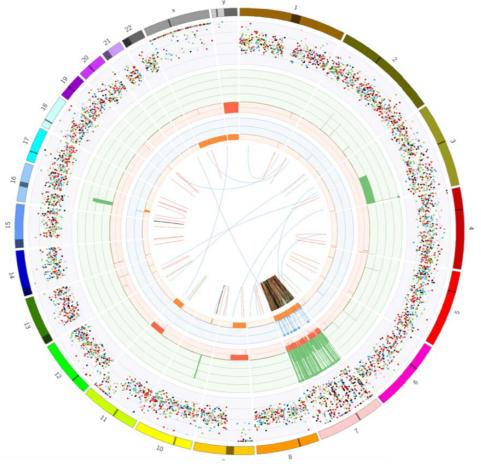


Technology Assessment of Next Generation Sequencing in Personalized Oncology


2nd TANGO symposium October 30, 2019 Valesca Retèl Edwin Cuppen

Welcome!

TIME	PRESENTATION	SPEAKERS	
3.00- 3. 0	Welcome	Edwin/Valesca	
13.10-13.25	Microcosting of WGS versus standard diagnostics	Clémence/Geert	
13.25-13.45	Validation of whole genome sequencing against routine molecular tests	Rogier/Marc	
3:45- 4:15	Genomic and transcriptomic correlates of response to immune checkpoint blockade	Joanne/Joris/ Joachim/Emile	
14:15-14.35	The lifetime gain of targeted and	Martijn/Manuela	
	immunotherapy in NSCLC - a systematic review and modelling study	PI	noto-
14:35-14.55	Time to treatment	Michiel/Erik mo	oment
14.55-15.25	Pause		
	T duse		
15:25-15:45	When new information becomes available: should doctor's recontact?	Noor/Annelien/ Corrette/Wim	
15:25-15:45	When new information becomes		
	When new information becomes available: should doctor's recontact?	Corrette/Wim	
15:45-16:05	When new information becomes available: should doctor's recontact? Results Scenarios Discussion on the results of the scenarios and perspective on implementing WGS as	Corrette/Wim Michiel/ Martijn Stakeholders (RIVM/ZonMw/	
15:45-16:05 16:05-16:25	When new information becomes available: should doctor's recontact? Results Scenarios Discussion on the results of the scenarios and perspective on implementing WGS as standard diagnostics in the Netherlands Survival pattern and Time to next	Corrette/Wim Michiel/ Martijn Stakeholders (RIVM/ZonMw/ ZINL/ Patients	

Technology Assessment of Next Generation Sequencing in Personalized Oncolog

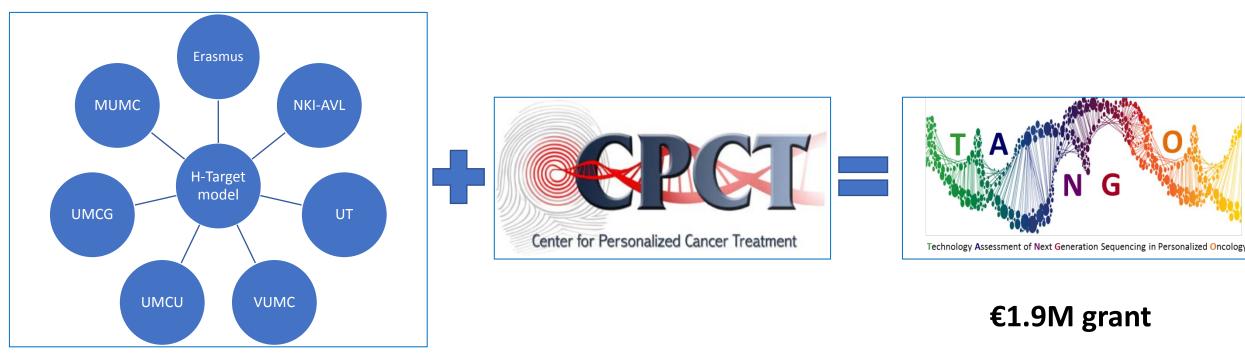
Rationale

Large variability of sequencing/NGS tests in the Netherlands

Increased use of immunotherapy, while this is effective for only a small part of the patients

Consequences:

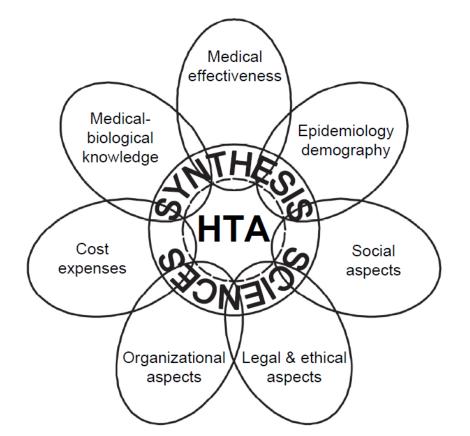
-Survival


-QoL

-Health care costs

How can we optimize the use of NGS in the Netherlands?

HTA-network meets CPCT

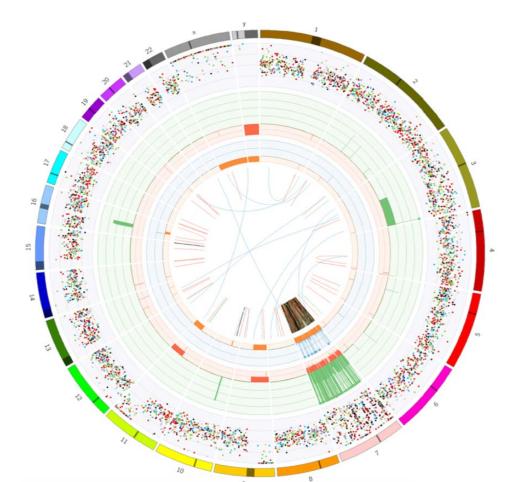

reciniology Assessment or Next Generation Sequencing in Personalized Oncology

<u>**TA**</u>NGO

Technology Assessment

HTA: broad evaluation of new or existing health technologies

- -Clinical effectiveness
- -Financial (cost-effectiveness)
- -Patient related
- -Ethical/legal
- -Organizational
- → Information for policy making
 → Decision making for groups of patients


TA<u>NGO</u>

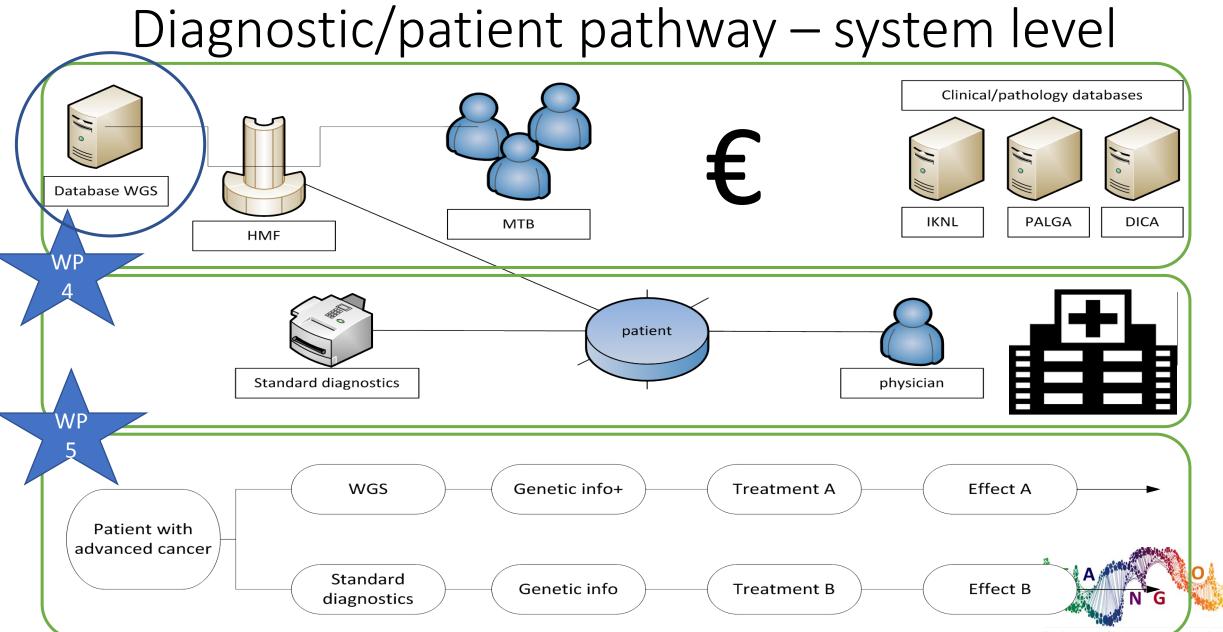
Next Generation sequencing in Oncology

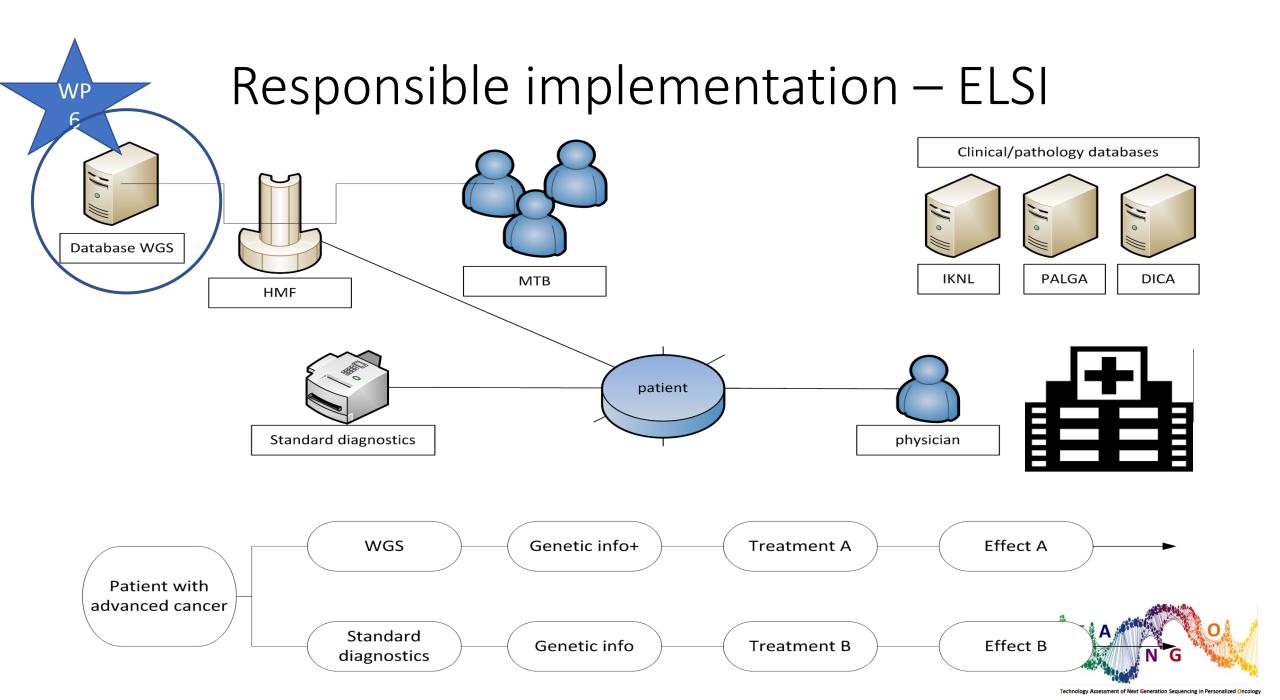
- Tests for all relevant mutations in 1 experiment
- To prescribe the most optimal therapy
- This could improve survival with less toxicity
- Assist in controlling healthcare costs :
- \rightarrow Offering (often expensive) treatment to only those likely to benefit.

-> Whole genome sequencing: complete tumor DNA

Purpose TANGO

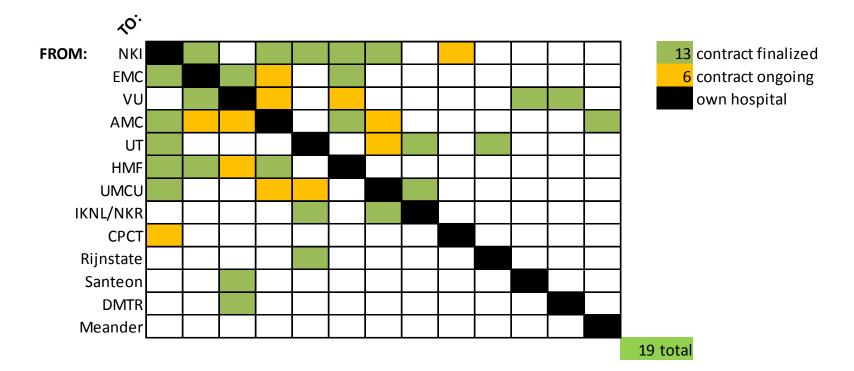
A) to expand molecular profiling of tumors in order to improve immune- and targeted treatment selection and outcomes in patients with advanced NSCLC (and melanoma) **WP**: 1,2


B) to project long-term outcomes like cost-effectiveness, budget impact, and relevant patient & organizational issues related to the introduction of WGS compared to standard diagnostics. **WP**: 3,4,5,6


Diagnostic/patient pathway – micro level ŴP ŴP WP WGS Genetic info+ **Treatment A** Effect A Patient with advanced cancer Standard Effect B Genetic info **Treatment B** diagnostics **CPCT-02**

- WP1 diagnostic pathway
- WP2 diagnostics + treatment + survival
- WP3 diagnostics + treatment longer FU
- -> based on CPCT-02
- -> based on CPCT-02
- -> based on registry data

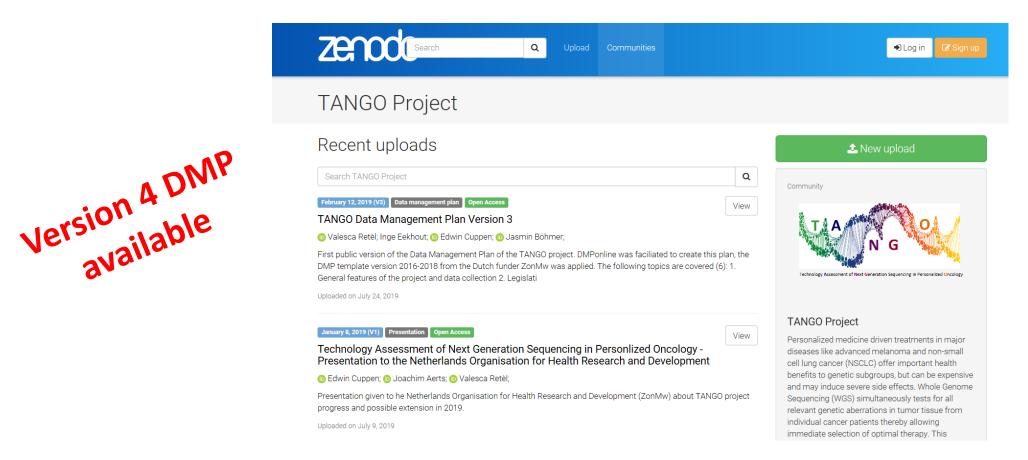
Technology Assessment of Next Generation Sequer in Personalized



Developments since Oct 2018

₩ January 2019: start melanoma

₩ TANGO extended till February 15th 2021


₩⁴19 Data transfer agreements

Website ZENODO: tango-wgs

https://zenodo.org/communities/tango-wgs/

Technology Assessment of Next Generation Sequencing in Personalized Oncolog

Publications TANGO

WP 1 Microcosting (Clémence)

Pasmans e.a. Micro-costing Diagnostics in Oncology: From Single-Gene Testing to Whole Genome Sequencing

WP5 System dynamics (Michiel)

www.van de Ven e.a.: Variation in the time to treatment for stage up patients
WP6 ELSI-legal(Colin_Sief en Corrette) and IV Non-Small Cell Lung Cancer

WP6 ELSI-legal(Colin, Sjef en Corrette)

WWW Mitchell e.a.: Experts reflecting othe duty to recontact patients and research participants; why professionals

Ploem e.a.: A duty to recontact in the context of genetics: futuristic or realistic?

