Proposed Methods

Performance 000 Implementation Results

Conclusions 0000

Polar Codes for Terabit/s Data Rates

Altuğ Süral and Erdal Arıkan

GRC 2019, Bilkent University Ankara, Turkey {altug, arikan}@ee.bilkent.edu.tr

March 22th, 2019

Altuğ Süral

Polar Codes for Terabit/s Data Rates

March 22th, 2019 1 / 17

3

イロト イポト イヨト イヨト

Proposed Methods

Performance 000 Implementation Results

Conclusions

Why do we need Tb/s FEC?

• Enable Tb/s wireless infrastructure for contemporary applications

Altuğ Süral

Polar Codes for Terabit/s Data Rates

March 22th, 2019 2 / 17

Performance 000 Implementation Results

Conclusions

Why do we need Tb/s FEC?

- Enable Tb/s wireless infrastructure for contemporary applications
 - fronthauling/backhauling

Altuğ Süral

Polar Codes for Terabit/s Data Rates

March 22th, 2019 2 / 17

0000

Why do we need Tb/s FEC?

- Enable Tb/s wireless infrastructure for contemporary applications
 - fronthauling/backhauling
 - server farming in data centers

0000

Why do we need Tb/s FEC?

- Enable Tb/s wireless infrastructure for contemporary applications
 - fronthauling/backhauling
 - server farming in data centers
 - drone-based communications

0000

Why do we need Tb/s FEC?

- Enable Tb/s wireless infrastructure for contemporary applications
 - fronthauling/backhauling
 - server farming in data centers
 - drone-based communications
 - virtual and augmented reality

Conclusions

Why do we need Tb/s FEC?

- Enable Tb/s wireless infrastructure for contemporary applications
 - fronthauling/backhauling
 - server farming in data centers
 - drone-based communications
 - virtual and augmented reality
 - chip-to-chip and intra-chip communications

Conclusions

Why do we need Tb/s FEC?

- Enable Tb/s wireless infrastructure for contemporary applications
 - fronthauling/backhauling
 - server farming in data centers
 - drone-based communications
 - virtual and augmented reality
 - chip-to-chip and intra-chip communications
 - data kiosks

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Conclusions

Why do we need Tb/s FEC?

- Enable Tb/s wireless infrastructure for contemporary applications
 - fronthauling/backhauling
 - server farming in data centers
 - drone-based communications
 - virtual and augmented reality
 - chip-to-chip and intra-chip communications
 - data kiosks

• Contribute to the rapidly emerging standardization studies

Polar Codes for Terabit/s Data Rates

イロト 不得下 イヨト イヨト 二日

Conclusions

Why do we need Tb/s FEC?

- Enable Tb/s wireless infrastructure for contemporary applications
 - fronthauling/backhauling
 - server farming in data centers
 - drone-based communications
 - virtual and augmented reality
 - chip-to-chip and intra-chip communications
 - data kiosks
- Contribute to the rapidly emerging standardization studies
 - IEEE 802.15.3d-2017

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Conclusions

Why do we need Tb/s FEC?

- Enable Tb/s wireless infrastructure for contemporary applications
 - fronthauling/backhauling
 - server farming in data centers
 - drone-based communications
 - virtual and augmented reality
 - chip-to-chip and intra-chip communications
 - data kiosks
- Contribute to the rapidly emerging standardization studies
 - IEEE 802.15.3d-2017
 - IEEE 802.15.thz WPAN IG

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 - のへの

Conclusions

Why do we need Tb/s FEC?

- Enable Tb/s wireless infrastructure for contemporary applications
 - fronthauling/backhauling
 - server farming in data centers
 - drone-based communications
 - virtual and augmented reality
 - chip-to-chip and intra-chip communications
 - data kiosks
- Contribute to the rapidly emerging standardization studies
 - IEEE 802.15.3d-2017
 - IEEE 802.15.thz WPAN IG
 - IEEE 802.11bb Light Communication TG (Li-Fi)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Conclusions

Why do we need Tb/s FEC?

