72

� Example 4.40 Assume the same above beam with only end moments M1;M2 and its cor-
responding rotations θ1;θ2 as shown in Figure 4.72. If the applied moments and rotations at
beam ends are equal, the shear stresses and consequently shear strains vanish. Through theses
displacement and based on the mixed finite element formulation in Equation 4.540, the resulting
nodal forces FFF =KKKûuu = [0 E

L θ 0� E
L θ ]T , while using pure displacement-based element results

in FFF = [0
�GAL

6 + E
L

�
θ 0 � �GAL

6 + E
L

�
θ ]T which results in erroneous shear contribution or

shear locking Figure 4.65 �

Also mixed formulation is much more powerful than the traditional displacement-based finite
element in constructing plate or shell finite element formulation and the analysis of incompressible
media.
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Appendix A: Derivation of T
As the axis of rotation is not effected by rotation

Rθθθ = θθθ (4.543)

∆Rθθθ +R∆θθθ = ∆θθθ (4.544)

As ∆R = f∆φφφR

f∆φφφRθθθ +R∆θθθ = ∆θθθ (4.545)f∆φφφθθθ +R∆θθθ = ∆θθθ (4.546)

∆φφφ �θθθ = (111�R)∆θθθ (4.547)

But, if c = a�bc = a�bc = a�b, it follows that a = b�c
jbj2 +λba = b�c
jbj2 +λba = b�c
jbj2 +λb, similarly:

∆φφφ =
θ̃θθ(111�R)∆θ

jθθθ j2 +λθθθ (4.548)

From Equation 2.54 formula, the trace of rotation tensor is:

R : 111 = 1+2cosθ (4.549)

∆R : 111 =�2sinθ∆θ =�2sinθ
θθθ :∆θθθ

θ
(4.550)

The last expression results from

θ
2 = θθθ :θθθ ! 2θ∆θ = θθθ :∆θθθ +∆θθθ :θθθ = 2θθθ :∆θθθ ! ∆θ =

θθθ :∆θθθ

θ
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From expressionEquation 2.89 and Equation 2.54, ∆R = f∆φφφR and skew(R) = sinθ

θ
eθθθ

∆R : 111 = f∆φφφR : 111

= f∆φφφ : RT

= f∆φφφ : sym
�
RT �+f∆φφφ : skew

�
RT �

= f∆φφφ : skew
�
RT �

= f∆φφφ skew(R) : 111

= sinθ

�f∆φφφen : 111
�

(4.551)

∆eφφφ : sym
�
RT
�

vanishes as double product of skew symmetric and symmetric tensor is null.

f∆φφφen = n
∆φφφ � (∆φφφ :n)111 (4.552)

f∆φφφen : 111 = (n
∆φφφ) : 111� (∆φφφ :n)111 : 111 = ∆φφφ :n�3∆φφφ :n =�2∆φφφ :n =�2
∆φφφ :θ

θ
(4.553)

θθθ :∆θθθ = θθθ :∆φφφ (4.554)

θθθ :∆θθθ = θθθ :

 eθθθ(111�R)∆θθθ

jθ j2 +λθθθ

!
= λθθθ

2 $ λ =
θθθ :∆θθθ

θθθ 2 (4.555)

∆φφφ =
eθθθ(111�R)∆θθθ

θθθ 2 +
θθθ :∆θθθ

θθθ 2 θθθ = T (θθθ)∆θθθ (4.556)



Appendix B: load stiffness matrix
Rotation-dependent moments

M
2

M
2

e2
e3

e1

Figure 4.73: Pseudo tangential moment

M
2

e2
e3

e1
M
2

Δϕ2

Figure 4.74: Induced moment due to rotation4φ2
around axis eee2

Ziegler presented three types of conservative moments named pseudo tangential moment, quasi
tangential moment and semi tangential moment. They are elaborated by Argyris through using
mechanical devices including conservative forces like gravity forces. Assume we have two equal
gravity loads M=2 applied through two parallel strings tied at the end point of rigid levers, each of
unit length, attached to a vertical shaft along axis eee1 and hanging from a fixed pulley as shown in
Figure 4.73. The distance between the pulleys and the corresponding lever ends is infinitely long,
such that the strings direction remain the same after shaft rotation. For small rotations 4φ1 around
axis eee1, the induced (change in the) moment is negligible and vanishes for rotation 4φ3 around
axis eee3, while the induced moment due to rotation 4φ2 around axis eee2 as shown in Figure 4.74 is
defined as

4MMM =�M4φ2eee3 (4.557)

This moment is named pseudo tangential moment, while quasi tangential moment is generated
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Figure 4.75: Quasi tangential moment
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Figure 4.76: Semi tangential moment
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2