WVP6 ELSI-ethical (Noor)

Giesbertz e.a. : a duty to recontact in genetics: context matters

Publications related to TANGO-I

https://doi.org/10.1038/s41586-019-1689-y

Received: 9 September 2018

Accepted: 20 September 2019

Published online: 23 October 2019

Open access

Peter Priestley^{1,2,12}, Jonathan Baber^{1,2,12}, Martijn P. Lolkema^{3,4}, Neeltje Steeghs^{3,5}, Ewart de Bruijn¹, Charles Shale², Korneel Duyvesteyn¹, Susan Haidari^{1,3}, Arne van Hoeck⁶, Wendy Onstenk^{1,3,4}, Paul Roepman¹, Mircea Voda¹, Haiko J. Bloemendal^{7,8}, Vivianne C. G. Tjan-Heijnen⁹, Carla M. L. van Herpen⁸, Mariette Labots¹⁰, Petronella O. Witteveen¹¹, Egbert F. Smit^{3,5}, Stefan Sleijfer^{3,4}, Emile E. Voest^{3,5} & Edwin Cuppen^{1,3,6}*

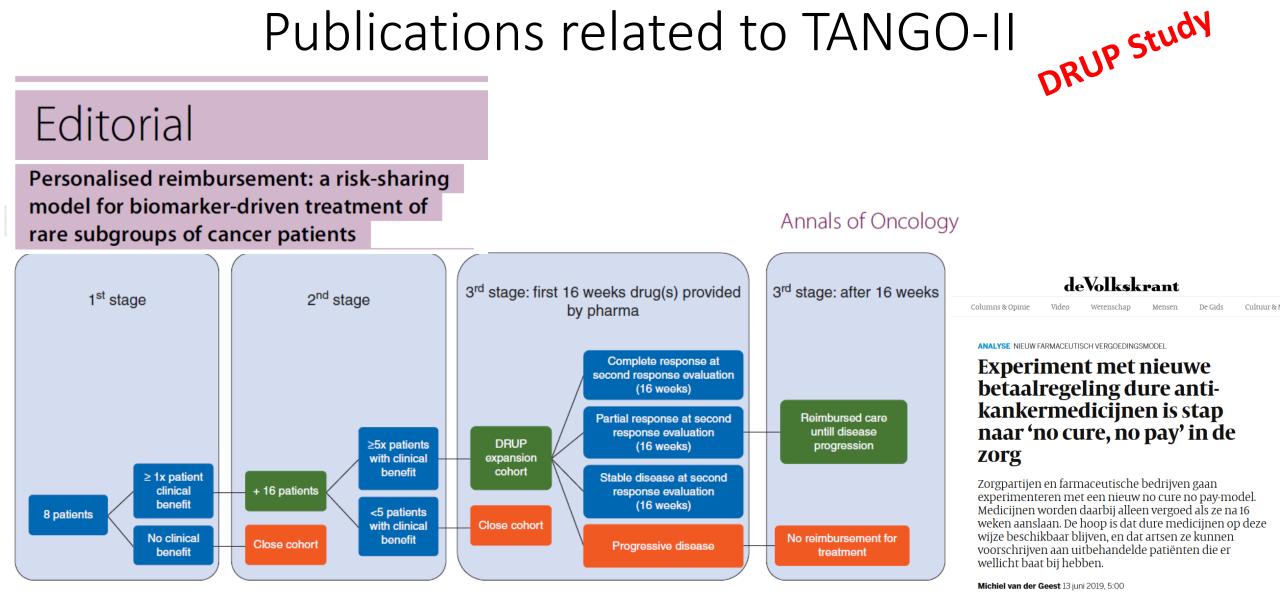
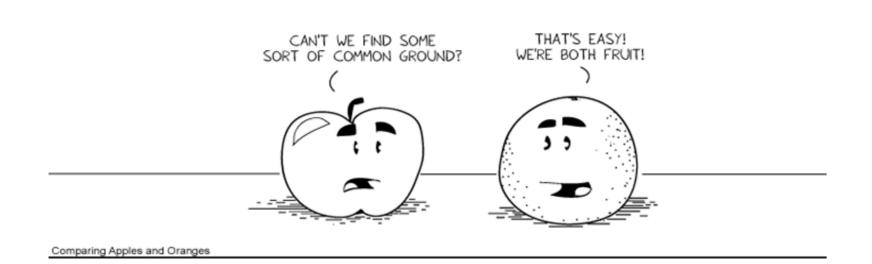


Figure 1. A performance-based, personalised reimbursement scheme after 16 weeks of clinical benefit at stage III, when the effectiveness is proven for an individual patient, commercial medication will be reimbursed by payers.

Waalwijk van Doorn ea, Annals of Oncol, 2019

Next plans


Design paper TANGO
Paper on HTA-modeling approaches
ISPOR presentations

Microcosting diagnostics in oncology

Collaboration and transparency to enable valid comparisons

G.W.J.Frederix@umcutrecht.nl

Background

- Technology Assessment of Next Generation sequencing in personalized oncology (TANGO studie)
 - Objective (WP1)

1) Microcosting Whole Genome Sequencing

- Predictive Analysis for Therapy: PATH to Optimising Access to Personalised Cancer Therapy in the Netherlands (PATH studie)
 - Objective:

DEA organizational effectiveness
 Cost-effectiveness predictive diagnostics

Collaboration

- Added value current diagnostics and WGS
- Price diagnostics essential in this comparison (unit costs)
- Collaboration is needed to ensure valid and comparable outcomes
- A big THANKS to Bastiaan Tops (PATH project) and Clemence Pasmans (TANGO project) for making these outcomes possible

Objective study

 Calculate and compare total costs of WGS and different diagnostic techniques in the treatment of specific oncologic diseases

Method 1/2

•Data availability

- •Dutch pathology laboratories, Hartwig Medical Foundation (HMF)
- •Micro-costing design
 - •Measurement plan
 - •Detailed and discussed
- •Cost allocation
- Capital costs, maintenance costs, operational costs, software costs

Method 2/2

•Analyses

1) Base case analysis

Primary outcome Total costs per patient and per technique
Secondary outcome Total cost per patient per most used combination of techniques (NSCLC, melanoma, CRC and GIST)

2) Sensitivity analysis

•Vary different unit costs: Cost drivers varied: utilization platforms and cost of consumables

Result 1/4 – measurement plan

Maintenance costs

Annual maintenance costs additional equipment (other years)^e

Annual maintenance costs platform (other years)^e Annual maintenance costs

Capital costs

Additional equipment initial costs^b Platform initial costs^b Annual capital costs additional equipment^c Annual capital costs platform^c

Operational costs

Sample preparation and quality control consumables per sample^b Consumables per sample^b Data processing (per CPU hour / IT infra per tumor normal)^g Data storage (per GB storage per year)^g

Personnel sample preparation and primary data analysis per sample^h

Personnel data interpretation and report per sample'

Software costs Aqcuisition software costs^b

Annual software management / maintenance costs^f

Annual software costs

Technology Assessment of Next Generation Sequencing in Personalized Oncolog

Result 2/4 – outcomes

										Techniques									
		IHC	FISH	Pyro seq		HRM		Si	anger			NGS		Cobas		E	Biocartis		WGS
kdditional equipment	Light microscope, Leica	Light microscope, Leica	Hybridizer (DAKO, Agilent)								lon Chef + PCR apparatus	s Ion Chef + PCR apparatus	Ion Chef + PCR apparatus		Idylla console	Idylla console	Idylla console	Idylla console	Biomek 4000
Natform	Ventana, Roche	Ventana, Roche	Fluorescence microscope, Leica	Pyromark Q24, Qiager	h LC480, Roche	LC480, Roche	Applied Biosystems, ThemoFisher	Applied Biosystems, ThemoFisher	Applied Biosystems, ThemoFisher	Applied Biosystems, ThemoFisher	lonTorrent PGM, ThermoFisher	lonTorrent PGM, ThermoFisher	MiSeq, Illumina	Cobas, Roche	ldylla, Biocartis	Idylla, Biocartis	ldylla, Biocartis	Idylla, Biocartis	NovaSeq 6000, Illumi
Platform type	ALK, ROS1	PD-1, PD-L1	ALK, ROS1, RET	EGFR+KRAS hotspots (6 amplicons)	EGFR+KRAS+BRAF hotspots (8 amplicons	BRAF+NRAS (3) amplicons)	ABI3500 (10 amplicons: EGFR, KRAS, BRAF, ERBB2, MET)	ABI3500 (3 amplicons: BRAF, NRAS)	ABI3500 (6 amplicons: KRAS, NRAS, BRAF)	ABI3500 (9 amplicons: KIT, PDGFRA, BRAF)	PGM: 316 chip, cancerhotspot panel v2	PGM: 318 chip, cancerhotspot panel v2	MiSeq: 2x150 bp micro v2 kit, cancer hotspot panel v2	BRAF	BRAF	EGFR	KRAS	BRAF+NRAS	
Utilization	30%	30%	24%	8%	56%	28%	54%	54%	54%	54%	32%	32%	32%	0,3%	60%	60%	60%	60%	60%
Actual annual throughput	7020	7020	1498	666	1747	1747	18870	18870	18870	18870	666	1331		117	624	624	624	624	2995
Capital costs																			
Additional equipment initial costs ^b	€ 50.000,00	€ 50.000,00	€ 6.679,00	€ 0,00	€ 0,00	€0,00	€ 0,00	€ 0,00	€0,00	€ 0,00	€ 9.000,00	€ 9.000,00	€ 9.000,00	€ 0,00	€ 5.000,00	€ 5.000,00	€ 5.000,00	€ 5.000,00	€ 80.000,00
Platform initial costs ⁶	€ 15.000,00	€ 15.000,00	€ 70.000,00	€ 70.944,00	€ 65.000,00	€ 65.000,00	€ 136.500,00	€ 136.500.00	€ 136.500,00	€ 136.500,00	€ 61.897,00	€ 61.897,00	€ 95.811,00	€ 64.060,37	€ 45.000,00	€ 45.000,00	€ 45.000,00	€ 45.000,00	€ 761.000,00
Annual capital costs additional equipment ^e	€ 6.318,94	€ 6.318,94	€ 1.521,42	€ 0,00	€ 0,00	€0,00	€0,00	€ 0,00	€0,00	€ 0,00	€ 2.050,12	€ 2.050,12		€ 0,00	€ 631,89	€ 631,89	€ 631,89	€ 631,89	€ 17.970,17
Annual capital costs platform	€ 1.895,68	€ 1.895,68	€ 8.846,52	€ 16.160,45	€ 8.214,62	€ 8.214,62	€ 23.164,25	€ 23.164,25	€ 23.164,25	€ 23.164,25	€ 14.099,62	€ 14.099,62	€ 21.824,94	€ 8.095,87	€ 10.250,62	€ 10.250,62	€ 10.250,62	€ 10.250,62	€ 170.941,23
Capital costs per sample or per tumor normal ^d	€ 1,17	€ 1,17	€ 6,92	€ 24,28	€ 4,70	€ 4,70	€ 1,23	€ 1,23	€1,23	€ 1,23	€ 24,26	€ 12,13		€ 29,66	€ 17,44	€ 17,44	€ 17,44	€ 17,44	€ 242,69
Maintenance costs	,	/	/			,	,)	,	,			,		,			,	
	€ 5.000,00	€ 5.000,00	€ 200,00	€ 0,00	€ 0,00	€0,00	€0,00	€0,00	€0,00	€ 0,00	€ 900,00	€ 900,00	€ 900,00	€0,00	€ 500,00	€ 500,00	€ 500,00	€ 500,00	€ 3.000,00
Annual maintenance costs additional equipment (other years)*	€ 500,00	€ 500,00	€ 1.000,00	€ 6.500,00	€ 3.148,00	€ 3.148,00	€ 3.655,00	€ 3.655,00	€ 3.655,00	€ 3.655,00	€ 6.100,00	€ 6.100,00	€ 11.867,00	€ 5.200,00	€ 4.000,00	€ 4.000,00	€ 4.000,00	€ 4.000,00	€ 64.000,00
Annual maintenance costs platform (other years)*																			
Annual maintenance costs	€ 4.950,00	€ 4.950,00	€ 1.060,00	€ 5.200,00	€ 2.833,20	€ 2.833,20		€ 3.132,86	€ 3.132,86	€ 3.132,86	€ 5.600,00	€ 5.600,00		€ 4.680,00	€ 3.650,00	€ 3.650,00	€ 3.650,00	€ 3.650,00	€ 53.600,00
Maintenance costs per sample or per tumor normal ^d	€0,71	€0,71	€0,71	€7,81	€ 1,62	€ 1,62	€ 0,17	€0,17	€0,17	€0,17	€ 8,41	€4,21	€7,67	€ 17,14	€ 5,85	€ 5,85	€ 5,85	€5,85	€ 87,87
Software costs												€ 20.000,00							
Aqcuisition software costs ⁶							€ 2.000,00	€ 2.000,00	€ 2.000,00	€ 2.000,00	€ 20.000,00		€ 20.000,00						€ 400,00
Annual software management / maintenance costs ⁴																			
Annual software costs							€ 2.000,00	€ 2.000,00	€ 2.000,00	€ 2.000,00	€ 3.500,00	€ 3.500,00	€ 3.500,00						€ 400,00
Software costs per sample or per tumor normal ⁴	€ 0,00	€ 0,00	€ 0,00	€ 0,00	€ 0,00	€0,00	€0,11	€0,11	€0,11	€0,11	€ 5,26	€ 2,63	€ 2,63	€0,00	€ 0,00	€ 0,00	€ 0,00	€0,00	€0,16
Operational costs																			
	€ 69,10	€ 60,96	€ 79,60	€ 319,05	€46,13	€23,07	€ 19,30	€ 5,79	€ 11,58	€ 17,37	€ 106,48	€ 106,48	€ 140,57	€ 251,74	€ 140,00	€ 250,00	€ 190,00	€ 250,00	€ 100,00
Sample preparation and quality control consumables per sample ^b																			
Consumables per sample ^b					€ 3,57	€ 3,57					€ 120,29	€ 81,19	€ 33,75	€7,78					€ 4.000,00
Data processing (per CPU hour / IT infra per tumor normal) ^s	€0,10	€0,10	€0,10	€0,10	€0,10	€0,10	€ 0,10	€0,10	€0,10	€0,10	€0,01	€0,01	€0,01	€0,10	€0,10	€0,10	€0,10	€0,10	€ 200,00
Data storage (per GB storage per year) ^g	€0,01	€0,01	€0,01	€0,01	€0,01	€0,01	€0,01	€0,01	€0,01	€0,01	€ 0,05	€ 0,05	€0,05	€0,01	€0,01	€0,01	€0,01	€0,01	€ 24,00
	€ 20,59	€ 20,59	€ 32,71	€37,14	€ 28,58	€ 28,58	€ 37,38	€ 37,38	€ 37,38	€ 37,38	€ 50,82	€ 42,08	€ 42,08	€ 33,02	€ 28,05	€ 28,05	€ 28,05	€ 28,05	€ 50,00
Personnel sample preparation and primary data analysis per sample ^h	€ 10,21	€ 10,21	€ 14,43	€ 16,98	€ 12,90	€ 12,90	€ 12,90	€ 12,90	€ 12,90	€ 12,90	€ 14,26	€ 14,26	€14,26	€ 12,90	€ 16,29	€ 16,29	€ 16,29	€ 16,29	€ 33,33
Personnel data interpretation and report per sample	10,11	,							,-0			/20				10,10		- 10,25	- 33,33
Operational costs per sample or per tumor normal ^d	€ 100,01	€91,87	€ 126,85	€ 373,28	€91,29	€ 68,23	€ 69,69	€ 56,18	€ 61,97	€ 67,76	€ 291,91	€ 244,07	€ 230,72	€ 305,54	€ 184,45	€ 294,45	€234,45	€ 294,45	€ 4.407,33
Total costs per cancer patient	€ 101,88	€ 93,74	€ 134,48	€ 405,37	€ 97,62	€ 74,56	€ 71,19	€ 57,68	€ 63,47	€ 69,26	€ 329,85	€ 263,04	€ 258,96	€ 352,34	€ 207,74	€ 317,74	€ 257,74	€ 317,74	€ 4.738,05

