Pragmatic Software Architecture Documentation

Tobias Schlauch

German Aerospace Center (DLR)
Simulation and Software Technology

05.12.2019, Hochschule Hannover

i DLR

DLR.de + Chart 2 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

License hint

The content of this presentation — if not explicitly noted otherwise — is licensed
under the terms of the CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/

DLR.de « Chart 3 > Tobias Schlauch < Pragmatic Software Architecture Documentation > 05.12.2019

DLR Simulation and Software Technology
Group Software Engineering

Software Process
* Quality ¢ Productivity

Developer

* Experience & Behavior

DLR.de + Chart4 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Outline

 What Is software architecture?
 Introduction to software architecture documentation

e arc42 — A pragmatic template for software
architecture documentation

» Software architecture documentation in the
development process

s Summary

i DLR

DLR.de « Chart5 > Tobias Schlauch < Pragmatic Software Architecture Documentation > 05.12.2019

What is software architecture?

DLR

DLR.de + Chart 6 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

What is software architecture?

« "...an abstract system specification consisting primarily of functional components
described in terms of their behaviors and interfaces and component-component
Interconnections." [Hayes-Roth]

* "Things that people perceive as hard to change." [Martin Fowler]

« "Software architecture is the set of design decisions which, if made incorrectly,
may cause your project to be canceled." [Eoin Woods]

" ... Architecture represents the significant design decisions that shape a system,
where significant is measured by cost of change." [Grady Booch]

i DLR

DLR.de « Chart7 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

What is software architecture? (Cont.)

e Software Architecture =
Sum of all architectural decisions

* Architectural decisions =
Fundamental decision which
cannot be easily changed
afterwards

DLR.de + Chart 8 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

What are architectural decisions?

Check questions:

1. Is the decision hard to change later?

2. |Is the implementation of the decision
expensive?

3. Are there high quality requirements
iInvolved?

4. Is it hard to map requirements to
already existing functionality?

5. Is your experience in the solution
spectrum rather weak?

Source: Stefan Toth: ,Vorgehensmuster fir
Software-Architekur®, 1. Edition, p.87
DLR

Examples:

« Usage of protocol XY to integrate
system Z

* Provision of functionalities via a Web
API

« Structuring of all Web interfaces using
model view controller

« Usage of the type “double” in all
algorithms

« Usage of ORM mapper XY

DLR.de ¢ Chart9

> Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Software architecture guides selection of a suitable solution

Quality requirements
< + constraints

DLR.de « Chart 10 > Tobias Schlauch < Pragmatic Software Architecture Documentation > 05.12.2019

Introduction to software architecture documentation

DLR

DLR.de * Chart11 > Tobias Schlauch ¢ Pragmatic Software Architecture Documentation > 05.12.2019

Effective software architecture documentation

* Guides development

« Makes architecture comprehensible
and evaluable

« Supports architectural work

But you have to take care that it does
not turn into a useless burden!

DLR.de * Chart12 > Tobias Schlauch ¢ Pragmatic Software Architecture Documentation > 05.12.2019

Seven rules for sound (technical) documentation

Write documentation from the reader’s point of view
Avoid unnecessary repetition

Avoid ambiguity and explain your notation

Use a standard organization

Record rationale

Keep documentation current but not too current

N O O~ WD

Review documentation for fitness of purpose

Source: Paul Clements et al., “Documenting Software Architectures: Views and Beyond”, Addison Wesley 2010

i DLR

DLR.de * Chart 13 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Towards effective software architecture documentation DO YOU HAVE

DOCUMENTATION
OF YOUR
APPLICATION?

Less is more!

 Focus on a short, clear software
architecture overview understandable
for everyone involved

geek & poke

Luckily, there are already useful
templates available that serve as a
good starting point!