- Enable Tb/s wireless infrastructure for contemporary applications
 - fronthauling/backhauling
 - server farming in data centers
 - drone-based communications
 - virtual and augmented reality
 - chip-to-chip and intra-chip communications
 - data kiosks
- Contribute to the rapidly emerging standardization studies
 - IEEE 802.15.3d-2017
 - IEEE 802.15.thz WPAN IG
 - IEEE 802.11bb Light Communication TG (Li-Fi)
- Provide strong error-resilience for those applications using **polar codes**

Altuğ Süral

Polar Codes for Terabit/s Data Rates

March 22th, 2019 2 / 17

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Proposed Methods

Performance 000 Implementation Results

Conclusions 0000

When will we exploit Tb/s FEC?

• The experts in the BRAVE project claim that Tb/s links will become a reality within 4 years [Fet11], [Saa18].

Polar Codes for Terabit/s Data Rates

March 22th, 2019 3 / 17

3

イロト イポト イヨト イヨト

Proposed Methods

Performance 000 Implementation Results

Conclusions 0000

When will we exploit Tb/s FEC?

• The experts in the BRAVE project claim that Tb/s links will become a reality within 4 years [Fet11], [Saa18].

• The 2018 Ethernet Roadmap foresees a demand for Tb/s data rates for 2020 and beyond [Kip18].

Altuğ Süral

Polar Codes for Terabit/s Data Rates

March 22th, 2019 3 / 17

Proposed Methods

Performance 000 Implementation Results

Conclusions 0000

What are the requirements of Tb/s FEC?

The ASIC design experts in EPIC project predicts Tb/s FEC throughput within the limits of other important KPIs [Weh17].

Name of KPI	Requirement	Throughput (Gb/s)
Technology	7nm	
Throughput	1 Tb/s	10
Clock freq.	$\leq 1~{ m GHz}$	Area
Core area	$\leq 10 \; { m mm^2}$	(mm ²) 1 10 100 Gain (dB)
Power	\leq 1 W	100
Power den.	\leq 0.1 W/mm 2	
Area eff.	$\geq 100~{ m Gb/s/mm^2}$	
Energy	\leq 1 pJ/bit	Energy (pJ/b)

Proposed Methods

Performance

Implementation Results

Conclusions 0000

Polar codes for Tb/s FEC

• Develop a specific solution based on polar codes introduced in [Ari09]

Altuğ Süral

Polar Codes for Terabit/s Data Rates

March 22th, 2019 5 / 17

Polar codes for Tb/s FEC

- Develop a specific solution based on polar codes introduced in [Ari09]
- Use Majority-Logic aided Successive Cancellation (SC-MJL) decoding algorithm in [Diz17] with several enhancements

Polar codes for Tb/s FEC

- Develop a specific solution based on polar codes introduced in [Ari09]
- Use Majority-Logic aided Successive Cancellation (SC-MJL) decoding algorithm in [Diz17] with several enhancements
 - Wagner decoding for single parity check

Polar codes for Tb/s FEC

- Develop a specific solution based on polar codes introduced in [Ari09]
- Use Majority-Logic aided Successive Cancellation (SC-MJL) decoding algorithm in [Diz17] with several enhancements
 - Wagner decoding for single parity check
 - MAP decoding for repetition

Polar codes for Tb/s FEC

- Develop a specific solution based on polar codes introduced in [Ari09]
- Use Majority-Logic aided Successive Cancellation (SC-MJL) decoding algorithm in [Diz17] with several enhancements
 - Wagner decoding for single parity check
 - MAP decoding for repetition
- Develop a dedicated hardware architecture for the SC-MJL algorithm

Polar codes for Tb/s FEC

- Develop a specific solution based on polar codes introduced in [Ari09]
- Use Majority-Logic aided Successive Cancellation (SC-MJL) decoding algorithm in [Diz17] with several enhancements
 - Wagner decoding for single parity check
 - MAP decoding for repetition
- Develop a dedicated hardware architecture for the SC-MJL algorithm
 - Fully-pipelined processing of the codewords in the form of a set of LLRs