Technology Assessment of Next Generation Sequencing in Personalized Oncolog

nalyse voor THerapie

Result 3/4 – outcomes

	IH	IC	FISH	Pyro seq	н	RM		Sar	nger	
ALK, RO	951	PD-1, PD-L1	, ,	EGFR+KRAS hotspots (6 amplicons)	EGFR+KRAS+BRAF hotspots (8 amplicons)	amplicons)	ABI3500 (10 amplicons: EGFR, KRAS, BRAF, ERBB2, MET)	amplicons: BRAF,	amplicons: KRAS,	ABI3500 (9 amplicons: KIT, PDGFRA, BRAF)
	€ 101,88	€ 93,74	€ 134,48	€ 405,37	€ 97,62	€ 74,56	€ 71,19	€ 57,68	€ 63,47	€ 69,26

	NGS		Cobas		Bio	cartis		WGS
• •	PGM: 318 chip, cancerhotspot panel v2	MiSeq: 2x150 bp micro v2 kit, cancer hotspot panel v2	BRAF	BRAF	EGFR	KRAS	BRAF+NRAS	
€ 329,85	€ 263,04	€ 258,96	€ 352,34	€ 207,74	€ 317,74	€ 257,74	€ 317,74	€ 4.738,05ª

^a – 4 genomes (2 samples x 2 genomes (tumor and blood)

Result 4/4 – outcomes

Table 3. Costs of frequently appli	ied combinations of t	echniques per ca	ncer type.°				
	NGS	Sanger	HRM	IHC	FISH	WGS	Total cost per cancer patient
	PGM 316, 318 chip; MiSeq	ABI3500 (10/3/6/9 amplicons)	BRAF+NRAS	ALK+ROS1	ALK+ROS1+RET		
NSCLC ^{ь с}							
Test 1	€ 283,95			€ 203,77			€ 487,72
Test 2 ^d	€ 283,95				€ 242,07		€ 526,01
Test 3 ^d		€ 71,19			€ 242,07		€ 313,26
Melanoma ^b							
Test 1	€ 283,95						€ 283,95
Test 2			€ 74,56				€ 74,56
Test 3		€ 57,68					€ 57,68
CRC [▶]							
Test 1	€ 283,95						€ 283,95
Test 2		€ 63,47					€ 63,47
GIST⁵							
Test 1	€ 283,95						€ 283,95
Test 2		€ 69,26					€ 69,26
All							
						€ 4.738,05	€ 4.738,05

Technology Assessment of Next Generation Sequencing in Personalized Oncolo

Conclusion/discussion

- Detailed overview of costs diagnostics in oncology
- Adaptable and transparent framework
- Currently no comparable prices available in literature
- Essential part for upcoming evaluations
- Outcomes of today are not the outcomes of tomorrow (prices change framework is detailed snapshot of that time, we should keep that in mind)

Disclaimer: Complete economic evaluations should take place to fully assess added value

Questions?

<u>G.W.J.Frederix@umcutrecht.nl</u>

Work Package 1 Performance of WGS

WP Leaders: Marc van de Vijver, Edwin Cuppen

PhD Candidate: Rogier Butter

Objectives

• Performance of WGS compared to current tests

• Molecular Tumor Boards (TMBs) for interpretation of WGS results \rightarrow Collaboration PATH

Objective

• Performance of WGS compared to current tests

• Molecular Tumor Boards (TMBs) for interpretation of WGS results \rightarrow Collaboration PATH

Methods

- Patients with NSCLC and Melanoma included in CPCT-02
- Succesfully performed WGS
- Independent of (immuno)therapy

Methods

- Routine predictive tests
- Retrospective collection

• Agreement WGS + Routine test

Inclusions of NSCLC and Melanoma patients independent of (immuno)therapy

	NSCLC	Melanoma
Amsterdam UMC	8	35
Erasmus MC	30	72
Meander	44	8
NKI-AvL	143	36
UMC Utrecht	2	24
Total	227	175
Total All centers	318	276

Progress NSCLC and Melanoma ± 60%

Different gene panels among centers for NSCLC, all using next generation sequencing

Center	Gene panels during study period	Techniques	Covered genes
Amsterdam UMC	1	NGS (IonTorrent)	+/- 50
Erasmus MC	3	NGS (IonTorrent)	23, 41, 41
Meander	UMC Utrecht	UMC Utrecht	UMC Utrecht
NKI-AvL	2	NGS (Illumina) Massarray (Sequenom)	51 8
UMC Utrecht	1	NGS (IonTorrent)	54

Basic characteristics: Prevalence of mutated genes in routine testing consistent with literature

Genes %	Prevalence Centers	Percentage Literature
EGFR	39%	30%
KRAS	22%	30%
CDKN2A	9%	2%
BRAF	9%	6%
TP53	53%	50%
MET ampl	6.3%	3%
ERBB2	5%	4%
PIK3CA	8%	3%

Skoulidis and Heymach; Nature Reviews 2019/Lee ea; J Thor Oncol 2010;

Plan: Paired analysis of mutation data routine practice and WGS

- Selection of genes present in all gene panels
- Distinguish subgroups:
 - Biopsy same time + site
 - Biospy different time + same site
 - Both different
- Paired analysis of WGS and routine testing

Objective

• Performance of WGS compared to current tests

Molecular Tumor Boards (TMBs) for interpretation of WGS results
 Collaboration BATH

Collaboration with PATH project

- Inventarisation of MTBs through the Netherlands
- Method for use in MTBs

Molecular Tumor Board in Amsterdam UMC every 2 weeks

- AMC, Vumc, Spaarne
- Vumc, NKI-AvL
- Intention for uniform MTB
- Inventarising relevant cases

Objectives

- 1. Validation of WGS
- 2. Implementation of Molecular Tumor Boards (TMBs)

Perspectives

- End 2019 completion datacollection
- Start 2020 start data analysis

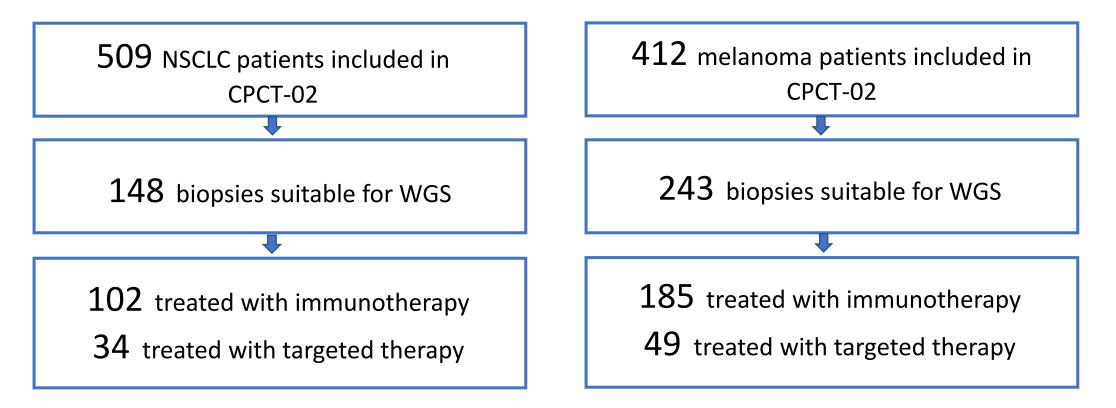
Genomic and transcriptomic correlates of response to immune checkpoint blockade

WP2:

Jessica Notohardjo, Fons van den Eertwegh (Amsterdam UMC) Joris van de Haar, Emile Voest (AvL) Joanne Mankor, Joachim Aerts (Erasmus MC)

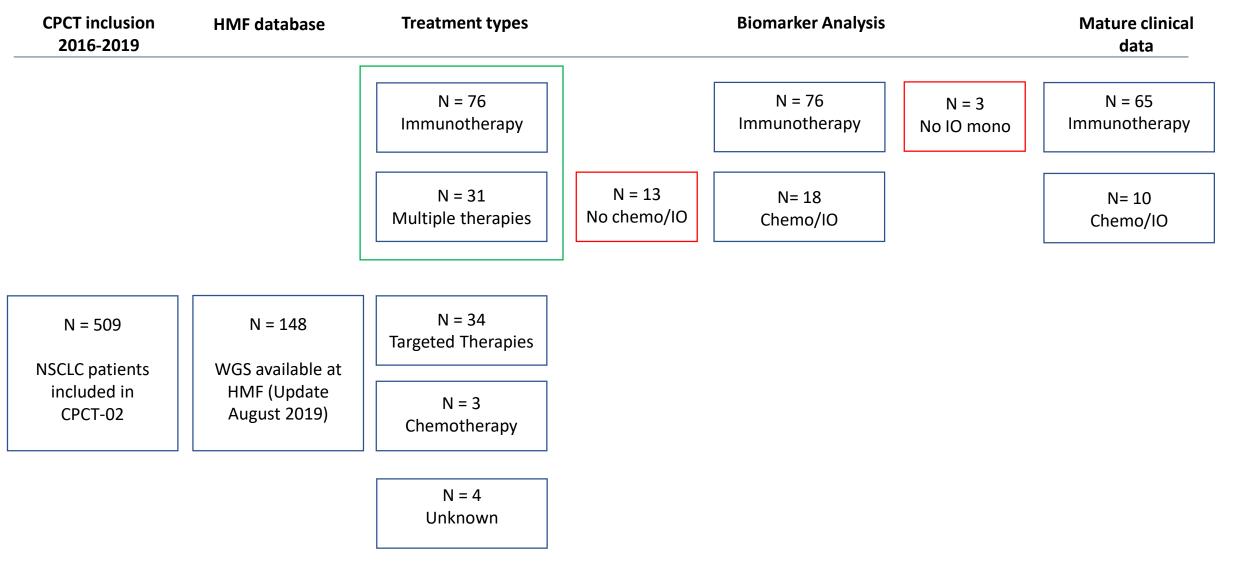
Technology Assessment of Next Generation Sequencing in Personalized Oncolog

Objectives work package 2


W Demonstrate the value of WGS for immunotherapy treatment selection for NSCLC and melanoma

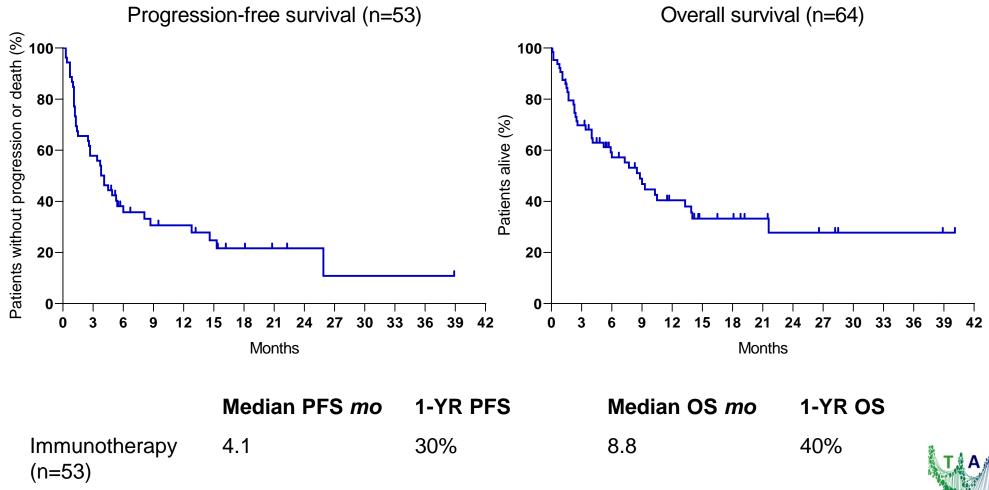
₩ Discovery of genomic and transcriptomic correlates of response

