Pragmatic Software Architecture Documentation

Tobias Schlauch

German Aerospace Center (DLR)
Simulation and Software Technology

B o b

05.12.2019, Hochschule Hannover

i DLR

P

DLR.de - Chart 2 = Tobias Schlauch « Pragmatic Software Architecture Documentation > 05122018

License hint

The content of this presentation — if not explicitly noted otherwise —is licensed
under the terms of the CC BY 4.0 license.

DLRde « Chart 3 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.122019

DLR Simulation and Software Technology
Group Software Engineering

Nl
- o

Software Process '

* Quality * Productivity

Developer

* Experience & Behavior

%

www,DLR da/se

DLR.de - Chart 4 = Tobias Schlauch « Pragmatic Software Architecture Documentation > 05122018

Outline

* What is software architecture?
* Introduction to software architecture documentation

» arc42 — A pragmatic template for software
architecture documentation

» Software architecture documentation in the
development process

» Summary

i DLR

DLRde « Chat 5 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.122019

What is software architecture?

DLR.de - Chart 6 = Tobias Schlauch « Pragmatic Software Architecture Documentation > 05122018

What is software architecture?

« "...an abstract system specification consisting primarily of functional components
described in terms of their behaviors and interfaces and component-component
interconnections."” [Hayes-Roth]

* "Things that people perceive as hard to change." [Martin Fowler]

» "Software architecture is the set of design decisions which, if made incorrectly,
may cause your project to be canceled."” [Eoin Woods]

« " ... Architecture represents the significant design decisions that shape a system,
where significant is measured by cost of change." [Grady Booch]

gt /. G

» There are many more definitions but there is no generally accepted one.
» But there are recurring themes such as system structure, hard to change
things, decisions including their rationale

DLR.de « Chart 7 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

What is software architecture? (Cont.)

» Software Architecture =
Sum of all architectural decisions

* Architectural decisions =
Fundamental decision which
cannot be easily changed
afterwards

i DLR

+ But what are these architectural decisions? How can | find them?

DLR.de - Chart &

= Tobias Schlauch « Pragmatic Software Architecture Documentation > 05122018

What are architectural decisions?

Check questions:

1. Is the decision hard to change later?

2. s the implementation of the decision
expensive?

3. Are there high quality requirements
involved?

4. lIs it hard to map requirements to
already existing functionality?

5. Is your experience in the solution
spectrum rather weak?

i DLR

Source: Stefan Toth: ,Vorgehensmuster flr

Software-Architekur”, 1. Edition, p.87 / 7 ,&
Yips
ik

Examples:

» Usage of protocol XY to integrate
system Z

* Provision of functionalities via a Web
API

« Structuring of all Web interfaces using
model view controller

» Usage of the type “double” in all
algorithms

» Usage of ORM mapper XY

Control questions: a majority of ,yes“ answers indicates architectural

significance

Examples: It is *NOT** only about abstract things => its about important

aspects including technology choices

DLR de

« Chart 9

= Tobias Schlauch « Pragmatic Software Architecture Documentation > 05122018

Software architecture guides selection of a suitable solution

.

*

+

Quality requirements
. + constraints

.

» Software architecture — as a process/activity — guides the solution selection
» The decision making is typically heavily influenced by quality requirements

and constraints => make sure you are aware of them!

DLRde « Chart 10 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Introduction to software architecture documentation

10

DLR.de « Chart 11 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Effective software architecture documentation

* Guides development

» Makes architecture comprehensible
and evaluable

* Supports architectural work

But you have to take care that it does
not turn into a useless burden!

i DLR

Good software architecture documentation:

* Provides hints to developers how to accomplish certain tasks

» Shows which decisions have been taken including their rationale.
» Provides sufficient information to help analyzing its suitability.

Good software architecture documentation is particularly value when:
* New team members join

+ Important knowledge carrier leave the team

» Larger changes have to be carried out

But typical problems include:
* Wrong, inconsistent, outdated or even useless information
+ High creation and maintenance costs

11

DLRde - Chart 12 = Tobias Schlauch « Pragmatic Software Architecture Documentation > 0512 2018

Seven rules for sound (technical) documentation

Write documentation from the reader’s point of view
Avoid unnecessary repetition

Avoid ambiguity and explain your notation

Use a standard organization

Record rationale

Keep documentation current but not too current

NOo Ok N2

Review documentation for fithess of purpose

Source: Paul Clements et al., “Documenting Software Architectures: Views and Beyond”, Addison Wesley 2010

A

12

DLR.de « Chart 13 Tobias Schlauch « Pragmatic Software Architecture

Towards effective software architecture documentation

OF
Less is more! COLRSE!