Polar Codes for Terabit/s Data Rates

イロト 不得下 イヨト イヨト 二日

Polar codes for Tb/s FEC

- Develop a specific solution based on polar codes introduced in [Ari09]
- Use Majority-Logic aided Successive Cancellation (SC-MJL) decoding algorithm in [Diz17] with several enhancements
 - Wagner decoding for single parity check
 - MAP decoding for repetition
- Develop a dedicated hardware architecture for the SC-MJL algorithm
 - Fully-pipelined processing of the codewords in the form of a set of LLRs
 - Unrolled modules for each different operation

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 - のへの

Polar codes for Tb/s FEC

- Develop a specific solution based on polar codes introduced in [Ari09]
- Use Majority-Logic aided Successive Cancellation (SC-MJL) decoding algorithm in [Diz17] with several enhancements
 - Wagner decoding for single parity check
 - MAP decoding for repetition
- Develop a dedicated hardware architecture for the SC-MJL algorithm
 - Fully-pipelined processing of the codewords in the form of a set of LLRs
 - Unrolled modules for each different operation
- Optimize LLR quantization throughout the decoding

イロト 不得下 イヨト イヨト 二日

Polar codes for Tb/s FEC

- Develop a specific solution based on polar codes introduced in [Ari09]
- Use Majority-Logic aided Successive Cancellation (SC-MJL) decoding algorithm in [Diz17] with several enhancements
 - Wagner decoding for single parity check
 - MAP decoding for repetition
- Develop a dedicated hardware architecture for the SC-MJL algorithm
 - Fully-pipelined processing of the codewords in the form of a set of LLRs
 - Unrolled modules for each different operation
- Optimize LLR quantization throughout the decoding
- Merge pipelined decoding stages for register balancing/timing

イロト 不得下 イヨト イヨト 二日

Figure: Data flowchart of SC-MJL decoding algorithm where N is the code block length, K is the number of information bits, v_1^M is the frozen vector with variable constituent block length M, N_{MJL} is the block length of MJL decoder and N_{LIM} is the maximum block length of Wagner and MAP decoders.

Altuğ Süral

Polar Codes for Terabit/s Data Rates

March 22th, 2019 6 / 17

Introduction	Proposed Methods	Performance	Implementation Results	Conclusion
0000	000	000	00	0000

Progressive quantization of LLRs inside the decoder

Polar Codes for Terabit/s Data Rates

< ≧ ▶ < ≧ ▶ ≧ ∽ Q (~ March 22th, 2019 7 / 17

Proposed Methods

Performance 000 Implementation Results

Conclusions 0000

Proposed hardware architecture for SC-MJL

• An example N = 16, K = 9 design with $N_{MJL} = 8$ and $N_{LIM} = 32$ parameters

Proposed Methods

Performance 000 Implementation Results

Conclusions 0000

Proposed hardware architecture for SC-MJL

- An example N = 16, K = 9 design with $N_{MJL} = 8$ and $N_{LIM} = 32$ parameters
- Use MJL when $v_1^8 = \{1, 0, 0, 0, 1, 0, 0, 0\}$

Proposed Methods 000

8 / 17

Proposed hardware architecture for SC-MJL

- An example N = 16, K = 9 design with $N_{MII} = 8$ and $N_{\rm LIM} = 32$ parameters
- Use MJL when $v_1^8 = \{1, 0, 0, 0, 1, 0, 0, 0\}$

on Prop 000

Proposed Methods

Performance •00 Implementation Results

Conclusions

Complexity analysis

• For $n' = \log N_{MJL}$, the time complexity of the fully-parallel SC-MJL decoder is

$$T_{N} = 2T_{N/2} + 2 = \sum_{i=1}^{n-n'} 2^{i} + 2^{n-n'} = 3\frac{N}{N_{MJL}} - 2 = \Theta(N).$$

Polar Codes for Terabit/s Data Rates

March 22th, 2019 9 / 17

Proposed Methods

Implementation Results

Conclusions

Complexity analysis

• For $n' = \log N_{MJL}$, the time complexity of the fully-parallel SC-MJL decoder is

$$T_{N} = 2T_{N/2} + 2 = \sum_{i=1}^{n-n'} 2^{i} + 2^{n-n'} = 3\frac{N}{N_{MJL}} - 2 = \Theta(N).$$