Identify potential biomarkers for patient stratification

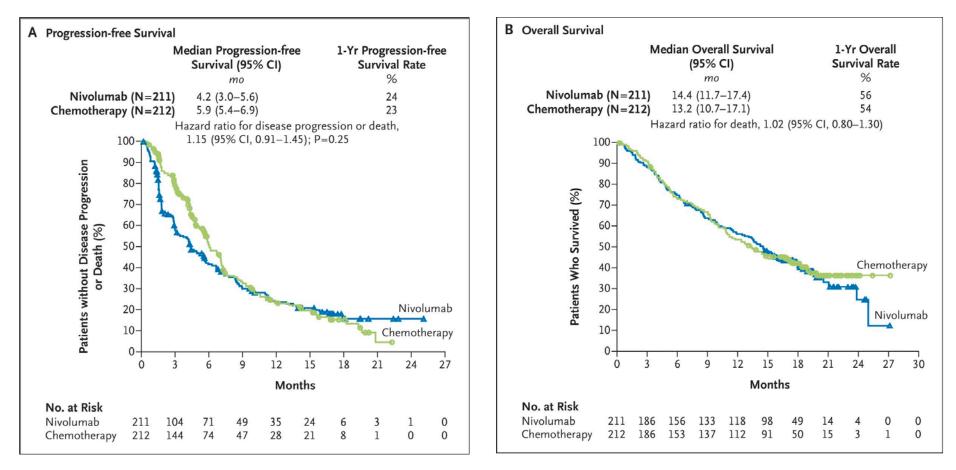

Inclusion CPCT-02 for TANGO

WGS and clinical data available for

analysis

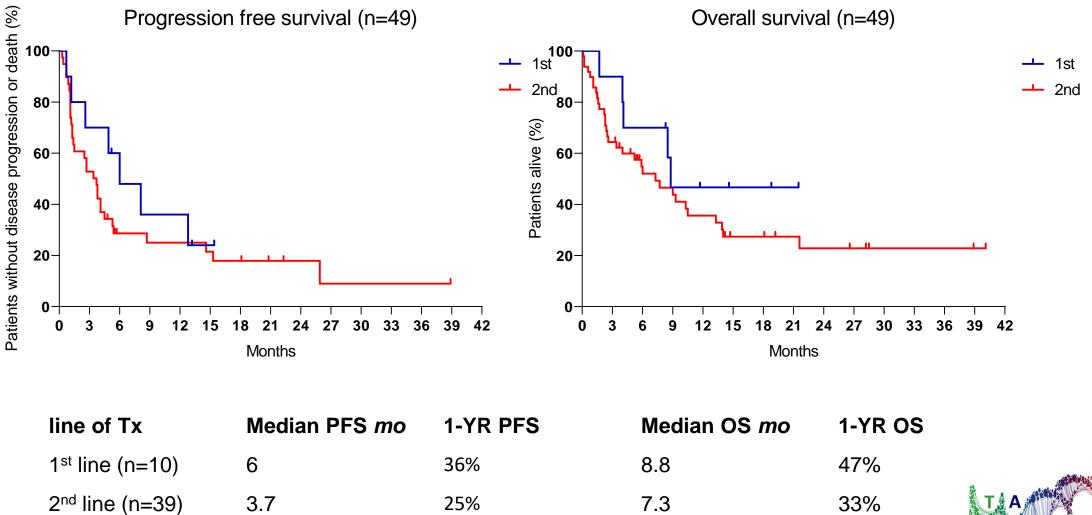

Patient characteristics

Patient characteristics	N= 75
WGS and IO monotherapy	65
WGS and IO combination therapy	10
ECOG	59
- 0	14 (23,7%)
- 1	25 (59,5%)
- ≥ 2	10 (16,9%)
Smoking	66
- current or former	48 (72,7%)
- Never	3 (4,5%)
- NA	13 (19,7%)
Histology	61
- Adeno	41 (76,2%)
- SCC	9 (14,8%)
- NOS	11 (18,0%)
PD-L1 TPS (%)	48
- <1%	25 (52,1%)
- 1-49%	15 (31,3%)
- ≥ 50%	8 (16,7%)
Line of Tx	64
- 1	10 (15,6%)
- 2	50 (78,1%)
-≥3	4 (6,3%)

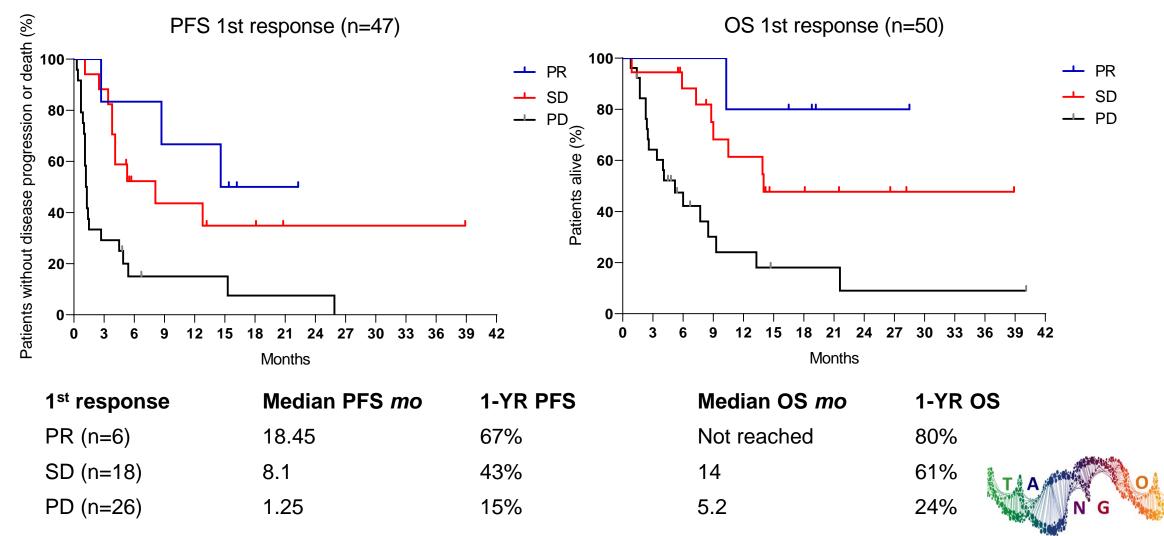

Technology Assessment of Next Generation Sequencing in Personalized Oncolo

PFS and OS in the TANGO NSCLC cohort (immuno monotherapy)

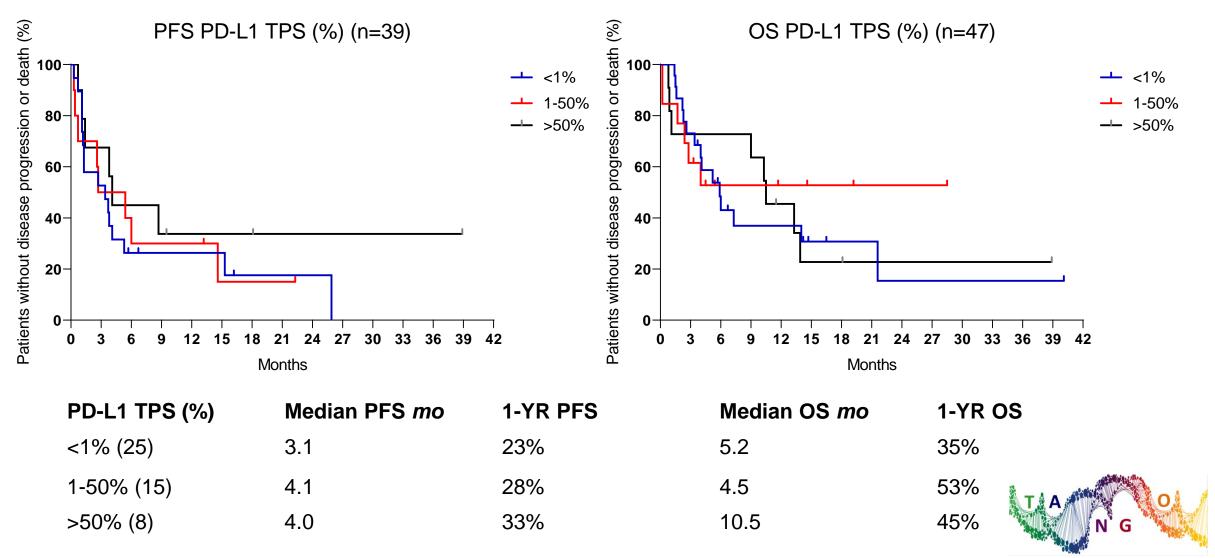
TA NG OUT


Real life data compared to clinical studies

1st line nivolumab in KN-024 (PD-L1>50%), Reck et al. NEJM 2016



PFS and OS depends on line of treatment


TANG NG

PFS and OS compared to 1st response evaluation in CPCT/HMF database

echnology Assessment of Next Generation Sequencing in Personalized Oncology

PFS in PD-L1 expression subgroups

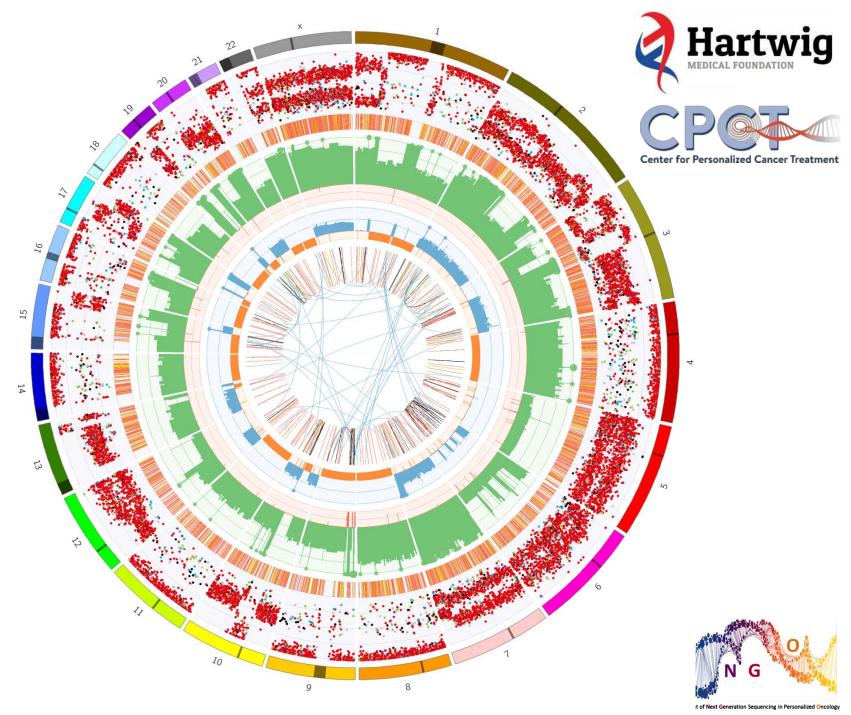
Fechnology Assessment of Next Generation Sequencing in Personalized Oncology

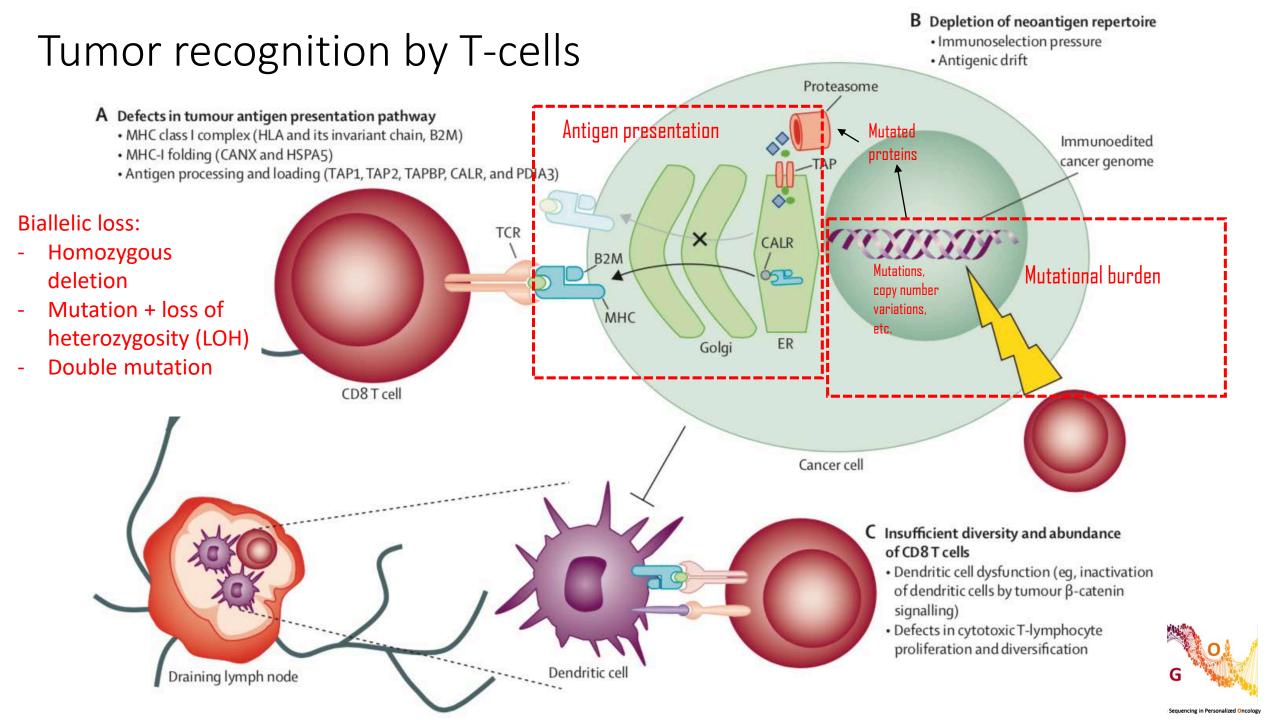
Part II: WGS and RNAseq analysis in TANGO