DO YOU HAVE
DOCLUMENTATION
OTHER THAN 1000
PAGES OF
UNREADABLE CRAP
GENERATED OUT OF
A COMPLETELY
OUTDATED UML

3o - - T Is ” gy 3 - X
F 7 . 7 h D T SN =TI
" i % . TP i ’ T, ~
y - [oy ‘..~ 3 ’J‘ —v,;_.'- .- 4,
4 /-' e F Y - < -
DLR o LA 5 Ed! P o S 3)
., N / I [Tl n s 3 fs et F 58 3

DLR.de « Chart 14 > Tobias Schlauch ¢« Pragmatic Software Architecture Documentation > 05.12.2019

arc42 — A pragmatic template for software architecture documentation

DLR

DLR.de « Chart 15 > Tobias Schlauch ¢« Pragmatic Software Architecture Documentation > 05.12.2019

arc42 — A pragmatic template for software architecture documentation

01. Introduction and Goals

07. Deployment View

02. Constraints 08. Crosscutting Concepts

03. Context and Scope 09. Architectural Decisions

04. Solution Strategy 10. Quality Requirements

05. Building Block View 11. Risks and Technical Debt

06. Runtime View 12. Glossary

\ /.#7
DLR

DLR.de * Chart 16 > Tobias Schlauch ¢ Pragmatic Software Architecture Documentation > 05.12.2019

Write for your target groups

Target Group Primary Goal

Architecture Team Support of architectural work

Developer Guidance for implementation

Customer Comprehension and evaluation of architecture

Architecture Developer Customer

Team
Block Build View Overview Detailed Overview
Runtime View Overview Overview Overview
Deployment View Overview Detailed Overview
Crosscutting Concepts Overview Detailed n.a.

DLR.de * Chart17 > Tobias Schlauch ¢ Pragmatic Software Architecture Documentation > 05.12.2019

Product vision 01. Introduction and Goals

Solar Controller is a universal solar field control software. It allows
the safe and efficient operation of the whole the solar field.

Main features:

 Set up of the solar field and definition of standard operation
procedures for solar fields up to 10000 heliostats and 10 receivers

« Autonomous performance of standard operation procedures
* Integrated monitoring, evaluation and alert functionalities

« Support of a wide range of heliostat and receiver types

i DLR

DLR.de * Chart 18 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Quality goals 01. Introduction and Goals

Quality Quality

Attribute Scenarios

Reliability The system ensures the safe operation of the solar |3, 4, 5, 10
field. It guides the operators through the whole
process and reliably protects them from operational
errors. In addition, it takes into account typical
operational conditions to prevent damages.

Functional The system efficiently supports operators to 1, 2,15
appropriateness | maximize energy capture and to optimize lifetime of
heliostats.

i DLR

DLR.de * Chart19 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Quality goals
Background: Quality attributes Functional

Suitability

Performance

Portability Efficiency

Quality
Attributes
(ISO 25010)

Maintain-

Compatibility

ability

Reliability

DLR.de * Chart20 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Quality goals Scenarios drive\
Background: Quality scenarios the

architectural
work!)

o0 Metric
<

Event, stimulus Reaction

DLR.de * Chart21 > Tobias Schlauch ¢ Pragmatic Software Architecture Documentation > 05.12.2019

Constraints 02. Constraints
Constraint Explanation

Recent FireFox ESR version The Web clients have to support recent FireFox
ESR versions. It is the officially supported Web
browser available at the customer site.

Apache Tomcat 8 We re-use an existing software of the customer
which already is built with Tomcat 8. There is no
budget to change this.

Non-permanent Internet connection | The control server has only permanent access to
the Intranet. It is an operational constraint of the
datacenter in which the server is hosted.

i DLR

DLR.de * Chart22 > Tobias Schlauch ¢ Pragmatic Software Architecture Documentation > 05.12.2019

Constraints
Background: Different types of constraints

Technical
Constraints

Constraints

Organizational
Constraints

Conventions

DLR.de + Chart 23

> Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

System context

i DLR

03. Context and Scope

Maintainer

Maintain
heliostats

Operator

1..

Manage
solar field

Receive

status

Power Plant D

Receive

Receiver oS «system»
Solar Controller

Control

] heliostats

Receive
weather data

Meteo Station D

Heliostat Field D

DLR.de * Chart24 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

System context
Business vs. technical system context

Business system context Technical system context
€]]
«system» «system»
Booking System Booking System

Web
HTTP

Browser
Customer

DLR.de * Chart25 > Tobias Schlauch ¢ Pragmatic Software Architecture Documentation > 05.12.2019

Building block view —level 1

i DLR

05. Building Block View

y

Maintainer

Solar Controller (Level 1)

Q

Receiver

]
Maintainer Operator
Mobile App Graphical Ul

\ /
\ /
\ /

N\ /!
N ¥
g]
Controller API

|
|
2

]

]

- X

Operator

~

You can further
decompose the
components!

