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Source:

https://www.theguardian.com/world/2019/sep/06/indias-moon-landing-suffers-last-minute-communications-loss
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Why do we need Tb/s FEC?

• The 2018 Ethernet Roadmap foresees a demand for Tb/s data
rates for 2020 and beyond [eth18]
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• data transfer on data kiosks

• Contribute to the rapidly emerging standardization studies
• IEEE 802.3ba Ethernet
• IEEE 802.15.3d-2017
• IEEE 802.11bb Light Communication TG (Li-Fi)

• Provide strong error-resilience for those applications using
polar codes
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What are the requirements of Tb/s FEC?

The ASIC design experts in H2020 EPIC project predicts Tb/s
FEC throughput within the limits of KPIs [epi18].

Name of KPI Requirement

Technology 7nm
Throughput 1 Tb/s

Clock freq. ≤ 1 GHz
Area ≤ 10 mm2

Power ≤ 1 W

Power den. ≤ 0.1 W/mm2

Area eff. ≥ 100 Gb/s/mm2

Energy ≤ 1 pJ/bit
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Challenges for Tb/s FEC

• Operating frequency (fc) and throughput (γ) imbalance

For example, γ
fc
= 1 Tb/s

1 GHz = 1000 bits

• Data width (W ) bottleneck

W = γ×Q
fc×R

For example, W = γ=1 Tb/s
fc=1 GHz × Q=3 bits

R=1/2 = 6000 bits
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Challenges for Tb/s FEC

• Excessive memory usage
There will be PD codewords inside the decoder at any moment
Let Q ′ is average number of bits per LLR value inside decoder
The memory requirement for this architecture is

MReq =
γ
fc

DQ′

R
= NRPfc

fc

DQ′

R
= NPDQ ′

In fully-parallel successive cancellation (SC) polar decoder,

D = 2N − 2
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Polar codes for Tb/s FEC
• Develop a specific solution based on systematic polar codes

[Ari09], [Ari11]
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[Ari09], [Ari11]
• Use Majority-Logic aided Successive Cancellation (SC-MJL)

decoding algorithm in [Diz17] with several enhancements
• Decode the repetition (REP) and single parity-check (SPC)

code segments with MAP [FMI99] and Wagner [SB54]
decoders respectively (similar to [SGV+14] and [HA17])

• Develop a dedicated hardware architecture for the SC-MJL
algorithm

• Unlike [Diz17], here we focus on throughput only and use a
fully unrolled and pipelined architecture

• Dedicated hardware modules for each set of operation

• Implement a variable-length quantization scheme inside the
decoder

• Merge pipelined decoding stages for register
balancing/retiming
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Proposed SC-MJL decoding algorithm
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Figure: Data flowchart of SC-MJL decoding algorithm where N is the
code block length, K is the number of information bits, vM

1 is the
indicator vector of frozen bits with variable constituent block length M ,
NMJL is the block length of MJL decoder and NLIM is the maximum block
length of Wagner and MAP decoders.
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Adaptive quantization of LLRs inside the decoder

• The quantization bits are optimized using input LLR
distribution of each polar code segment

• Since polarization takes place, using large number of bits is
not necessary for the polarized code segments
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Proposed hardware architecture for SC-MJL
• For an arbitrary block length N, number of information bits

K , input quantization Q and internal quantization Q ′, the
SC-MJL architecture is
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Proposed hardware architecture for SC-MJL
• An example N = 16, K = 9 design with NMJL = 8 and

NLIM = 32 parameters
• Use MJL when v81 = {1, 1, 1, 0, 1, 1, 1, 0}
• Use Wagner when v81 = {1, 0, 0, 0, 0, 0, 0, 0}
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FPGA performance of SC-MJL decoder
• Carried out with an AWGN channel
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FPGA performance of SC-MJL decoder
• As NMJL increases the performance deteriorates progressively
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FPGA performance comparison
• Observed tolerable performance loss under adaptive

quantization
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ASIC 45nm post-synthesis results of (1024,854) polar code

NMJL = 8 and NLIM = 32

Decoding Algorithm SC SC-MJL SC-MJL SC-MJL
Quantization (bits) 6 6 5-to-1 5-to-1
Reg. Balancing Arch. x x x X

Throughput (Gb/s) 427
Frequency (MHz) 500
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Scaled 7nm results in ASIC
• Use conservative scaling rules in [epi18] from 45nm to 7nm
• Use two identical polar decoders in parallel (P = 2)
• Multiply the expected 2.2 GHz clock freq. with 0.27

Decoding Algorithm SC SC-MJL SC-MJL SC-MJL
Quantization (bits) 6 6 5-to-1 5-to-1
Reg. Balancing Arch. x x x X

Area Scaling 14.3 16.9 21.4 57.7

Throughput (Gb/s) 1000
Frequency (MHz) 585.5
Area (mm2) 10
Area Eff. (Gb/s/mm2) 100

Power (W) 1.69 1.14 0.85 0.37
Pow. Den. (W/mm2) 0.17 0.11 0.09 0.04
Energy Eff. (pJ/bit) 1.69 1.14 0.85 0.37
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Comparison with other implementations

Implementation This work [GTG17] [Diz17]
Architecture SC-MJL SC-Fast SC-Comb.
ASIC Technology 45nm 28nm 90nm

Coded Throughput (Gb/s) 512 1275 2.6
Frequency (MHz) 500 1245 2.5
Area (mm2) 2.4 4.6 3.2
Power (W) 1.01 8.79 0.19

Converted to 28nm, 1.0 V using the scaling in [WC10], [Diz17]

Coded Throughput (Gb/s) 823 1275 8.2
Area (mm2) 0.94a 4.63 0.31
Area Eff. (Gb/s/mm2) 872 276 26
Power (W) 0.44† 8.79 0.04
Energy Eff. (pJ/bit) 0.5‡ 6.9 4.6

aNormalized factor for area is 0.39 = (28/45)2

†Norm. factor for power is 0.43 = (28/45)(1.0/1.2)2

‡Norm. factor for energy eff. is 0.27 = (28/45)2(1.0/1.2)2
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Summary

• 1 Tb/s polar coding scheme is feasible at 7nm with 6.5 dB
coding gain
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Summary

• 1 Tb/s polar coding scheme is feasible at 7nm with 6.5 dB
coding gain

• List of techniques used in the proposed solution
• SC decoding in initial stages where parallelism is high
• Use shortcuts for easily decodable code segments
• MJL decoding for making parallel decisions
• Adaptive quantization to reduce memory usage
• Register balancing to reduce pipeline depth

• Final remarks
• Main challenges are frequency/throughput imbalance, I/O

bottleneck and storage complexity
• SC-MJL decoder achieves 427 Gb/s at 45nm technology
• SC-MJL can achieve 1 Tb/s at 7nm under a feasible power

and area budget
• Main advantages are energy efficiency and area efficiency
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Thank you for your attention!
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Extra slides: design details

• MJL(8,2) has nine adders, four f functions, two d functions,
one g function and one XOR gate
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Extra slides: design details

• Each f function contains a comparator and an XOR gate

• Each g function has two adders and one multiplexer
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