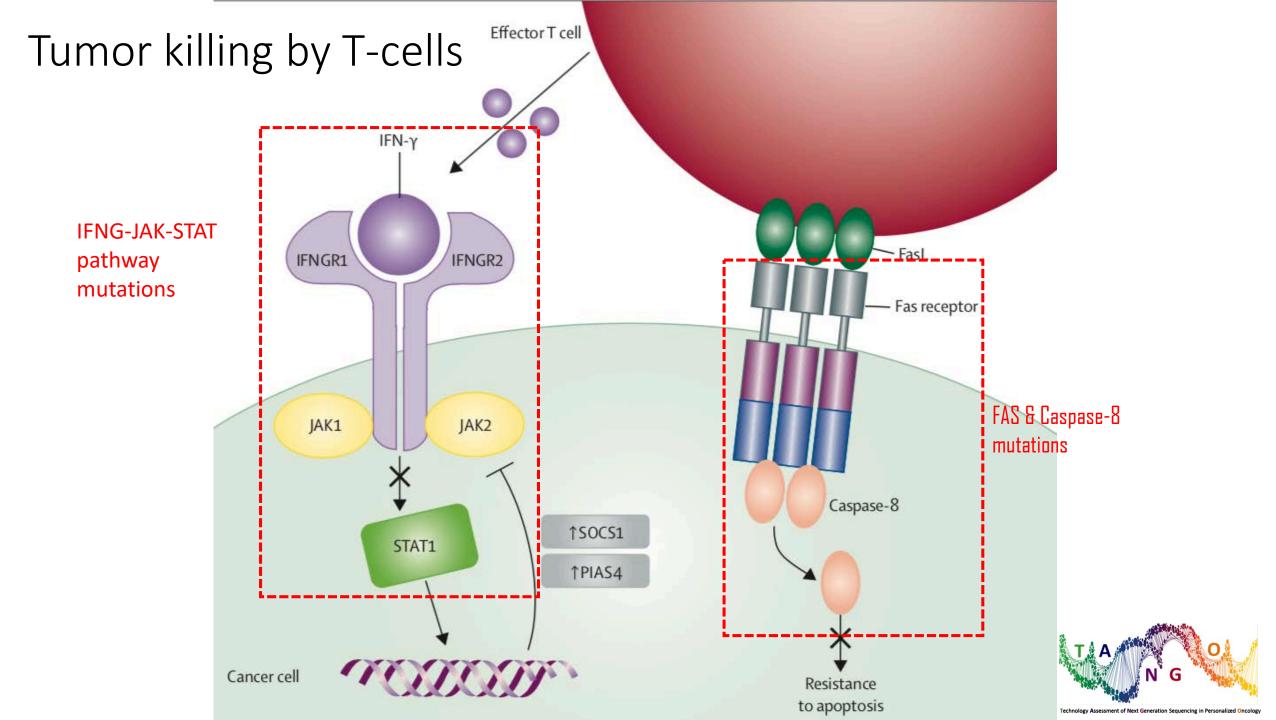
Whole genome sequencing of tumornormal pairs

High sequencing depth: ~100-130X for tumor ~ 30X for germline

Information


- 1. Mutations
- 2. Indels
- 3. Structural variants
- 4. Copy number variations


RNA-sequencing of tumors

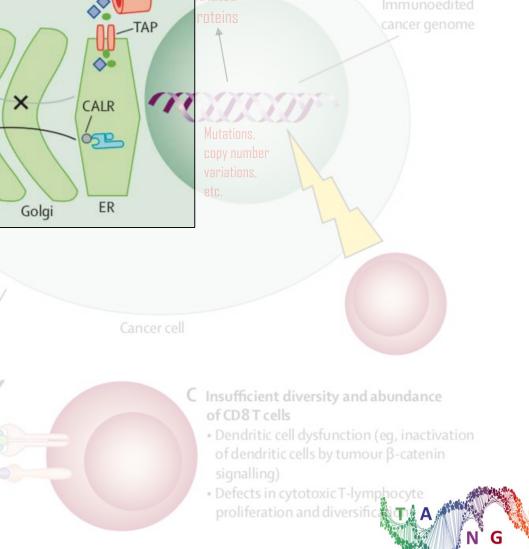

~60% of patients

Information

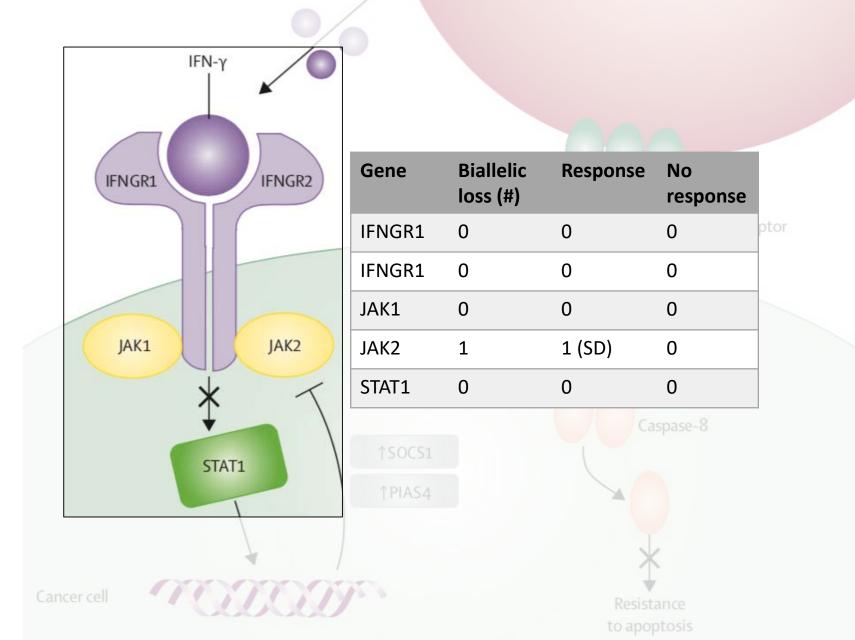
- 1. Immune signatures
- 2. Differential expression analysis

Defects in tumor antigen presentation pathway

B2M

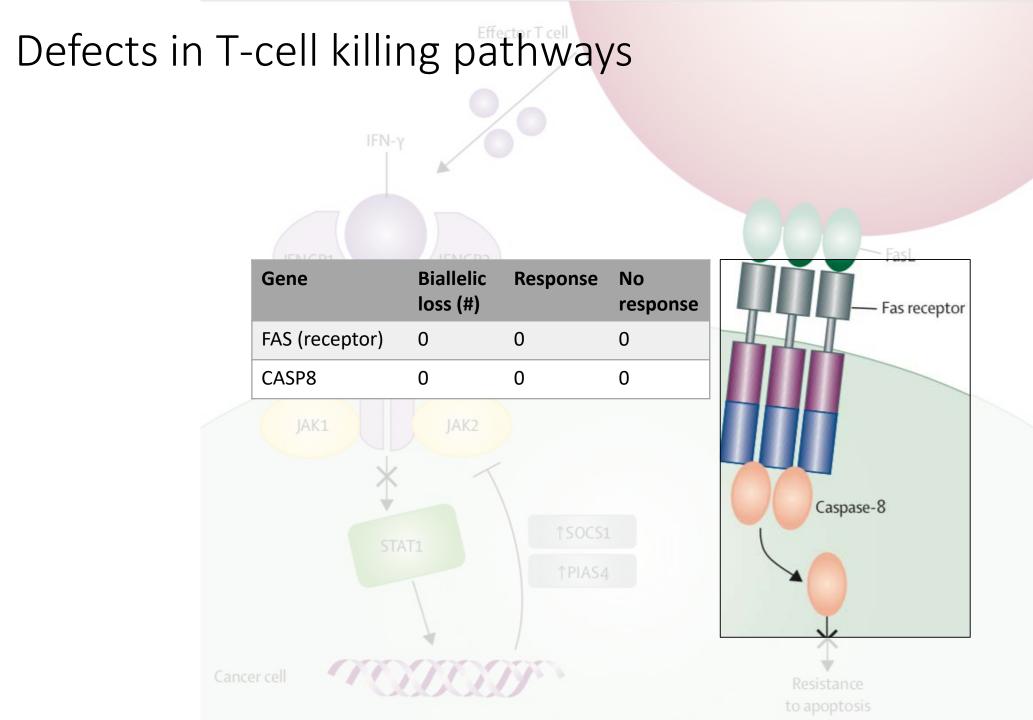

MHC

esentation pathway



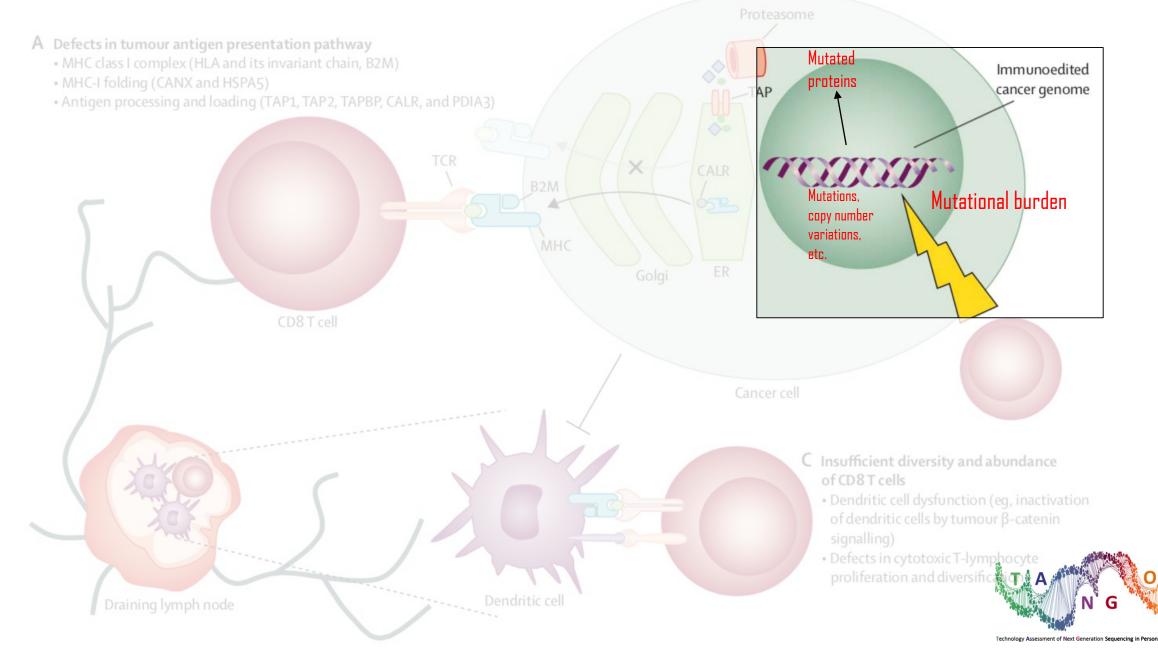
- MHC-I folding (CANX and HSPA5)
- Antigen processing and loading (TAP1, TAP2, TAPBP, CALR, and PDIA3)

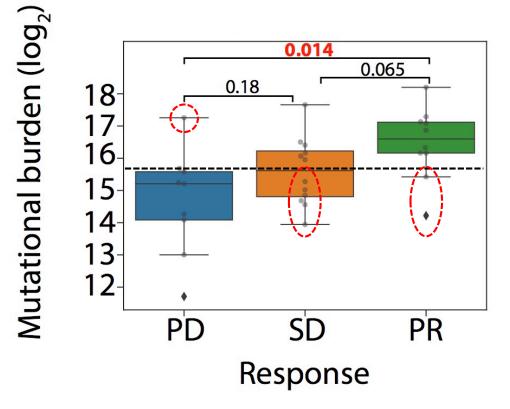
Gene	Biallelic loss (#)	Response	No response	
B2M	0	0	0	
CANX	0	0	0	
HSPA5	0	0	0	
TAP1	0	0	0	
TAP2	0	0	0	
ТАРВР	0	0	0	
CALR	0	0	0	
PDIA3	0	0	0	



Defects in T-cell killing pathways

Technology Assessment of Next Generation Sequencing in Personalized Oncolog




Technology Assessment of Next Generation Sequencing in Personalized Oncolog

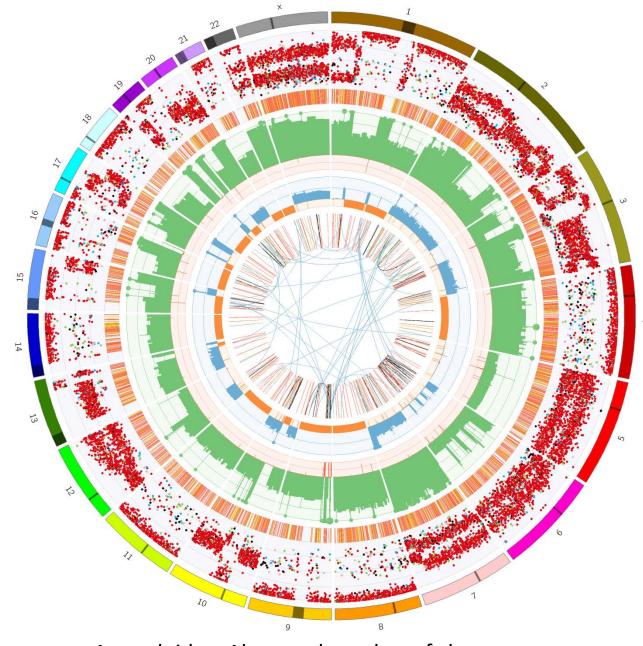
Mutational burden

B Depletion of neoantigen repertoire
 Immunoselection pressure
 Antigenic drift

Mutational burden is a biomarker for a-PD1 response in NSCLC

Can we improve this classification with other genomic information?