* Focus on a short, clear software
architecture overview understandable
for everyone involved

DO YOU HAVE
DOCUMENTATION
OF YOLR

APPLICATION?

geek & poke

Luckily, there are already useful

A\

“|lf

DO YOU HAVE
/ DOCUMENTATION

templates available that serve as a

OF
good starting point! @%ﬁ?ﬁz

gt)/ Gl

OTHER THAN 1000
PAGES OF
UNREADABLE CRAP
GENERATED OUT OF

A COMPLETELY
OUTDATED UML
MODEL?

13

DLRde « Chart 14 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

arc42 — A pragmatic template for software architecture documentation

14

DLR.de « Chart 15 = Tobias Schlauch « Pragmatic Software Architecture Documentation > 05122018

arc42 — A pragmatic template for software architecture documentation

01. Introduction and Goals 07. Deployment View

02. Constraints 08. Crosscutting Concepts

03. Context and Scope 09. Architectural Decisions

04. Solution Strategy

05. Building Block View

06. Runtime View 12. Glossary

Overview:

» arc42: https://arc42.org

» Current version: 7.0

« Template for communication and documentation of software and system
architectures

* Process- and tool-agnostic

* Made by practitioners

» Well documented, many examples and books are available

» Available in 4 different languages (DE, EN, ES, RU)

* Available in various formats: https://arc42.org/download

« Compatible with IEEE 1471

» Used in the iISAQB certification program

* License: CC BY-SA 4.0

Content structure / section meaning:

« For more information, please see: https://arc42.org/overview/
+ Green => requirements-related sections

» Blue => solution-oriented sections

* Yellow => evaluation-oriented sections

15

Write for your target groups

Target Group Primary Goal

Architecture Team Support of architectural work

Developer Guidance for implementation

Customer Comprehension and evaluation of architecture

\ Architecture Developer Customer
Team

Block Build View Overview Detailed Overview
Runtime View Overview Overview Overview
Deployment View Overview Detailed Overview
Crosscutting Concepts Overview Detailed n.a.

gt 7

» The first table show exemplarily target groups and their goals with regard to
the software architecture documentation.

» The second table depicts their potential interest in certain aspects of the
software architecture documentation.

Product vision 01. Introduction and Goals

Solar Controller is a universal solar field control software. It allows
the safe and efficient operation of the whole the solar field.

Main features:

* Set up of the solar field and definition of standard operation
procedures for solar fields up to 10000 heliostats and 10 receivers

» Autonomous performance of standard operation procedures
* Integrated monitoring, evaluation and alert functionalities

* Support of a wide range of heliostat and receiver types

it W/ Fad

* The product vision explains the purpose and the main features of the
software.

* In general, it sums up the main selling arguments / reason for the software
systems / why the system is built.

* In Open Source software, this information is typically shown in the README
file.

17

Quality goals

Quality

Attribute
Reliability

01. Introduction and Goals

Goal

The system ensures the safe operation of the solar
field. It guides the operators through the whole
process and reliably protects them from operational
errors. In addition, it takes into account typical
operational conditions to prevent damages.

Quality
Scenarios

3,4,5,10

Functional
appropriateness

The system efficiently supports operators to
maximize energy capture and to optimize lifetime of
heliostats.

1,2,15

i DLR

W/ . P

» Software quality has to be explicitly constructed. Quality attributes offer a
starting point but you need to interpret and prioritize them in context of your
software. This is the purpose of quality goals.

» The tables shows how you can document the quality goals. You should
reference the quality attribute and describe the goal in this regard. In
addition, it is useful to reference relevant quality requirements (here
captured as quality scenarios). These scenarios are more concrete and
allow a better understanding of the actual requirements.

* The order of the goals implies their priority. The most important goal is

defined first.

* You should limit the number of quality goals to 3 - 5.

18

DLR.de

Quality goals
Background: Quality attributes

+ Chart 19 Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Functional
Suitability

Performance
Efficiency

Portability

Quality
Attributes
(1SO 25010)

Maintain-
ability

Compatibility

Reliability

(A

ISO/IEC 25010 defines the quality attributes. For further details, please see:
https://is025000.com/index.php/en/iso-25000-standards/iso-25010

Beware that quality attributes influence each other. For that reason, it is
important to prioritize them.

19

DLR.de « Chart 2(Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Quality goals Scenarios drive
Background: Quality scenarios the

architectural
X G

work!
sage
— | System [—
%;\ Metric

e T

Event, stimulus Reaction

gt W/ s

» Quality scenarios describe the desired quality attributes in an informal,
discussable way. They drive the architectural work and capture the quality
requirements.