Controller Core

Q

Power Plant

Q

Meteo Station

Q

Heliostate Field

-
N

DLR.de -

Chart 26

> Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Deployment diagram

i DLR

07. Deployment View

Operator PC iOS Device

i

FireFox ESR solar-maintainer.ipa

tV‘ar Control Server

Tomcat

[

MySQL solar-control-server.jar

AN

[\

S

Receiver Meteo Station

Power Plant D

Heliostat Field

DLR.de * Chart27 > Tobias Schlauch ¢ Pragmatic Software Architecture Documentation > 05.12.2019

Tips using UML diagrams

General tips

» Use a reduced set of UML
 Explain your notation
 Describe your diagrams

* Only keep “valuable” diagrams

Tooling

* Prefer analogue tools for creation

* Depends on the concrete case
=> | prefer textual UML tools (e.qg.,
PlantUML) for smaller diagrams.

i DLR

UML in the arc42 template

« System context: component diagrams
« Building block view: component diagrams

* Runtime view: activity / state / sequence
diagrams

* Deployment view: deployment diagrams

C4 model could be a good alternative or
complement!

DLR.de * Chart28 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Architecture decision records 09. Architectural Decisions

8. Use ISO 8601 Format for Dates

Date: 2017-02-21

Status

Accepted

Context

adr-tools seeks to communicate the history of architectural decisions of a project. An important component of the
history is the time at which a decision was made.

To communicate effectively, adr-tools should present information as unambiguously as possible. That means that
culture-neutral data formats should be preferred over culture-specific formats.

Existing adr-tools deployments format dates as dd/mm/yyyy by default. That formatting is common formatting in the
United Kingdom (where the adr-tools project was originally written), but is easily confused with the mm/dd/yyyy format
preferred in the United States.

The default date format may be overridden by setting ADR_DATE in config.sh .
DLR . .

DLR.de * Chart29 > Tobias Schlauch ¢ Pragmatic Software Architecture Documentation > 05.12.2019

Architecture decision records (Cont.) 09.

Architectural Decisions

Decision

adr-tools Wwill use the ISO 8601 format for dates: yyyy-mm-dd

Consequences

Dates are displayed in a standard, culture-neutral format.
while the ISO dates use a hyphen (-).

deployments of adr-tools must do one of the following:

e Accept mixed formatting of dates within their documentation library.

e Update existing documents to use ISO 8601 dates by running adr upgrade-repository

4 ADRS are the

very minimum
that you should

The UK-style and ISO 8601 formats can be distinguished by their separator character. The UK-style dates used a slash (/),

Prior to this decision, adr-tools was deployed using the UK format for dates. After adopting the ISO 8601 format, existing

really create!
\ y

DLR.de * Chart30 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Seven rules for sound (technical) documentation

Write documentation from the reader’s point of view
Avoid unnecessary repetition

Avoid ambiguity and explain your notation

Use a standard organization

Record rationale

Keep documentation current but not too current

N oo A~ W D

Review documentation for fitness of purpose :

Source: Paul Clements et al., “Documenting Software Architectures: Views and Beyond”, Addison Wesley 2010

i DLR

DLR.de « Chart31 > Tobias Schlauch < Pragmatic Software Architecture Documentation > 05.12.2019

Software architecture documentation in the development process

DLR

DLR.de * Chart32 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

SIMPLY EXPLAINED

WE'RE
PLANNING A
EXPEDITION TO A PART
OF THE JUNGLE WHERE
NO MEN HAVE EVER
BEEN

Software architecture documentation
In the development process

WOW!
THAT SOUNDS
EXCITING!
AND HOW WILL YOU
FIND YOUR WAY
WHEN YOU ARE
THERE?

In the beginning:

 Create and document a basic plan
=> “Architectural Vision”

During development:

* Document when the architectural work happens
« Establish (a shared) responsibility

THAT WILL BE
EASY.