Figure 4.77: Pseudo tangential moment

M
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M
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M
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Figure 4.78: Quasi tangential moment

through the same strings stated above but wrapped around a disk of unit radius attached to the
vertical shaft as shown in Figure 4.75. The induced moment is approximately same as the one
induced in pseudo tangential moment for small rotation, but the difference appears for finite rotation,
e.g. a rotation around the shaft axis shown in Figure 4.77 and Figure 4.78 shorten the couple arm
of pseudo tangential moment resulting a reduction in the moment around axis eee1, while it remains
the same for quasi tangential mechanism. The third conservative moment introduced by Ziegler
or semi tangential moment is generated by four equal forces (M=4) distributed at each quarter of
the disk of unit radius as shown in Figure 4.76. Due to small rotation or incremental spin around
axis eee1, the induced moment is negligible, while, for incremental spin 4φ2 [4φ3] around axis
eee2 [eee3], the induced moment will be �1

2 M4φ2eee3 [1
2 M4φ3eee2], so the resulting moment due to spin

(4φφφ =4φ1eee1 +4φ2eee2 +4φ3eee3) will be:

4MMM =
1
2

M4φ3eee2� 1
2

M4φ2eee3 (4.558)

For moment around a general axis MMM, the induced moment due to spin 4φφφ will be:

4MMM =
1
2
g4φφφMMM (4.559)

We will introduce another mechanism with conservative moment generated by four equal forces
M=4 attached to a rigid arm of L shape with unit length and width a as shown in Figure 4.79. We
will called it forth kind conservative moment. In the plane view in Figure 4.81, the induced moment
due to incremental spin 4φ1 around axis eee1 will be:

4MMM =�4φ1a eee1 (4.560)
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Figure 4.80: Induced moment due to rotation 4φ2 around axis eee2

while, for incremental spin (4φ2 [4φ3]) around axis eee2 [eee3] as shown in Figure 4.80, the induced
moment will be

4MMM =�1
2

M4φ2eee3� 1
2

M4φ2 aeee2 due to spin 4φ2 (4.561)

4MMM =+
1
2

M4φ3eee2� 1
2

M4φ3 aeee3 due to spin 4φ3 (4.562)

So the total resulting moment due to spin will be: (4φφφ =4φ1eee1 +4φ2eee2 +4φ3eee3) will be:

4MMM =�4φ1a eee1� 1
2

M4φ2 a eee2� 1
2

M4φ3 a eee3� 1
2

M4φ3eee2� 1
2

M4φ2eee3 (4.563)

For a general moment initially defined as MMM0, the induced moment due to spin (4φφφ =4φ1eee1 +
4φ2eee2 +4φ3eee3) will be:

4MMM =�4AAAMMM0 +
1
2
g4φφφMMM0 (4.564)
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Where matrix 4AAA is defined as follows:

4AAA = a

24 4φ1
1
24φ1

1
24φ1

1
24φ2 4φ2

1
24φ2

1
24φ3

1
24φ3 4φ3

35 (4.565)

Also it can be defined as follows:

4MMM =

�
�BBB� 1

2
eMMM0

�
4φφφ = B̂BB4φφφ (4.566)

Where BBB is symmetric matrix defined as:

BBB = a

24 M1 +M2=2+M3=3 0 0
0 M2 +M1=2+M3=3 0
0 0 M3 +M1=2+M2=3

35 (4.567)

Generally, the change in a conservative moment due to small rotation follows Equation 4.566

M M

Figure 4.82: Axial moment

M

Figure 4.83: Follower moment
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with symmetric BBB under small rotations. In other words, the skew symmetric part of matrix B̂BB is
�1

2
eMMM.The symmetry condition of matrix BBB will be proven in the next sections. There are other types

of moment that are considered non conservative such as the axial moment as shown in Figure 4.82
which remains the same after rotation (no induced moment) and follower moment that follows
completely the rotation applied at its point of application as shown in Figure 4.83, such that the
induced moment due to joint rotation 4φφφ is defined as:

4MMM =RRR(4φφφ)MMM�MMM (4.568)

Which can be approximated for small rotation using Equation 2.1.7 as follows:

4MMM �=g4φφφMMM (4.569)

From above the induced moment in axial and follower moment, applying equation Equation 4.566
results un-symmetric BBB matrix.