» Event/stimulus is the source of change.

+ System is the (software) system which we actual want to describe.

» Reaction illustrates the response of our system to the incoming
event/stimulus.

» Metric provides a measure for the response.

There different types of quality scenarios:

» Usage scenarios describe how the system is used and how it behaves in
such situations. Example: “The customer uses the article search (event).
The search (system) shows first matching articles (reaction) after one
second (metric).”

» Change scenarios describe changes of the system’s environment or
operational infrastructure. Example: “The number of users doubles (event).
The system (system) does not show significant performance decreases for
typical actions (reaction + metric).”

 Failure scenarios describe failure situations of neighbor systems or the
system’s operational infrastructure. “Example: “A power plant indicates an
overheat event (event). The control system (system) triggers the safe-mode
immediately (metric).

» For more information, please see: https://fag.arc42.org/questions/C-10-2/
and https://github.com/arc42/quality-requirements

20

Constraints 02. Constraints
Constraint Explanation

Recent FireFox ESR version The Web clients have to support recent FireFox
ESR versions. It is the officially supported Web
browser available at the customer site.

Apache Tomcat 8 We re-use an existing software of the customer
which already is built with Tomcat 8. There is no
budget to change this.

Non-permanent Internet connection | The control server has only permanent access to

the Intranet. It is an operational constraint of the
datacenter in which the server is hosted.

/. G

» Constraints are requirements which limit your choices in building /
architecting the software system.

 |tis important to collect, discuss, and communicate them. Otherwise the
system might never find its way into production.

« Beware: Some constraints might only be a preference of someone involved!

» The table illustrates how you can document constraints. In this case three
technical constraints are listed. Try to keep it short and reference other
documents as needed. Particularly, you should explain the rational of the
constraint.

21

DLRde - Chart 22 = Tobias Schlauch « Pragmatic Software Architecture Documentation > 051

Constraints
Background: Different types of constraints

Technical
Constraints

Organizational
Constraints

Constraints

— Conventions

% /. ¥

» Technical constraints are typically specifications concerning software,
hardware, or operations.

» Organizational constraints might concern the organization/structure of the
project or the available resources. In addition, they might require you to
comply with organizational standards or legal aspects.

« Conventions include aspects such as programing or documentation
guidelines.

» For further details, please see the arc42 documentation and Gernot Starke:
"Effektive Software-Architekturen”, Auflage 8, 2017.

22

DLRde - Chart 23 = Tobias Schlauch « Pragmatic Software Architecture Documentation > 05,

System context 03. Context and Scope

Malntamer Operator

Maintain Manage
heliostats / solar field

Receive Control

status «system» heliostats

Solar Controller

Receive Receive
status weather data

Power Plant Meteo Station

Receiver Heliostat Field

» The system context is used to differentiate want belongs into the system
and what is outside the system. Particularly, it shows the involved
stakeholders and third-party systems with which our software system has to
interact.

» |tis a very valuable view which should not change so often after the system
is basically into production.

* The system context is a good starting point for architectural decisions.

» Make sure that you properly describe the diagram within your
documentation!

Explanation of the diagram:
* In the middle is the software system we want to build (UML component).
» Lines show interactions with users/third-party systems outside the system.

23

DLR.de + Char

hart 24 Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

System context
Business vs. technical system context

i DLR

Business system context

]
«system»
Booking System

Customer

Technical system context

]
«system»
Booking System

HTTP

Browser

You can differentiate between the business and the technical system

context.
Business context focuses on the domain.

Technical context focuses on the technical protocols / details.

24

DLRde - Chart 25 = Tobias Schlauch « Pragmatic Software Architecture Documentation > 05,

05. Building Block View

Building block view — level 1

Solar Controller (Level 1)

’ El E i
% — Maintainer Operator e }— %
Mobile App Graphical Ul
Maintainer < 7 Operator
\q y’/
L]
Controller API
: You can further
; decompose the
— |l — components!
Controller Core K

rawl

Heliostate Field

Receiver Power Plant Meteo Station

— i i

» The building block view shows the decomposition of system. Its static
structure. Here we have used the UML component diagram syntax.

* You can define further levels showing the details of a component. For
instance, we could show the further decomposition of the component
“Controller Core” which would be part of building block level 2.

» There are different ways to approach the decomposition: domain-specific
vs. technical decomposition. Here you see a typical technical
decomposition.

Tips:

» Make sure that the names of the component can be directly mapped to your
source code.