• For $N_{MJL} \le N$ and $M_4 = 32Q' + 16$, the memory complexity of the unrolled and fully-pipelined SC-MJL decoder is

$$\begin{split} M_{\rm N} &= 2M_{{\rm N}/2} + (Q'+0.5) \Big(1.5 \frac{N^2}{N_{\rm MJL}} - N \Big) \\ &= (Q'+0.5) \Big(\frac{1.5}{N_{\rm MJL}} (2 - 2^{-\log N + \log N_{\rm MJL}}) N^2 - N \log N + 1.5 N \Big) \\ &= \Theta(N^2 Q'). \end{split}$$

Altuğ Süral

Polar Codes for Terabit/s Data Rates

March 22th, 2019 9 / 17

イロト イポト イヨト イヨト

 Proposed Methods
 Performance
 Implementation Results

 0
 000
 000
 00

FPGA performance of SC-MJL decoder

Altuğ Süral

Polar Codes for Terabit/s Data Rates

March 22th, 2019 10 / 17

Proposed Methods

Performance

Implementation Results

Conclusions

FPGA performance comparison

Altuğ Süral

Polar Codes for Terabit/s Data Rates

March 22th, 2019 11 / 17

Introduction	Proposed Methods	Performance	Implementation Results	Conclusions
0000	000	000	•0	0000

ASIC 45nm post-synthesis results of (1024,854) polar code

• Take $N_{\rm MJL} = 8$ and $N_{\rm LIM} = 32$

Decoding Algorithm	SC	SC-MJL	SC-MJL	SC-MJL
Quantization (bits)	6	6	5-to-1	5-to-1
Reg. Balancing Arch.	х	х	х	\checkmark
Throughput (Gb/s)			427	
Frequency (MHz)			500	
Latency (μ s)	0.31	0.25	0.25	0.08
Latency (Clock cycles)	157	127	127	40
Area (mm ²)	9.8	8.3	6.6	2.4
Area Eff. (Gb/s/mm ²)	43.5	51.4	65.0	175.2
Power (W)	4.6	3.1	2.3	1.0
Pow. Den. (W/mm^2)	0.47	0.38	0.36	0.42
Energy (pJ/bit)	10.9	7.3	5.5	2.4

Proposed Methods

Performance 000 Implementation Results

Conclusions 0000

Scaled 7nm results in ASIC

• Use ITRS CMOS scaling rules in [Gra15] from 45nm to 7nm

Decoding Algorithm	SC	SC-MJL	SC-MJL	SC-MJL
Quantization (bits)	6	6	5-to-1	5-to-1
Reg. Balancing Arch.	Х	х	х	\checkmark
Throughput (Gb/s)			1000	
Frequency (MHz)	585.5			
Area (mm ²)	10			
Area Eff. (Gb/s/mm ²)			100	
Power (W)	1.69	1.14	0.85	0.37
Pow. Den. (W/mm^2)	0.17	0.11	0.09	0.04
Energy Eff. (pJ/bit)	1.69	1.14	0.85	0.37
Latency (μs)	0.27	0.22	0.22	0.07
Latency (Clock Cycles)	157	127	127	40

Altuğ Süral

Polar Codes for Terabit/s Data Rates

March 22th, 2019 13 / 17

Scaled 7nm results in ASIC

- Use ITRS CMOS scaling rules in [Gra15] from 45nm to 7nm
- Use two identical spatially parallel polar decoders

Decoding Algorithm	SC	SC-MJL	SC-MJL	SC-MJL
Quantization (bits)	6	6	5-to-1	5-to-1
Reg. Balancing Arch.	Х	х	х	\checkmark
Throughput (Gb/s)			1000	
Frequency (MHz)	585.5			
Area (mm ²)	10			
Area Eff. (Gb/s/mm ²)			100	
Power (W)	1.69	1.14	0.85	0.37
Pow. Den. (W/mm^2)	0.17	0.11	0.09	0.04
Energy Eff. (pJ/bit)	1.69	1.14	0.85	0.37
Latency (μs)	0.27	0.22	0.22	0.07
Latency (Clock Cycles)	157	127	127	40