Conclusions I


Extensive work in model systems has shown that loss of antigen presentation, IFNg-signaling, or FAS-signaling results in resistance to PD-1 blockade

WW However, genomic loss of these pathways is extremely rare in lung cancer

WW Thus, most patients must be resistant to PD-1 blockade through other mechanisms

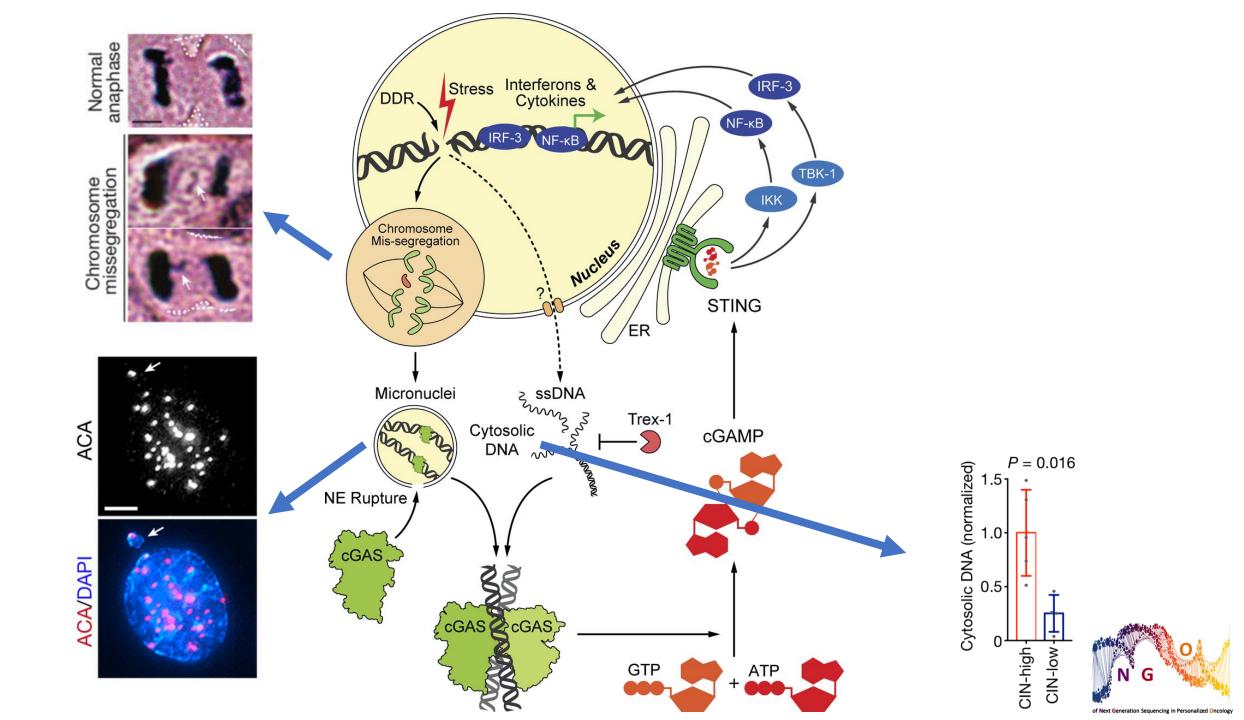
WGS-based detection of aneuploidy

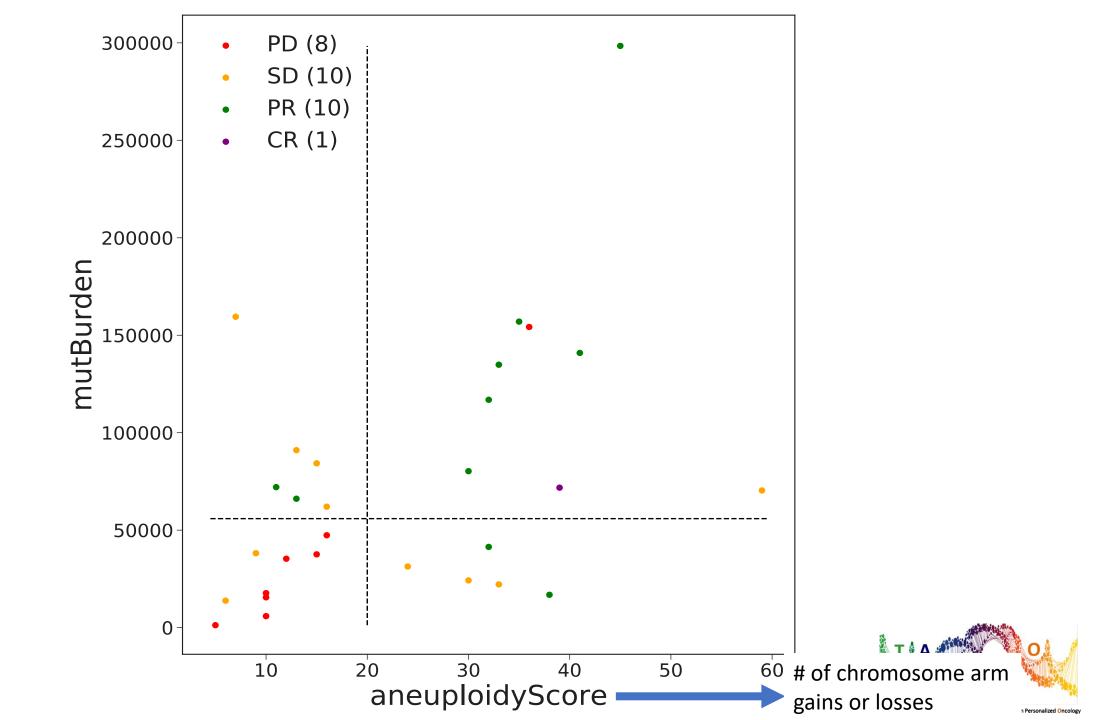
Aneuploidy = Abnormal number of chromosomes

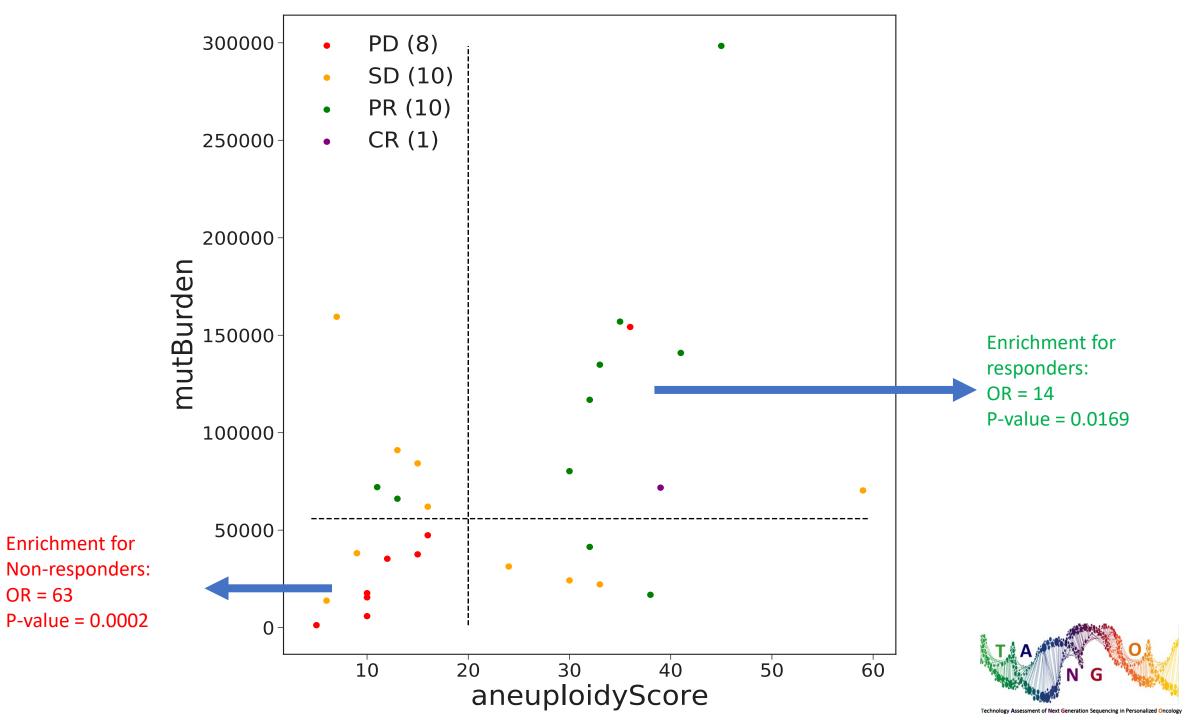
How could aneuploidy affect tumor immunogenicity?

doi:10.1038/nature23449

cGAS surveillance of micronuclei links genome instability to innate immunity


Nature 2017


Karen J. Mackenzie^{1*}, Paula Carroll^{1*}, Carol-Anne Martin¹, Olga Murina¹, Adeline Fluteau¹, Daniel J. Simpson¹, Nelly Olova¹, Hannah Sutcliffe¹, Jacqueline K. Rainger¹, Andrea Leitch¹, Ruby T. Osborn¹, Ann P. Wheeler¹, Marcin Nowotny², Nick Gilbert¹, Tamir Chandra¹, Martin A. M. Reijns¹ & Andrew P. Jackson¹


Chromosomal instability leads to innate immune response and type I interferon production

Chromosomal instability contributes to the immunogenicity of tumors by activation of innate immune signaling via cGAS-STING

Validation cohort

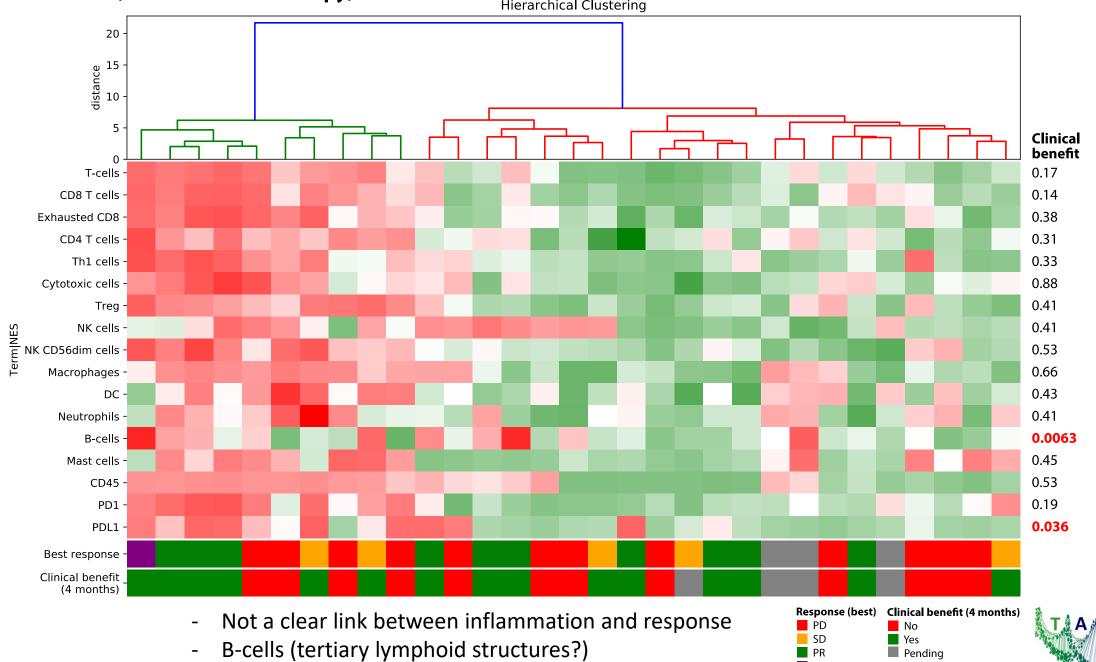
Solution Werkhoven (statistician NKI): 50 patients needed for >80% power

- ₩ 31 samples CPCT
- 19 additional samples from NKI (Kim Monkhorst & Karlijn Hummelink)
 - WWW DNA isolation is planned

Conclusions II

In a small discovery cohort, mutational burden and aneuploidy correlates to response to PD-1 blockade in NSCLC

- Aneuploidy seems a biomarker complementary to mutational burden
- Validation in an independent cohort is needed and ongoing

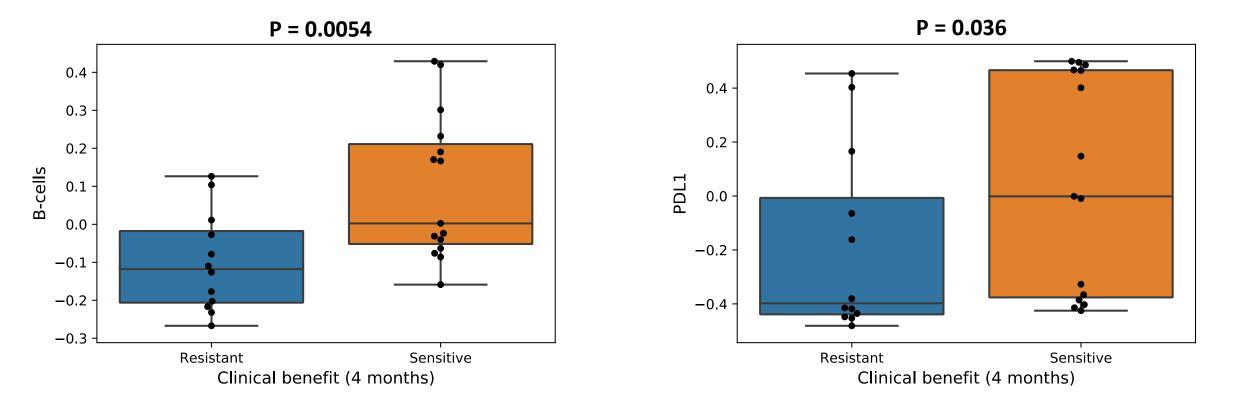

RNA-seq analysis

Some genes are expressed only in specific immune cells
Expression of such genes is used to characterize the immune infiltrate

