
1

2

www.DLR.de/sc

3

4

5

• There are many more definitions but there is no generally accepted one.

• But there are recurring themes such as system structure, hard to change

things, decisions including their rationale

6

• But what are these architectural decisions? How can I find them?

7

• Control questions: a majority of „yes“ answers indicates architectural

significance

• Examples: It is **NOT** only about abstract things => its about important

aspects including technology choices

8

• Software architecture – as a process/activity – guides the solution selection

• The decision making is typically heavily influenced by quality requirements

and constraints => make sure you are aware of them!

9

10

Good software architecture documentation:

• Provides hints to developers how to accomplish certain tasks

• Shows which decisions have been taken including their rationale.

• Provides sufficient information to help analyzing its suitability.

Good software architecture documentation is particularly value when:

• New team members join

• Important knowledge carrier leave the team

• Larger changes have to be carried out

But typical problems include:

• Wrong, inconsistent, outdated or even useless information

• High creation and maintenance costs

11

12

13

14

Overview:

• arc42: https://arc42.org

• Current version: 7.0

• Template for communication and documentation of software and system

architectures

• Process- and tool-agnostic

• Made by practitioners

• Well documented, many examples and books are available

• Available in 4 different languages (DE, EN, ES, RU)

• Available in various formats: https://arc42.org/download

• Compatible with IEEE 1471

• Used in the iSAQB certification program

• License: CC BY-SA 4.0

Content structure / section meaning:

• For more information, please see: https://arc42.org/overview/

• Green => requirements-related sections

• Blue => solution-oriented sections

• Yellow => evaluation-oriented sections

15

• The first table show exemplarily target groups and their goals with regard to

the software architecture documentation.

• The second table depicts their potential interest in certain aspects of the

software architecture documentation.

16

• The product vision explains the purpose and the main features of the

software.

• In general, it sums up the main selling arguments / reason for the software

systems / why the system is built.

• In Open Source software, this information is typically shown in the README

file.

17

• Software quality has to be explicitly constructed. Quality attributes offer a

starting point but you need to interpret and prioritize them in context of your

software. This is the purpose of quality goals.

• The tables shows how you can document the quality goals. You should

reference the quality attribute and describe the goal in this regard. In

addition, it is useful to reference relevant quality requirements (here

captured as quality scenarios). These scenarios are more concrete and

allow a better understanding of the actual requirements.

• The order of the goals implies their priority. The most important goal is

defined first.

• You should limit the number of quality goals to 3 - 5.

18

• ISO/IEC 25010 defines the quality attributes. For further details, please see:

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

• Beware that quality attributes influence each other. For that reason, it is

important to prioritize them.

19

• Quality scenarios describe the desired quality attributes in an informal,

discussable way. They drive the architectural work and capture the quality

requirements.

• Event/stimulus is the source of change.

• System is the (software) system which we actual want to describe.

• Reaction illustrates the response of our system to the incoming

event/stimulus.

• Metric provides a measure for the response.

There different types of quality scenarios:

• Usage scenarios describe how the system is used and how it behaves in

such situations. Example: “The customer uses the article search (event).

The search (system) shows first matching articles (reaction) after one

second (metric).”

• Change scenarios describe changes of the system`s environment or

operational infrastructure. Example: “The number of users doubles (event).

The system (system) does not show significant performance decreases for

typical actions (reaction + metric).”

• Failure scenarios describe failure situations of neighbor systems or the

system`s operational infrastructure. “Example: “A power plant indicates an

overheat event (event). The control system (system) triggers the safe-mode

immediately (metric).

20

• For more information, please see: https://faq.arc42.org/questions/C-10-2/

and https://github.com/arc42/quality-requirements

20

• Constraints are requirements which limit your choices in building /

architecting the software system.

• It is important to collect, discuss, and communicate them. Otherwise the

system might never find its way into production.

• Beware: Some constraints might only be a preference of someone involved!

• The table illustrates how you can document constraints. In this case three

technical constraints are listed. Try to keep it short and reference other

documents as needed. Particularly, you should explain the rational of the

constraint.

21

• Technical constraints are typically specifications concerning software,

hardware, or operations.

• Organizational constraints might concern the organization/structure of the

project or the available resources. In addition, they might require you to

comply with organizational standards or legal aspects.

• Conventions include aspects such as programing or documentation

guidelines.

• For further details, please see the arc42 documentation and Gernot Starke:

"Effektive Software-Architekturen", Auflage 8, 2017.

22

• The system context is used to differentiate want belongs into the system

and what is outside the system. Particularly, it shows the involved

stakeholders and third-party systems with which our software system has to

interact.

• It is a very valuable view which should not change so often after the system

is basically into production.

• The system context is a good starting point for architectural decisions.

• Make sure that you properly describe the diagram within your

documentation!

Explanation of the diagram:

• In the middle is the software system we want to build (UML component).

• Lines show interactions with users/third-party systems outside the system.

23

• You can differentiate between the business and the technical system

context.

• Business context focuses on the domain.

• Technical context focuses on the technical protocols / details.

24

• The building block view shows the decomposition of system. Its static

structure. Here we have used the UML component diagram syntax.

• You can define further levels showing the details of a component. For

instance, we could show the further decomposition of the component

“Controller Core” which would be part of building block level 2.

• There are different ways to approach the decomposition: domain-specific

vs. technical decomposition. Here you see a typical technical

decomposition.

Tips:

• Make sure that the names of the component can be directly mapped to your

source code.

• You should avoid too many decomposition levels here - particularly when

you create them manually. 1-2 level should be sufficient. Otherwise it is hard

to keep them up-to-date.

• The C4 model (https://c4model.com/) is a good alternative as it allows you

to generate those views from your source code.

• Make sure that you properly describe the diagram within your

documentation!

25

• The diagrams shows a UML deployment diagram which shows how the

system is operated.

26

• In general, arc42 makes no assumption whether you use or you do not use

UML.

• There are also alternatives available such as C4 model

https://c4model.com/ (focus on structure)

• PlantUML is a textual UML tool which is widely supported by different tools

(e.g., editors/IDEs, development platforms, Wiki): https://plantuml.com/

27

• Architecture decision records offer a compact/lean format to document

architectural decisions. In addition, they offer you a way/template to

approach those decisions.

• For more information, see Michael Nygard blog:

http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-

decisions

• A good collection for ADR tools/templates is available here:

https://github.com/joelparkerhenderson/architecture_decision_record

28

29

30

31

• In the 90 the focus has been on rigorous planning (BUFD) which could

easily lead to analysis paralysis.

• The introduction of agile methods shifted the focus. Unfortunately, in the

direction of having no plan at all.

• To sump: You should have a plan (see also: iteration 0 etc.) but should keep

its creation lean.

32

33

• Interactive workshops for requirement collection and performing

architectural work are very effective ways to collect/create architectural

content.

• You should involve all important stakeholders and should focus on

interactive formats such as group work, brain writing etc.

• These workshops are particularly effective for prioritization and decision

making.

• Stefan Toth: „Vorgehensmuster für Software-Architekur“ provides some

good ideas in this regard.

34

• The “Write the Docs” community provides a good overview about it:

https://www.writethedocs.org/guide/docs-as-code/

• Suitable markup languages include AsciiDoc, MarkDown, and

RestructredText.

• docToolchain provides an implementation of this approach:

https://doctoolchain.github.io/docToolchain/

35

36

37

38

39

40