Work performed by moment
Assume a moment M0 applying on a point subjected to incremental spin 4φφφ , such that the change
in point spatial rotation is defined through:

4RRR = g4φ1φ1φ1RRR(θθθ) (4.570)

Where 4φφφ is defined using Equation 2.90 as follows:

4φφφ = TTT (θθθ)4θθθ (4.571)

Work performed by a moment M0 through a spin 4φ is:

4W =MMM:4φφφ (4.572)

Spin 4φφφ is not a total differential as there is no φφφ to derive. Also, 4W does not has to be a total
differential either. From previous section, we can assume the moment change from through the
following:

MMM =4MMM+MMM0 =QQQ(4φφφ)MMM0 (4.573)

For example, for semi tangential moment mentioned in the previous section, QQQ = 111+ 1
2
g4φφφ . From

above equations, the resulting work can be rewritten in this form:

4W =MMM0:QQQTTTT (θθθ)4θθθ =MMM0:4aaa (4.574)

From above, initial moment MMM0 is work conjugate to (4aaa =QQQTTTT (θθθ)4θθθ).

Required condition for conservativeness
Assume that 4aaa(θ) is a total differential and initial moment MMM0 is constant, such that there is a
moment potential V as follows:

4V (aaa) =�4W with 4V (a) =�MMM0:4aaa (4.575)

If a two successive incremental rotations δθθθ and 4θθθ are applied on moment, initially MMM0, we find
that the second variation (directional derivative) of V (θ) is defined as:

δ (4V (θθθ)) = δθθθ :
∂ 2V

∂δ (θθθ)∂4(θθθ)
4θθθ =�MMM0:δ (QQQTTTT (θθθ))4θθθ = δθθθ :KKK4θθθ (4.576)
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Due to existence of moment potential V , the tangent load stiffness matrix defined as the second
partial derivative of V is symmetric and the order of differentiation is not important.

∂ 2V
∂δ (θθθ)∂4(θθθ)

=
∂ 2V

∂4(θθθ)∂δ (θθθ)
or KKK =KKKT (4.577)

So symmetry of stiffness matrix ensure the conservativeness of the applied moment. Assume a
semi tangential moment MMM (QQQ = 111+ 1

2
eθθθ ). Using Equation 2.95 and neglecting second order terms,

we get that:

QQQTTTT (θθθ)�= (111+
1
2
eθθθ)T (111+

1
2
eθθθ) = (111� 1

2
eθθθ)(111+ 1

2
eθθθ)�= 111 (4.578)

So the resulting load stiffness matrix will be:

δ (4V (θθθ)) =�MMM0:δ (QQQTTTT (θθθ))4θθθ = 0 or KKK = 0 (4.579)

For the forth kind moment MMM0, the QQQ matrix is defined through Equation 4.564 as follows:

QQQ = 111�AAA+
1
2
eθθθ (4.580)

Where AAA defined through Equation 4.565 as follows:

AAA = a

24 θ1
1
2 θ1

1
2 θ1

1
2 θ2 θ2

1
2 θ2

1
2 θ3

1
2 θ3 θ3

35 (4.581)

and [θθθ ] = [θ1 θ2 θ3] is the angle rotated, So

QQQTTTT (θθθ)�= (111�AAA+
1
2
eθθθ)T (111+

1
2
eθθθ)�= 111�AAAT (4.582)

So using Equation 4.564 and Equation 4.566 results in:

δ (4V (θθθ)) =�MMM0:δ (QQQTTTT (θθθ))4θθθ =MMM0:δAAAT4θθθ = δθθθ :BBB4θθθ or KKK = 0 (4.583)

Matrix BBB has to be symmtric for a conservative moment as stated before.

Work performed by off-axis force
Assume a force FFF linked through a rigid bar (1XXX) to point O at configuration C1 as shown in
Figure 4.84, such that it produces a moment around point O defined as follows:

MMM1 =
1XXX�FFF =f1XXXFFF =�eFFF 1XXX (4.584)

If a small rigid body rotation with spin 4φφφ is induced on the arm 1XXX to produce configuration C2
with new arm 2XXX defined as follows:

2XXX =RRR(φφφ)1XXX = (111+g4φφφ)1XXX (4.585)

The last equality assumes small rotation for 4φφφ . If the force is constant in magnitude and direction
during the rigid body rotation, the resulting moment in configuration C2 will be:

MMM2 =�eFFF2XXX =�eFFF �111+g4φφφ

�
1XXX (4.586)
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With incremental moment 4MMM defined as:

4MMM =M2M2M2�M1M1M1 =�eFFF2XXX =�eFFFg4φφφ
1XXX = eFFFf1XXX4φφφ (4.587)

The above load type is changing with rotation called deformation dependent load. This load type
produces load stiffness matrix.
In Figure 4.85, if the known configuration C1 is formed through rotation of th initial configuration
by angle θθθ , then subjected to virtual rotation δθθθ with corresponding spin δφ1φ1φ1, such that the final
rotation is defined as:

RRR (θθθ +δθθθ) =RRR (δφ1φ1φ1)RRR (θθθ) (4.588)

For small rotations θθθ and infinitesimal spin δφ1φ1φ1, δφ1φ1φ1 can be approximated using Equation 2.1.7
and Equation 2.66, such that the above equation will be resolved to the following:

111+
�
^θθθ +δθθθ

�
+

1
2

�
^θθθ +δθθθ

��
^θθθ +δθθθ

�
=
�

111+gδφ1φ1φ1

��
111+ eθθθ +

1
2
eθθθeθθθ� (4.589)

Which results in:

gδφ1φ1φ1

�
111+

1
2
eθθθ�=

�
111+

1
2
eθθθ�fδθθθ (4.590)

Which can approximated for small rotations as follows:

gδφ1φ1φ1 =

�
111+

1
2
eθθθ�fδθθθ

�
111+

1
2
eθθθ��1

(4.591)

�=
�

111+
1
2
eθθθ�fδθθθ

�
111� 1

2
eθθθ� (4.592)

�=
�

111+
1
2
eθθθ�fδθθθ

�
111+

1
2
eθθθ�T

(4.593)

Which leads to

δφ1φ1φ1 =

�
111+

1
2
eθθθ�δθθθ (4.594)
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Comparing the above equation with Equation 2.95, we get the same results.
The corresponding virtual work in configuration C1 will be:

δW1 =MMM1:δφφφ 1 (4.595)

If the configuration C1 is subjected to an incremental spin4φφφ to form configuration C2 with rotation
defined as:

RRR (θθθ +4θθθ) =RRR (4φ1φ1φ1)RRR (θθθ) (4.596)

Where 4θθθ is an additive incremental rotation vector corresponding to incremental spin 4φφφ . If this
formed configuration is subjected to virtual rotation δθθθ with corresponding spin δφ2φ2φ2, such that the
final rotation is defined as:

RRR (θθθ +4θθθ +δθθθ) =RRR (δφ2φ2φ2)RRR (θθθ +δθθθ) (4.597)

Using Equation 2.90 and from Figure 2.20a, we will define spin δφ2φ2φ2 as follows:

δφ2φ2φ2 = TTT (θθθ +4θθθ)δθθθ (4.598)

= TTT (4φφφ)δφ1φ1φ1 (4.599)

�=
�

111+
1
2
g4φφφ

�
δφ1φ1φ1 (4.600)

And the corresponding virtual work to configuration C2 is defined as:

δW2 =MMM2:δφφφ 2 = (MMM1 +4MMM) :
�

111+g4φφφ

�
δφ1φ1φ1 (4.601)
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The increment virtual work will be:

δ (4W ) = (MMM1 +4MMM) :
�

111+g4φφφ

�
δφ1φ1φ1�MMM1:δφφφ 1 (4.602)

Neglecting second order terms results in:

δ (4W ) =4MMM:δφφφ 1 +
1
2

MMM1:
�g4φφφδφφφ 1

�
(4.603)

The above equation can be concluded through linearization of Equation 4.595 (4(δW1)=4MMM1:δφφφ 1+
MMM1:4(δφφφ 1)). Using Equation 4.584 and Equation 4.587 results in:

δ (4W ) = δφφφ 1:
�eFFFf1XXX4φφφ

�
+

1
2

δφ1:
�fMMM14φφφ

�
(4.604)

= δφφφ 1:
�eFFFf1XXX4φφφ

�
+

1
2

δφ1:

�
^�eFFF 1XXX4φφφ

�
(4.605)

As ẽab = ãb̃� b̃ã, the above equation reduces to:

δ (4W ) = δφφφ 1:

�
1
2

heFFFf1XXX +f1XXXeFFFi4φφφ

�
(4.606)

The symmetry of term 1
2

heFFFf1XXX +f1XXXeFFFi is due to the mechanism used to create moment is applied
through conservative force So the resulting load stiffness matrix is:

δ (4V ) =�δ (4W ) or KKK =�1
2

�eFFFf1XXX + eFFFf1XXX
�

(4.607)

For force FFF and arm XXX resolved in the same frame of reference eeei as follows:

FFF = Fieeei;
1XXX = 1Xieeei (4.608)

The above load stiffness will be:

[KKK] =�1
2

24 0 �F3 F2
F3 0 �F1
�F2 F1 0

3524 0 �1X3
1X2

1X3 0 �1X1
�1X2

1X1 0

35 (4.609)

� 1
2

24 0 �1X3
1X2

1X3 0 �1X1
�1X2

1X1 0

3524 0 �F3 F2
F3 0 �F1
�F2 F1 0

35 (4.610)

=

24 F3
1X3 +F2

1X2 �1
2(F1

1X2 +F2
1X1) �1

2(F1
1X3 +F3

1X1)

F3
1X3 +F1

1X1 �1
2(F3

1X2 +F2
1X3)

Symmtric F2
1X2 +F1

1X1

35 (4.611)
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