
Pragmatic Software Architecture Documentation

Tobias Schlauch

German Aerospace Center (DLR)

Simulation and Software Technology

05.12.2019, Hochschule Hannover

License hint

The content of this presentation – if not explicitly noted otherwise – is licensed

under the terms of the CC BY 4.0 license.

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 2

https://creativecommons.org/licenses/by/4.0/

DLR Simulation and Software Technology

Group Software Engineering

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 3

Process
• Productivity

Developer
• Experience & Behavior

Software
• Quality

Outline

• What is software architecture?

• Introduction to software architecture documentation

• arc42 – A pragmatic template for software

architecture documentation

• Software architecture documentation in the

development process

• Summary

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 4

What is software architecture?

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 5

What is software architecture?

• "...an abstract system specification consisting primarily of functional components

described in terms of their behaviors and interfaces and component-component

interconnections." [Hayes-Roth]

• "Things that people perceive as hard to change." [Martin Fowler]

• "Software architecture is the set of design decisions which, if made incorrectly,

may cause your project to be canceled." [Eoin Woods]

• " … Architecture represents the significant design decisions that shape a system,

where significant is measured by cost of change." [Grady Booch]

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 6

What is software architecture? (Cont.)

• Software Architecture =

Sum of all architectural decisions

• Architectural decisions =

Fundamental decision which

cannot be easily changed

afterwards

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 7

What are architectural decisions?

Check questions:

1. Is the decision hard to change later?

2. Is the implementation of the decision

expensive?

3. Are there high quality requirements

involved?

4. Is it hard to map requirements to

already existing functionality?

5. Is your experience in the solution

spectrum rather weak?

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 8

Examples:

• Usage of protocol XY to integrate

system Z

• Provision of functionalities via a Web

API

• Structuring of all Web interfaces using

model view controller

• Usage of the type “double” in all

algorithms

• Usage of ORM mapper XY

Source: Stefan Toth: „Vorgehensmuster für
Software-Architekur“, 1. Edition, p.87

Software architecture guides selection of a suitable solution

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 9

Quality requirements

+ constraints

Solution

Introduction to software architecture documentation

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 10

Effective software architecture documentation

• Guides development

• Makes architecture comprehensible

and evaluable

• Supports architectural work

But you have to take care that it does

not turn into a useless burden!

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 11

Seven rules for sound (technical) documentation

1. Write documentation from the reader’s point of view

2. Avoid unnecessary repetition

3. Avoid ambiguity and explain your notation

4. Use a standard organization

5. Record rationale

6. Keep documentation current but not too current

7. Review documentation for fitness of purpose

Source: Paul Clements et al., “Documenting Software Architectures: Views and Beyond”, Addison Wesley 2010

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 12

Towards effective software architecture documentation

Less is more!

• Focus on a short, clear software

architecture overview understandable

for everyone involved

Luckily, there are already useful

templates available that serve as a

good starting point!

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 13

arc42 – A pragmatic template for software architecture documentation

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 14

arc42 – A pragmatic template for software architecture documentation

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 15

01. Introduction and Goals

02. Constraints

03. Context and Scope

04. Solution Strategy

05. Building Block View

06. Runtime View

07. Deployment View

08. Crosscutting Concepts

09. Architectural Decisions

10. Quality Requirements

11. Risks and Technical Debt

12. Glossary

Write for your target groups

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 16

Target Group Primary Goal

Architecture Team Support of architectural work

Developer Guidance for implementation

Customer Comprehension and evaluation of architecture

Architecture

Team

Developer Customer

Block Build View Overview Detailed Overview

Runtime View Overview Overview Overview

Deployment View Overview Detailed Overview

Crosscutting Concepts Overview Detailed n.a.

Product vision

Solar Controller is a universal solar field control software. It allows

the safe and efficient operation of the whole the solar field.

Main features:

• Set up of the solar field and definition of standard operation

procedures for solar fields up to 10000 heliostats and 10 receivers

• Autonomous performance of standard operation procedures

• Integrated monitoring, evaluation and alert functionalities

• Support of a wide range of heliostat and receiver types

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 17

01. Introduction and Goals

Quality goals

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 18

01. Introduction and Goals

Quality

Attribute

Goal Quality

Scenarios

Reliability The system ensures the safe operation of the solar

field. It guides the operators through the whole

process and reliably protects them from operational

errors. In addition, it takes into account typical

operational conditions to prevent damages.

3, 4, 5, 10

Functional

appropriateness

The system efficiently supports operators to

maximize energy capture and to optimize lifetime of

heliostats.

1, 2, 15

… …

Quality goals

Background: Quality attributes

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 19

Quality
Attributes

(ISO 25010)

Functional
Suitability

Performance
Efficiency

Compatibility

Usability

Reliability

Security

Maintain-
ability

Portability

Quality goals

Background: Quality scenarios

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 20

Scenarios drive

the

architectural

work!