* You should avoid too many decomposition levels here - particularly when
you create them manually. 1-2 level should be sufficient. Otherwise it is hard
to keep them up-to-date.

* The C4 model (https://cAmodel.com/) is a good alternative as it allows you
to generate those views from your source code.

» Make sure that you properly describe the diagram within your
documentation!

DLRde - Chart 26 = Tobias Schlauch « Pragmatic Software Architecture Documentation > 0512 2018

Deployment diagram

07. Deployment View

Operator PC i0S Device

FireFox ESR I solar-maintainer.ipam

\HTI'PS HTTPS

17

STr Control Server

Tomcat

]

solar-control-server.jar

7
[\

[\

| Receiver
DLR

| Power Plant D | Meteo Station D | Heliostat Field IJ

* The diagrams shows a UML deployment diagram which shows how the

system is operated.

26

Tips using UML diagrams

General tips

UML in the arc42 template

* Use a reduced set of UML » System context: component diagrams

 Explain your notation
* Describe your diagrams

+ Building block view: component diagrams
» Runtime view: activity / state / sequence

* Only keep “valuable” diagrams diagrams

» Deployment view: deployment diagrams
Tooling
* Prefer analogue tools for creation C4 model could be a good alternative or

* Depends on the concrete

case complement!

=> | prefer textual UML tools (e.g.,
PlantUML) for smaller diagrams.

i DLR

W/ .

* In general, arc42 makes no assumption whether you use or you do not use

UML.

» There are also alternatives available such as C4 model
https://c4model.com/ (focus on structure)

+ PlantUML is a textual UML tool which is widely supported by different tools
(e.g., editors/IDEs, development platforms, Wiki): https://plantuml.com/

27

DLR.de « Chart 28 Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Architecture decision records

09. Architectural Decisions

8. Use ISO 8601 Format for Dates

Date: 2017-02-21

Status

Accepted

Context

adr-tools seeks to communicate the history of architectural decisions of a project. An important component of the
history is the time at which a decision was made.

To communicate effectively, adr-tools should present information as unambiguously as possible. That means that
culture-neutral data formats should be preferred over culture-specific formats.

Existing adr-tools deployments format dates as dd/mm/yyyy by default. That formatting is common formatting in the
United Kingdom (where the adr-tools project was originally written), but is easily confused with the mm/dd/yyyy format
preferred in the United States.

The default date format may be overridden by setting ADR_DATE in config.sh .

o = T -:-_m

 Architecture decision records offer a compact/lean format to document
architectural decisions. In addition, they offer you a way/template to
approach those decisions.

* For more information, see Michael Nygard blog:
http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-
decisions

» A good collection for ADR tools/templates is available here:
https://github.com/joelparkerhenderson/architecture_decision_record

28

DLRde « Chart 20 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Architecture decision records (Cont.) 09. Architectural Decisions

Decision ADRs are the)

very minimum
that you should
Consequences really create!)

adr-tools Will use the ISO 8601 format for dates: yyyy-mm-dd

Dates are displayed in a standard, culture-neutral format.

The UK-style and ISO 8601 formats can be distinguished by their separator character. The UK-style dates used a slash (/),
while the ISO dates use a hyphen (-).

Prior to this decision, adr-tools was deployed using the UK format for dates. After adopting the I1SO 8601 format, existing
deployments of adr-tools must do one of the following:

e Accept mixed formatting of dates within their documentation library.

e Update existing documents to use ISO 8601 dates by running adr upgrade-repository

p

1)

29

DLR.de - Chart 30 = Tobias Schlauch « Pragmatic Software Architecture Documentation > 0512 2018

Seven rules for sound (technical) documentation

Write documentation from the reader’s point of view
Avoid unnecessary repetition

Avoid ambiguity and explain your notation

Use a standard organization

Record rationale

Keep documentation current but not too current

N oo k0N =

Review documentation for fitness of purpose .

Source: Paul Clements et al., “Documenting Software Architectures: Views and Beyond”, Addison Wesley 2010

i DLR

30

DLRde « Chart 31 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Software architecture documentation in the development process

31

DLR.de - Chart 32 = Tobias Schlauch « Pragmatic Software Architecture Documentation > 0512 2018

Software architecture documentation
in the development process

In the beginning:

* Create and document a basic plan
=> “Architectural Vision”

During development:

* Document when the architectural work happens
* Establish (a shared) responsibility

+ Align it closely with your development process
=> “Documentation as Code”

% /. Fpd

SIMPLY EXPLAINED

PLANNING A
EXPEDITION TO A PART
OF THE JUNGLE WHERE
NO MEN HAVE EVER

WOW!
THAT SOUNDS
EXCITING!
AND HOW WILL YOU
FIND YOUR WAY
WHEN YOU ARE
THERE?