31 NSCLCs (anti-PD-1 monotherapy)

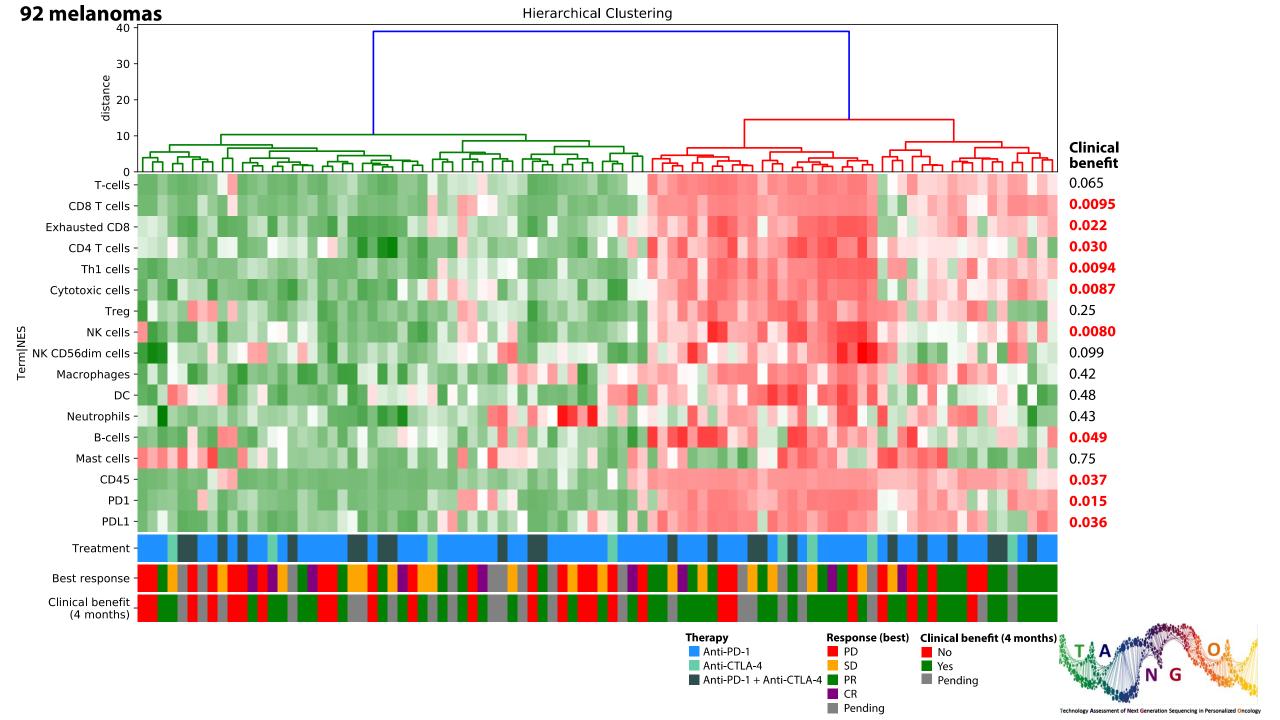
Hierarchical Clustering

PDL1 -

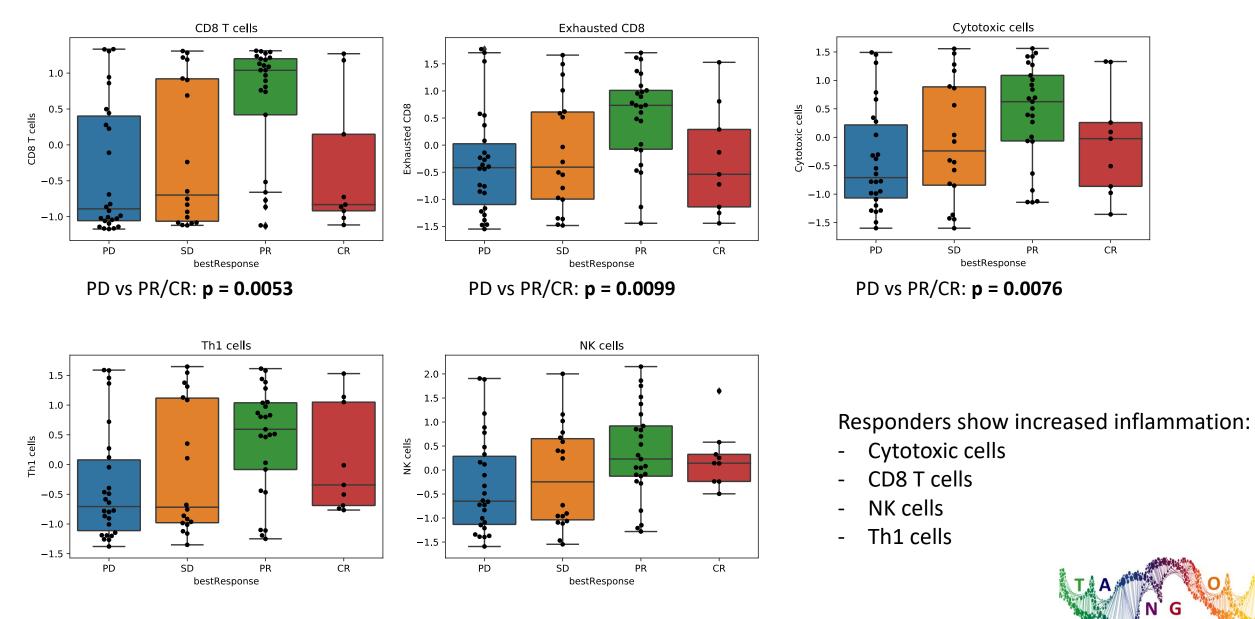

PR

CR

Pending


Technology Assessment of Next Generation Sequencing in Persona

B-cells and PDL1 RNA-expression correlate to response



Technology Assessment of Next Generation Sequencing in Personalized Oncology

Melanoma, 78 patients

PD vs PR/CR: **p** = **0.0057**

PD vs PR/CR: **p** = **0.0094**

Technology Assessment of Next Generation Sequencing in Personalized Oncolog

Conclusions III

WW Unlike in melanoma, general inflammation/infiltration is not linked to better responses to PD1 blockade in lung cancer

- A B-cell expression signature correlates to response to PD1 blockade in lung cancer
- Variable Variation of the second structures of tertiary lymphoid structures

VT- and NK-cell signatures correlate to response to PD1 blockade in melanoma

Survival pattern and time to next treatment for different treatment regimens

Leaders: V. Coupé, M. Joore, and J. Wilschut PhD student: Z. Mfumbilwa

Objectives WP3

Cost-effectiveness of WGS-based selection for immunotherapy with/without radiological features

WW Real-world patterns of treatment choice & TTNT and OS in Melanoma and NSCLC

Outline

Santeon Data:
 Advanced NSCLC
 Patients characteristics
 Overall survival for first line
 Next step

DMTR data
 Advanced Melanoma
 Patients characteristics
 Overall survival for first line
 Next step: Model description

This work is part of inputs for model WP3/4/5

SANTEON: Non-small Cell Lung Cancer

Collaboration of Six independent run hospitals in the Netherlands

Santeon: Patients Characteristics

Stage IIIB/IV NSCLC

Period: 2008 – 2014

Total patients: 2982

Santeon: Patients Characteristics

Best supportive care (BSC): 60%

Observed median OS: 2.3 months for BSC and 9 months for Systemic

Probability of Treated:
 Year diagnosis
 Age, PS, and Comorbidities

Santeon: Next step

Parametric survival model: Chemotherapy

Time to second line treatment

DMTR: DUTCH MELANOMA TREATMENT REGISTRY

DICA: Dutch Institute for Clinical Auditing

DMTR: Patients Characteristics

Melanoma: IIIB / IV

Registration: Dec 2011 – Dec 2017

Latest follow up: Mar 2019 Median follow up: 2.8 yrs

Total Nu. Patients: 3959

DMTR: Patients Characteristics

Patients characteristics per first line treatment regimen were presented

DMTR: MUTATIONS

92.0% Had BRAF mutation tested

Test used: mostly with NGS or Sanger sequencing.

Mutation proven: BRAF 57.2 % (of tested)

Factor associated with treatment choice & OS

Preliminary analysis of first line treatment choice and overall survival was presented

DMTR: Next step

Parametric survival model:

Time to second line treatment

Work Package 4 Tumour-overarching early cost-effectiveness modelling

prof. dr. Manuela Joore

dr. Valesca Retèl

prof. dr. Carin Uyl-de Groot

prof. dr. Wim van Harten

drs. Martijn Simons

Main goal WP4

Potential value of whole genome sequencing as molecular diagnostic compared to standard diagnostics in advanced cancer patients

- Cost-effectiveness analysis for <u>Non-small cell lung cancer</u> and <u>Melanoma</u>
- Future scenario analysis
- Wider public benefits

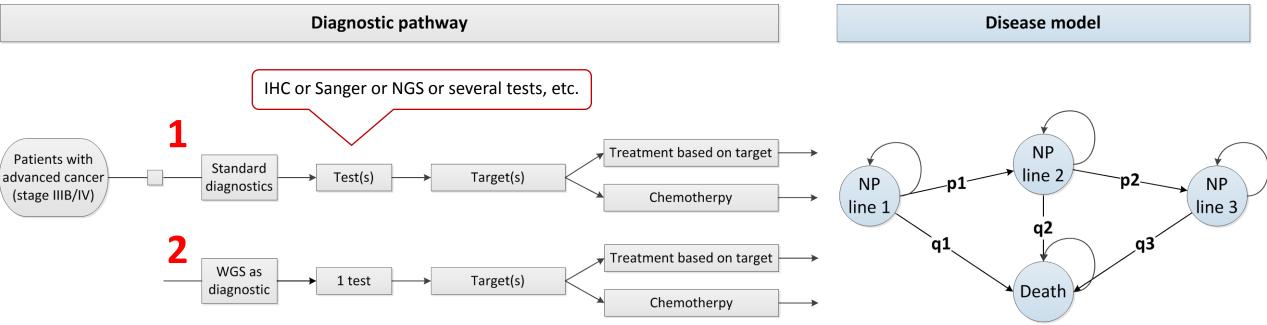
Cost-effectiveness analysis (part 1) Data overview

	Literature	Real world data	Actions	Source
Model structure	Conceptualisation	 % mutations (WGS) Frequency diagnostic tests 	 Data expected Q1, 2020 Collaboration WP5 	WP1WP5
Effectiveness	 Survival, targeted and immunotherapy 	 OS, PFS chemo, erlotinib, gefitinib, BSC 	Collaboration WP3	DMTR, Santeon, WP3Literature
Costs	 Costs diagnostic tests Costs treatment 	 Productivity losses, informal care 	 Data analysis ~June 2020 Literature review 	 WP1 Medicijnkosten.nl CPCT-02 biopsy study Literature
Utilities		• HRQoL, utilities,	 Data analysis ~June 2020 Literature review 	CPCT-02 biopsy studyLiterature

Cost-effectiveness analysis Non-small cell lung cancer

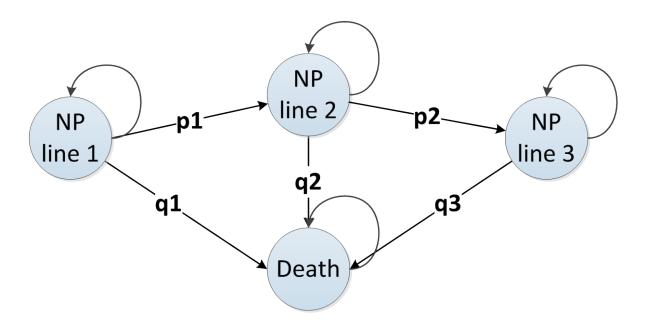
Research question

• What is the cost-effectiveness of WGS versus standard diagnostics in patients with locally advanced and metastatic Non-small cell lung cancer?


Approach

- Model-based
- Lifetime time horizon
- Societal perspective

Cost-effectiveness analysis Model structure


Data

- WP1: cost molecular tests
- WP5: number of tests being performed
- Literature: treatment costs

Cost-effectiveness analysis Disease model

Legend

- NP, no progression
- p, probability for progression
- q, probability for dying
- 1-3, line of treatment administration

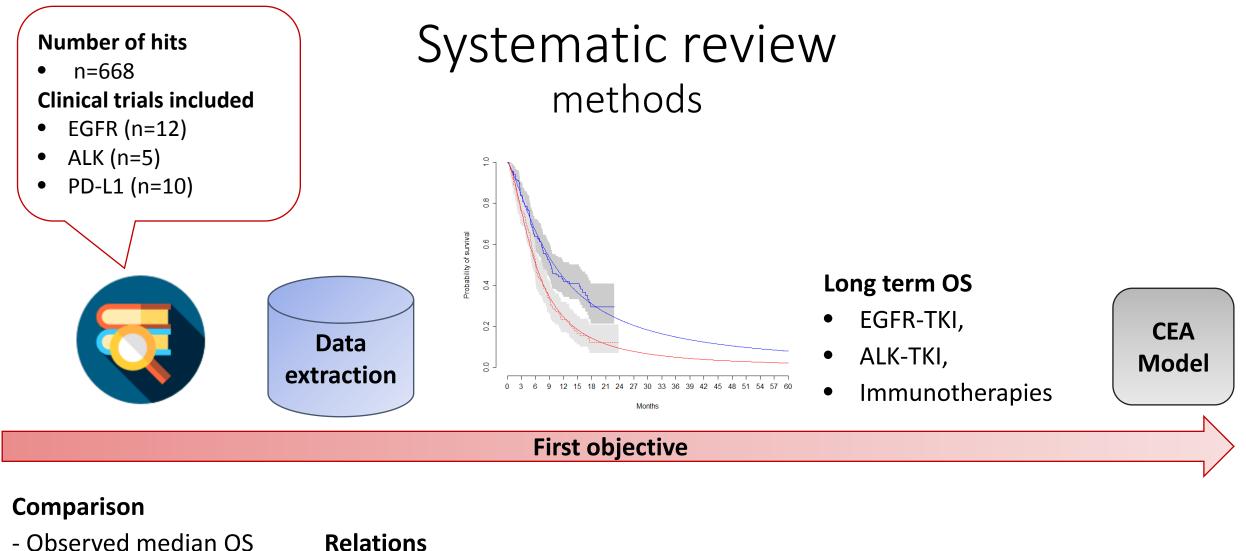
Data

- WP3, Santeon: OS, PFS
 - 1. Chemotherapy
 - 2. Erlotinib / gefitinib
 - 3. Best supportive care
 - 4. Other targeted therapies
 - 5. Immunotherapies
- \rightarrow Systematic review

X

Systematic review (part 2) objective

First objective:


 To obtain estimates of OS benefit of targeted therapies and immunotherapies for patients with advanced Non-small cell lung cancer

Additional objective:

- (2a) To compare observed median OS gain with modelled mean OS gain
- (2b) To explore the impact of trial characteristics on the difference between median and mean OS gain

- Modelled mean OS

Relations

- Trial characteristics

Additional objective

Systematic review To conclude

- (1) Long term OS estimates for EGFR-TKI, ALK-TKI and immunotherapies
- (2a) No differences median vs. mean OS gain for EGFR-TKI and ALK-TKIDifferences median vs. mean OS gain for immunotherapy
- (2b) Mean OS gain was larger than median OS gain in trials with
 - Immunotherapy treatment strategy
 - Low % treatment switchers
 - Older population

Systematic review Discussion

Using this OS data obtained from literature in the CEA model requires assumptions

- How do we link the trial data with the Santeon data?
- How is the effectiveness of targeted therapies and immunotherapies when patients are selected based on WGS results?
- Address this with scenario analyses

Main goal WP4 Next steps

Cost-effectiveness analysis

- Implement diagnostic trajectory based on data WP1 and WP5 and calculate costs
- Link diagnostic data with real world data and literature including scenario analysis
- Further implementation of cost-effectiveness models \rightarrow patient-level

Implement results of the future scenario analysis and explore wider public benefits Quality of life data analysis

Cost-effectiveness analysis Data overview

	Literature	Real world data	Actions	Source
Model structure	Conceptualisation	% mutations (WGS)Freq. diagnostic tests	 Data expected Q1, 2020 Collaboration WP5 	WP1WP5
Effectiveness	Survival, targeted and immunotherapy	• OS, PFS chemo, erlotinib, gefitinib, BSC	Collaboration WP3	DMTR, Santeon, WP3Literature
Costs	Costs diagnostic tests Costs treatment	 Productivity losses, informal care 	 Data analysis ~June 2020 Literature review 	 WP1 Medicijnkosten.nl CPCT-02 biopsy study Literature
Utilities • 3 ce	ntres included	• HRQoL, utilities,	 Data analysis ~June 2020 Literature review 	CPCT-02 biopsy studyLiterature
 173 patients included 350 questionnaires received (T0, T1, T2) ~38% immuno, ~23% targeted, ~22% chemo 				T A N G

Technology Assessment of Next Generation Sequencing in Personalized Oncolog

WP5: Nationwide organization of WGS

Maarten IJzerman, Erik Koffijberg, Valesca Retèl, Wim van Harten, Michiel van de Ven

University of Twente

WP5 objective

- Aim of WP 5: provide insights into the (requirements for) optimal implementation of WGS from a system level perspective to support health services planning.
 - What difficulties in the process of the implementation of WGS need to be overcome to achieve the optimal cost-effective implementation in the Netherlands?