Altuğ Süral

Scaled 7nm results in ASIC

- Use ITRS CMOS scaling rules in [Gra15] from 45nm to 7nm
- Use two identical spatially parallel polar decoders
- Multiply frequency by 0.3

Decoding Algorithm	SC	SC-MJL	SC-MJL	SC-MJL
Quantization (bits)	6	6	5-to-1	5-to-1
Reg. Balancing Arch.	Х	х	х	\checkmark
Throughput (Gb/s)			1000	
Frequency (MHz)		Ę	585.5	
Area (mm ²)	10			
Area Eff. (Gb/s/mm ²)			100	
Power (W)	1.69	1.14	0.85	0.37
Pow. Den. (W/mm^2)	0.17	0.11	0.09	0.04
Energy Eff. (pJ/bit)	1.69	1.14	0.85	0.37
Latency (μs)	0.27	0.22	0.22	0.07
Latency (Clock Cycles)	157	127	127	40

Altuğ Süral

Intro	du	cti	on
000	0		

Proposed Methods

Performance

Implementation Results

Conclusions •000

Summary

• 1 Tb/s FEC appears feasible with a 6.5 dB coding gain

Polar Codes for Terabit/s Data Rates

March 22th, 2019 14 / 17

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

troduction	Proposed Methods	Performance	Implementation Results
000	000	000	00

- 1 Tb/s FEC appears feasible with a 6.5 dB coding gain
- The proposed solution brought together some existing techniques

Polar Codes for Terabit/s Data Rates

3

Conclusions

ntroduction	Proposed Methods	Performance 000	Implementation Results 00	Conclusions •000

- 1 Tb/s FEC appears feasible with a 6.5 dB coding gain
- The proposed solution brought together some existing techniques
 - SC decoder in initial stages of decoding where parallelism is high

ntroduction	Proposed Methods	Performance	Implementation Results	Conclusio
000	000	000	00	0000

- 1 Tb/s FEC appears feasible with a 6.5 dB coding gain
- The proposed solution brought together some existing techniques
 - SC decoder in initial stages of decoding where parallelism is high
 - MJL decoding for speeding up decisions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

troduction	Proposed Methods	Performance	Implementation Results	Conclusions
000	000	000	00	0000

- 1 Tb/s FEC appears feasible with a 6.5 dB coding gain
- The proposed solution brought together some existing techniques
 - SC decoder in initial stages of decoding where parallelism is high
 - MJL decoding for speeding up decisions
 - Progressive quantization to reduce memory usage

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

roduction	Proposed Methods	Performance	Implementation Results	Conclusions
000	000	000	00	0000

- 1 Tb/s FEC appears feasible with a 6.5 dB coding gain
- The proposed solution brought together some existing techniques
 - SC decoder in initial stages of decoding where parallelism is high
 - MJL decoding for speeding up decisions
 - Progressive quantization to reduce memory usage
 - Register balancing to reducing pipeline depth by combining simple steps

roduction	Proposed Methods	Performance	Implementation Results	Conclusions
000	000	000	00	0000

- 1 Tb/s FEC appears feasible with a 6.5 dB coding gain
- The proposed solution brought together some existing techniques
 - SC decoder in initial stages of decoding where parallelism is high
 - MJL decoding for speeding up decisions
 - Progressive quantization to reduce memory usage
 - Register balancing to reducing pipeline depth by combining simple steps
- Storage complexity dominates the design

roduction	Proposed Methods	Performance	Implementation Results	Conclusions
000	000	000	00	0000