WATERFALL

* In the 90 the focus has been on rigorous planning (BUFD) which could

easily lead to analysis paralysis.

» The introduction of agile methods shifted the focus. Unfortunately, in the

direction of having no plan at all.

» To sump: You should have a plan (see also: iteration 0 etc.) but should keep

its creation lean.

32

DLRde « Chart 33 > Tobias Schlauch « Pragmatic Software Architecture Documentation >

Architectural vision

What?

v'System context
v'Constraints

v'Quality goals

—Quality Scenarios
—Risks

Source: Stefan Toth: ,Vorgehensmuster fur
Software-Architekur®, 1. Edition, p.98

i DLR

How?

v'Technology stack
v'Architectural style
v'Design principles
—Building block level 1

—Domain model

33

DLRde « Chart 34 > Tobias Schlauch « Pragmatic Software Architecture Documentation > 05.12.2019

Interactive workshops

* Interactive workshops for requirement collection and performing
architectural work are very effective ways to collect/create architectural
content.

* You should involve all important stakeholders and should focus on
interactive formats such as group work, brain writing etc.

» These workshops are particularly effective for prioritization and decision
making.

+ Stefan Toth: ,Vorgehensmuster fur Software-Architekur” provides some
good ideas in this regard.

34

Documentation as code

[READMEmd 1:2ks © @ @ D B @ Edt WebIDE Replace

Basic approach:

» Writing content using plain text formats

«system»
Booking System

3

Customer

« Store content in a version control system

* Review content meticulously

* Apply automation for creation, validation,
publication

|

Handle documentation content like
your code!

i DLR

* The “Write the Docs” community provides a good overview about it:
https://www.writethedocs.org/guide/docs-as-code/

» Suitable markup languages include AsciiDoc, MarkDown, and
RestructredText.

» docToolchain provides an implementation of this approach:
https://doctoolchain.github.io/docToolchain/

35

DLR.de « Chart 36 = Tobias Schlauch - Pragmatic Software Architecture Documentation > 05122018

Documentation as code (Cont.)

Iteration
planning

Assigned
Task

Creation / updates

Build script /
pipeline automates

recurring tasks

Documentation
is checked as
part of the

Merged usual reviews

into master

da

of content is part of
the usual work

Retroperspectives
help to find issues

Iteration
closing

with the overall
process

36

DLR.de - Chart 37 = Tobias Schlauch « Pragmatic Software Architecture Documentation > 0512 2018

Summary

» Software architecture is the sum of all important decisions

» Software architecture documentation helps to communicate
them including the surrounding concepts

*arc42 is a good starting point but think carefully about:
 Target groups
» Development process

* Tools

* Documentation as code helps to keep documentation up-to-date
and fit for purpose

it W/ . bl

37

DLRde - Chart 38 = Tobias Schlauch « Pragmatic Software Architecture Documentation > 0512 2018

Further readings

« Stefan Zérner: "Softwarearchitekturen dokumentieren und kommunizieren", 2015
» Simon Brown: “Software Architecture for Developers”, 2018
* Anne Gentle: "Docs Like Code®, 2018

» Andrew Etter: "Modern Technical Writing: An Introduction to Software
Documentation®, 2016

 Carola Lilienthal: "Langlebige Software-Architekturen - Technische Schulden
analysieren, begrenzen und abbauen”, 2017

» Stefan Toth: "Vorgehensmuster fir Software-Architektur”, 2015
* Gernot Starke: "Effektive Software-Architekturen”, 2017

% /. Fpd

38

DLRde - Chart 38 = Tobias Schlauch « Pragmatic Software Architecture Documentation > 0512 2018

Image credits

« Serious and hard decisions, slide 11: Alinaderi158, CC BY-SA 4.0

* Papers Robot Documentation Work Office Documents, slide 11: CCO0
* Documentation is key, slide 13: Oliver Widder, CC BY 3.0

« Schematic quality scenario, slide 20: Gernot Starcke, CC BY-SA 4.0

* ADR screenshots, slides 28/29: Nat Pryce, CC BY 4.0

+ Waterfall, slide 32: Oliver Widder, CC BY 3.0

« GitLab logo, slide 35: GitLab, Inc., CC BY-NC-SA 4.0

« Philae landing on comet 67 P/Churyumov-Gerasimenko, slide 40: DLR, CC BY 3.0

it V! Gl

39

Thank you!

Questions?

www ILR delsc | @ToblasSchIauch

40