Constraints

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 21

02. Constraints

Constraint Explanation

Recent FireFox ESR version The Web clients have to support recent FireFox

ESR versions. It is the officially supported Web

browser available at the customer site.

Apache Tomcat 8 We re-use an existing software of the customer

which already is built with Tomcat 8. There is no

budget to change this.

Non-permanent Internet connection The control server has only permanent access to

the Intranet. It is an operational constraint of the

datacenter in which the server is hosted.

… …

Constraints

Background: Different types of constraints

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 22

Constraints

Technical
Constraints

Organizational
Constraints

Conventions

System context

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 23

03. Context and Scope

Business system context Technical system context

System context

Business vs. technical system context

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 24

Building block view – level 1

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 25

05. Building Block View

You can further

decompose the

components!

Deployment diagram

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 26

07. Deployment View

Tips using UML diagrams

General tips

• Use a reduced set of UML

• Explain your notation

• Describe your diagrams

• Only keep “valuable” diagrams

Tooling

• Prefer analogue tools for creation

• Depends on the concrete case

=> I prefer textual UML tools (e.g.,

PlantUML) for smaller diagrams.

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 27

UML in the arc42 template

• System context: component diagrams

• Building block view: component diagrams

• Runtime view: activity / state / sequence

diagrams

• Deployment view: deployment diagrams

C4 model could be a good alternative or

complement!

Architecture decision records

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 28

09. Architectural Decisions

Architecture decision records (Cont.)

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 29

09. Architectural Decisions

ADRs are the

very minimum

that you should

really create!

1. Write documentation from the reader’s point of view

2. Avoid unnecessary repetition

3. Avoid ambiguity and explain your notation

4. Use a standard organization

5. Record rationale

6. Keep documentation current but not too current

7. Review documentation for fitness of purpose

Source: Paul Clements et al., “Documenting Software Architectures: Views and Beyond”, Addison Wesley 2010

Seven rules for sound (technical) documentation

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 30

?

Software architecture documentation in the development process

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 31

Software architecture documentation

in the development process

In the beginning:

• Create and document a basic plan

=> “Architectural Vision”

During development:

• Document when the architectural work happens

• Establish (a shared) responsibility

• Align it closely with your development process

 => “Documentation as Code”

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 32

Architectural vision

What?

System context

Constraints

Quality goals

Quality Scenarios

Risks

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 33

How?

Technology stack

Architectural style

Design principles

Building block level 1

Domain model

Source: Stefan Toth: „Vorgehensmuster für
Software-Architekur“, 1. Edition, p.98

Interactive workshops

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 34

Documentation as code

Basic approach:

• Writing content using plain text formats

• Store content in a version control system

• Review content meticulously

• Apply automation for creation, validation,

publication

Handle documentation content like

your code!

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 35

Documentation as code (Cont.)

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 36

Iteration
 closing

Assigned
Task

Design Coding Testing
Merged

into master

Iteration
planning

Creation / updates

of content is part of

the usual work

Build script /

pipeline automates

recurring tasks

Documentation

is checked as

part of the

usual reviews

Retroperspectives

help to find issues

with the overall

process

Summary

• Software architecture is the sum of all important decisions

• Software architecture documentation helps to communicate

them including the surrounding concepts

• arc42 is a good starting point but think carefully about:

• Target groups

• Development process

• Tools

• Documentation as code helps to keep documentation up-to-date

and fit for purpose

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 37

Further readings

• Stefan Zörner: "Softwarearchitekturen dokumentieren und kommunizieren", 2015

• Simon Brown: “Software Architecture for Developers”, 2018

• Anne Gentle: "Docs Like Code“, 2018

• Andrew Etter: "Modern Technical Writing: An Introduction to Software

Documentation“, 2016

• Carola Lilienthal: "Langlebige Software-Architekturen - Technische Schulden

analysieren, begrenzen und abbauen", 2017

• Stefan Toth: "Vorgehensmuster für Software-Architektur", 2015

• Gernot Starke: "Effektive Software-Architekturen", 2017

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 38

Image credits

• Serious and hard decisions, slide 11: Alinaderi158, CC BY-SA 4.0

• Papers Robot Documentation Work Office Documents, slide 11: CC0

• Documentation is key, slide 13: Oliver Widder, CC BY 3.0

• Schematic quality scenario, slide 20: Gernot Starcke, CC BY-SA 4.0

• ADR screenshots, slides 28/29: Nat Pryce, CC BY 4.0

• Waterfall, slide 32: Oliver Widder, CC BY 3.0

• GitLab logo, slide 35: GitLab, Inc., CC BY-NC-SA 4.0

• Philae landing on comet 67 P/Churyumov-Gerasimenko, slide 40: DLR, CC BY 3.0

> Tobias Schlauch • Pragmatic Software Architecture Documentation > 05.12.2019 DLR.de • Chart 39

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by/3.0/

Thank you!

Questions?

Tobias.Schlauch@dlr.de

www.DLR.de/sc | @TobiasSchlauch

mailto:Andreas.Schreiber@dlr.de