- 1 Tb/s FEC appears feasible with a 6.5 dB coding gain
- The proposed solution brought together some existing techniques
 - SC decoder in initial stages of decoding where parallelism is high
 - MJL decoding for speeding up decisions
 - Progressive quantization to reduce memory usage
 - Register balancing to reducing pipeline depth by combining simple steps
- Storage complexity dominates the design
- Future studies to improve the KPIs

roduction	Proposed Methods	Performance	Implementation Results	C
000	000	000	00	•

- 1 Tb/s FEC appears feasible with a 6.5 dB coding gain
- The proposed solution brought together some existing techniques
 - SC decoder in initial stages of decoding where parallelism is high
 - MJL decoding for speeding up decisions
 - Progressive quantization to reduce memory usage
 - Register balancing to reducing pipeline depth by combining simple steps
- Storage complexity dominates the design
- Future studies to improve the KPIs
 - Complete ASIC back-end design flow

onclusions

roduction	Proposed Methods	Performance	Implementation Results	Conclusions
000	000	000	00	0000

- 1 Tb/s FEC appears feasible with a 6.5 dB coding gain
- The proposed solution brought together some existing techniques
 - SC decoder in initial stages of decoding where parallelism is high
 - MJL decoding for speeding up decisions
 - Progressive quantization to reduce memory usage
 - Register balancing to reducing pipeline depth by combining simple steps
- Storage complexity dominates the design
- Future studies to improve the KPIs
 - Complete ASIC back-end design flow
 - Implement SC-List to enhance the coding gain up to 10 dB

March 22th, 2019 14 / 17

roduction	Proposed Methods	Performance	Implementation Results	Conclusions
00	000	000	00	0000

- 1 Tb/s FEC appears feasible with a 6.5 dB coding gain
- The proposed solution brought together some existing techniques
 - SC decoder in initial stages of decoding where parallelism is high
 - MJL decoding for speeding up decisions
 - Progressive quantization to reduce memory usage
 - Register balancing to reducing pipeline depth by combining simple steps
- Storage complexity dominates the design
- Future studies to improve the KPIs
 - Complete ASIC back-end design flow
 - Implement SC-List to enhance the coding gain up to 10 dB
 - Find solutions for flexibility in terms of N and K

イロト 不得 トイラト イラト 一日

Acknowledgements

- We thank Prof. Orhan Arıkan for the valuable discussions and ideas about the progressive quantization method.
- We thank Goksu Sezer for VHDL implementation of the SC-MJL algorithm and Yiğit Ertuğrul for carring out the simulations.
- We thank Prof. Abdullah Atalar for his effort to bring TSMC 40nm CMOS low-power and standard cell libraries to Bilkent University.
- This work has been carried out by a support from the EPIC project, with the funding from the European Union's Horizon 2020 research and innovation programme under grant No. 760150.

ntroduction 0000	Proposed Methods	Performance	Implementation Results 00	Conclusions
		Reference	2S	
	Erdal Arikan. Channel polarization: A method for cc symmetric binary-input memoryless ch IEEE Transactions on Information The	onstructing capacity-ac annels. eory, 55(7):3051–3073,	hieving codes for July 2009.	
	Onur Dizdar. High Throughput Decoding Methods a High Energy-Efficiency and Low Laten PhD thesis, Bilkent University, 2017.	and Architectures for I Icy.	Polar Codes with	
	Gehard Fettweis. Entering the path towards terabit/s with pages $1 - 6$, 04 2011.	ireless links.		
	Mart Graef. 2015 International Technology Roadm. More Moore. Technical report, 2015.	ap for Semiconductors	(ITRS) Section 5:	
	Scott Kipp. EthernetRoadmap-2018-side1-1600x12 scaled (76%), 2018.	00.jpg (JPEG image,	1600x120 pixels) -	
	Majed Saad. Beyond-5G Wireless Tbps Scenarios ar	nd Requirements, 2018	ł.	
	Norbert Wehn. EPIC - Enabling practical wireless Tb/ channel coding. https://epic-h2020.eu/results, 2	's communications wit	h next generation ←□→ ←♂→ ← ≥→	< ≣ ► Ξ

Altuğ Süral

Polar Codes for Terabit/s Data Rates

March 22th, 2019 16 / 17

Proposed Methods

Performance 000 Implementation Results

Conclusions

Thank you!

Altuğ Süral

Polar Codes for Terabit/s Data Rates

March 22th, 2019 17 / 17

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・