WE ALREADY SPENT

& MONTHS TO

DRAW THE

MAPS

« Align it closely with your development process
=> “Documentation as Code”

i DLR

WATERFALL

DLR.de * Chart33 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Architectural vision

What? How?

v'System context v'Technology stack
v'Constraints v'Architectural style
v'Quality goals v'Design principles
—Quality Scenarios —Building block level 1
—Risks —Domain model

Source: Stefan Toth: ,Vorgehensmuster fiir
Software-Architekur®, 1. Edition, p.98

i DLR

DLR.de * Chart34 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Interactive workshops

‘ o nd S
Lt NS cotinds A

. Ko mmovelo a-aw\é
Trivtacae

Als Medver mbelde ick,
doss die A-tsbl Aty Proresse
ik e Hord are abgeqlits

i el a

Al Testaultr michée leh

Te of {éllem vesschiedene
Pritvitster duweisen

Eiu Pytloe - e ller i .
do Loge i Wife dor Do bummihln
Sl Al

(e den a2 Bl

ER BN AP el siec

il T.—JM/;(- hmi@l‘f\

*
Fre Entusihbors entochelt ene
hatwogene (~ Bay “ Resgourcen)

essouraentuSlist Vo roved

n
stoubin bearbeled die Jobs mi
e & L }d et

Tty P ofe];,1.“,5
Lhe @lbpde. . Jat
stie Ahob 2 wlofadr

Ei sk bonet £ fib
ol b/ .

& vl Fecammsg /;m' el
ol i weldbe FLly ool
il. Abhapp [cede. AadkicA

L
o

s e
Uiy e

DLR.de * Chart35 > Tobias Schlauch ¢ Pragmatic Software Architecture Documentation > 05.12.2019

Documentation as code

Basic approach:

« Writing content using plain text formats
e Store content in a version control system
* Review content meticulously

» Apply automation for creation, validation,
publication

Handle documentation content like
your code!

i DLR

3 README.md 1528 ©®

What is SampleCalculator?

SampleCalculator is a command line tool to calculate characteristic values of a sample.

It provides the following features:
* Reading sample values from command line and CSV (Colon Separ

* Calculation of average, variance, and standard deviation.

SampleCalculator targets **scientists** who want to easily per
calculations as part of their workflow and **Python developers
integrate the functionalities into their software. We implemen

not found a suitable, zero-dependency alternative.

» The current version is only an initial alpha version which i
» for production use. Particularly, it is not sufficiently tes
» data sets. It requires **Python »>= 3.4** and has been only t

> **Windows 7** so far. However, it should basically work on m

How can I install it?

* Make sure that you use Python
* CHANGES.md provi
* Download the [latest package](]
* Extract it to a directory

> B B B @ Edit WebIDE Replace

«system»
Booking System

]

Customer

DLR.de * Chart36 > Tobias Schlauch < Pragmatic Software Architecture Documentation > 05.12.2019

Documentation as code (Cont.)

g Build script /
pipeline automates
Iteration N recurring tasks ~
planning » Documentation
IS checked as
= part of the
Assigned Merged usual reviews -

Task into master

fCreation / updates -~ .
of content is part of Retroperspectives Iteration
the usual work help to find issues COSIE
- o with the overall

Process

DLR.de * Chart37 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Summary

« Software architecture is the sum of all important decisions

« Software architecture documentation helps to communicate
them including the surrounding concepts

e arc42 is a good starting point but think carefully about:
 Target groups
* Development process

* Tools

 Documentation as code helps to keep documentation up-to-date
and fit for purpose

i DLR

DLR.de * Chart38 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Further readings

e Stefan Zorner: "Softwarearchitekturen dokumentieren und kommunizieren", 2015
« Simon Brown: “Software Architecture for Developers”, 2018
 Anne Gentle: "Docs Like Code”, 2018

« Andrew Etter: "Modern Technical Writing: An Introduction to Software
Documentation®, 2016

 Carola Lilienthal: "Langlebige Software-Architekturen - Technische Schulden
analysieren, begrenzen und abbauen”, 2017

« Stefan Toth: "Vorgehensmuster flr Software-Architektur”, 2015
« Gernot Starke: "Effektive Software-Architekturen", 2017

i DLR

DLR.de * Chart39 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Image credits

» Serious and hard decisions, slide 11: Alinaderil58, CC BY-SA 4.0

» Papers Robot Documentation Work Office Documents, slide 11: CCO

* Documentation is key, slide 13: Oliver Widder, CC BY 3.0

« Schematic quality scenario, slide 20: Gernot Starcke, CC BY-SA 4.0

* ADR screenshots, slides 28/29: Nat Pryce, CC BY 4.0

« Waterfall, slide 32: Oliver Widder, CC BY 3.0

 GitLab logo, slide 35: GitLab, Inc., CC BY-NC-SA 4.0

 Philae landing on comet 67 P/Churyumov-Gerasimenko, slide 40: DLR, CC BY 3.0

i DLR

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by/3.0/

mailto:Andreas.Schreiber@dlr.de