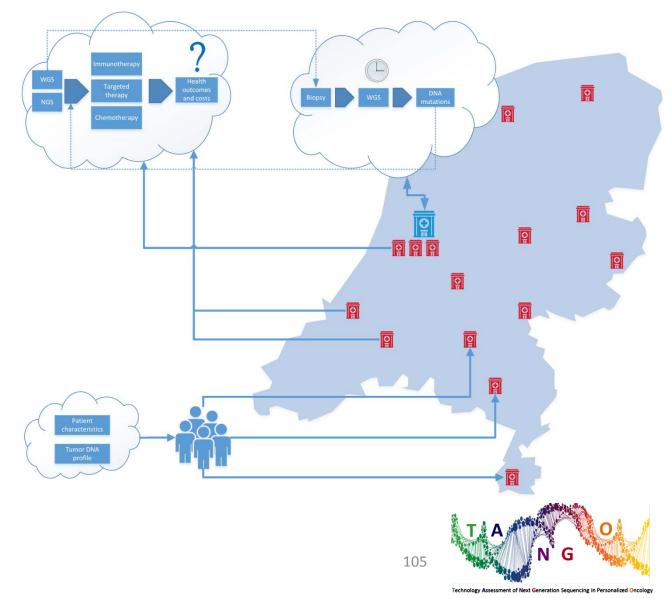
Required evidence

- To support health policy decisions and planning of services, more detailed information is required about
 - The availability of WGS services
 - The use of molecular profiling and its costs and its delays
 - Prescription of advanced molecular drug treatment
 - Possible future developments regarding the implementation of WGS

• ...

Progress so far

- 1. Simulation model to evaluate implementation scenarios developed to a large extent
- 2. Published article 'Variation in the time to treatment for stage III and IV nonsmall cell lung cancer patients for hospitals in the Netherlands' has been published in Lung Cancer
- 3. Analysis ongoing for article 'Uncovering the real-world pre-treatment diagnostic pathway of advanced non-small cell lung cancer with routinely gathered data'
- 4. Data collection and analysis ongoing for article 'Where do we go with Whole Genome Sequencing in oncology? Using scenario drafting to explore future developments'


1. Simulation model

To evaluate the implementation WGS on a national level, evidence is combined into a **dynamic (agentbased) simulation model** that includes (practice variation in) patient pathways, delays, and costs.

The model will be used to:

- Evaluate the consequences of decentralizing WGS
- Calculate the consequences of possible future scenarios related to WGS

The model is largely developed, but needs to be tweaked to better reflect reality in e.g. care pathways.

2. Variation in the time to treatment for stage III and IV non-small cell lung cancer patients

Time to treatment

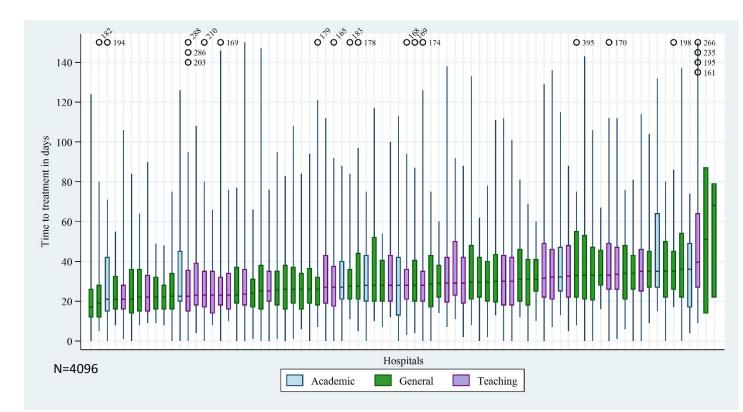
Date of diagnosis:

- 1. The date of the first confirmation of a tumor, or
- 2. The date of first hospital admission, or
- 3. The date of the first visit to outpatient clinic related to the tumor

• Data from 2016 on 78 hospitals received from NCR

- Stage, histology, and performance status were correlated with time to treatment
- If patient is referred, time to treatment is expected to increase by at least one week

Table 1 Characteristics of the nationt


Characteristics of the patient population.

Characteristics	Treated patients	Untreated patients	p-value
	N (% or 95% CI)	N (% or 95% CI)	I
Patients	4,176 (55.1%)	3374 (44.9%)	N.A.
Median TTT (in days)	28 (IQR: 22)	-	N.A.
Mean age (in years)	65.4 (65.1, 65.7)	72.4 (72.1, 72.8)	0.000
Gender			
Male	56.0% (54.4%, 57.5%)	61.7% (60.1%, 63.3%)	0.000
Female	44.0% (42.5%, 45.5%)	38.3% (36.7%, 40.0%)	0.000
ECOG PS			
0-1	62.4% (61.0%, 63.9%)	23.2% (21.8%, 24.6%)	0.000
2+	8.0% (7.1%, 8.8%)	23.3% (21.9%, 24.7%)	0.000
Unknown	27.7% (26.3%, 29.1%)	52.7% (51.0%, 54.4%)	0.000
Missing	1.9% (1.5%, 2.3%)	0.9% (0.6%, 1.2%)	0.000
Tumor stage			
IIIA	23.6% (22.3%, 24.9%)	9.9% (8.9%, 10.9%)	0.000
IIIB	15.5% (14.4%, 16.6%)	7.9% (7.0%, 8.9%)	0.000
IV	60.9% (59.4%, 62.4%)	82.1% (80.8%, 83.4%)	0.000
Histology			
Squamous cell carcinoma	24.0% (22.7%, 25.3%)	16.2% (15.0%, 17.5%)	0.000
Adenocarcinoma	58.0% (56.5%, 59.5%)	42.3% (40.6%, 43.9%)	0.000
Large cell carcinoma	3.9% (3.3%, 4.5%)	5.6% (4.8%, 6.4%)	0.000
Other specified carcinoma	12.2% (11.1%, 13.2%)	12.2% (11.1%, 13.3%)	0.920
Unspecified malignant neoplasm	1.8% (1.4%, 2.3%)	23.6% (22.1%, 25.0%)	0.000
Other	0.1% (0.0%, 0.1%)	0.1% (0.0%, 0.1%)	0.831
Referral			
No	70.0% (68.6%, 71.4%)	82.2% (80.9%, 83.5%)	0.000
Yes	30.0% (28.6%, 31.4%)	17.8% (16.5%, 19.1%)	0.000

Treatment initiation

2. Variation in the time to treatment for stage III and IV nonsmall cell lung cancer patients

- Substantial variation among patients in the same hospital
- Substantial variation among hospitals
 Whattactivities for beforences in patient population)
 Conducted in this interval?
 In most hospitals, the median time to
- In most hospitals, the median time to treatment is below the recommended maxima for time to treatment
- 50% of treatments started within 28 days
- 90% of treatments started within 58 days

3. Uncovering the real-world pre-treatment diagnostic pathway of advanced non-small cell lung cancer with routinely gathered data

- Previous research on care pathways:
 - 1. Report healthcare utilization (e.g. percentage of patients receiving a specific test), or
 - 2. Use the perception of professionals as the basis for the care pathways.
- Both approaches do not do justice to the complexity of the real world and do not provide much insight into the variation between patients in diagnostic pathways.
- Aim: To reconstruct real-world diagnostic pathways prior to treatment to inform the development of more efficient pathways
 - Where in the diagnostic pathway is the added value of WGS the largest?
- Endpoints:
 - (Most common) sequence of activities
 - Turnaround times of activities
 - Delays between activities
 - Costs of the pathways
- Results are input for cost-effectiveness model WP4

3. Uncovering the real-world pre-treatment diagnostic pathway of advanced non-small cell lung cancer with routinely gathered data

- Linking four datasets from the NKI-AVL:
 - DBC
 - Pathology (IHC and various forms of ISH tests)
 - Molecular pathology (sequencing and other forms of ISH tests)
 - Other diagnostics (e.g. imaging)
- From these datasets we can create one event log which includes an activity, which patient was involved and its execution times
- With the event log we can order the activities for each patient which results in diagnostic pathways
- Challenges:
 - Personalized medicine so many unique pathways!
 - Lack of structure in data

4. Where do we go with Whole Genome Sequencing in oncology? Using scenario drafting to explore future developments

- Combined effort with WP4
- Objective: To define and gauge the likelihood of possible future developments that can facilitate or impede the implementation and adoption of WGS as a clinical diagnostic in oncology.
- The effects of these scenarios will be calculated with our simulation model
- Current status: data collection and analysis
- Preliminary results will be presented later today

WP 6 Ethische en juridische aspecten

Onderzoekers juridische deel:

Corrette Ploem, Colin Mitchell, Sjef Gevers (Amsterdam UMC)

Vraagstelling

Centrale vraag (ook voor ethiek deel)

Wat als door nieuwe inzichten of technische ontwikkelingen in de genetica nieuwe informatie beschikbaar komt (of beschikbaar kan worden gemaakt) die relevant is voor (voormalige) patiënten: moet met hen dan opnieuw contact worden gezocht ('responsibility to recontact')?

💜 🔍 Deelvragen o.a.

- Positie onderzoekers vergeleken bij die van hulpverleners?
- Gelden eventuele verantwoordelijkheden ook t.a.v. familieleden?
- Rechten en verantwoordelijkheden van patiënten in dit verband?
- Betekenis van e.e.a. in termen van mogelijke aansprakelijkheid?

Publicaties tot nu toe

₩ Juridisch artikel in European Journal of Health Law

₩ Juridisch artikel voor T. voor Gezondheidsrecht

WWEmpirisch artikel in European Journal of Medical Genetics

European Journa EUROPEAN JOURNAL OF HEALTH LAW 25 (2018) 537-553 Health Law NIJHOFF

brill.com/ejhl

A Duty to Recontact in the Context of Genetics: **Futuristic or Realistic?**

Corrette Ploem,^a Colin Mitchell,^b Wim van Harten^c and Sjef Gevers^d ^a Academic Medical Center, Amsterdam, The Netherlands ^b Doctoral student, Health Law, Amsterdam University Medical Center, Amsterdam, The Netherlands ^e Professor, Quality Management and Governance, University of Twente, Twente, The Netherlands; Dept. Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands d Emeritus Professor of Health Law, University of Amsterdam, Amsterdam, The Netherlands

Abstract

BRILL

Medical genetic testing, 'next generation sequencing', is increasingly generating data that could become useful for patients after they have been discharged from care. If new information is discovered that links a disease to a specific mutation, do health professionals have a legal duty to recontact their patients? Apart from other concerns (such as respecting the patient's right not to know), in many cases, this would require re-evaluation or re-analysis of the data. Taking such issues into account, we conclude that, at least at this point in time, it is not arguable that there is an unconditional duty of this kind. Health professionals should always do what can be reasonably expected from them to do justice to the patient's right to information. When there is reason to believe that recontacting would be of significant clinical relevance for the patient, they should do so, unless efforts and costs involved would be disproportional.

Keywords

genetic testing - duty to recontact - patient's right to information - updating previous test results

© C. PLOEM, C. MITCHELL, W. VAN HARTEN AND S. GEVERS, 2018 | DOI:10.1163/15718093-12255399 This is an open access article distributed under the terms of the prevailing CC-BY-NC license

ARTIKEL

Opnieuw contact zoeken met de patiënt: een artsenplicht?*

Prof. mr. J.K.M. Gevers, mr. dr. M.C. Ploem & prof. dr. W.H. van Harten**

1. Inleiding

Zijn er omstandigheden waaronder een arts opnieuw contact moet zoeken met de patiënt, ook al is de behandeling afgerond of de hulpverleningsrelatie zelfs beëindigd? Deze vraag is zeker niet nieuw, maar de context waarin deze vraag zich aandient wel.

Er zijn altijd al situaties geweest waarin hulpverleners gehouden waren patiënten opnieuw te benaderen omdat er nieuwe informatie beschikbaar was gekomen die belangrijk bleek voor de bescherming van hun gezondheid. Voorbeelden zijn het waarschuwen van patiënten als implantaten achteraf gebrekkig blijken, indien van een eerder voorgeschreven geneesmiddel een gevaarlijke bijwerking bekend wordt of wanneer patiënten door ziekenhuisopname of via een bloedtransfusie mogelijk met een bepaalde ziekteverwekker besmet zijn geraakt.

Door de ontwikkelingen in de genetica, zoals 'next generation sequencing' (NGS), heeft het opnieuw contact zoeken met patiënten – in de internationale literatuur ook wel '*recontact*ing' genoemd – een geheel nieuwe dimensie gekregen. Via NGS kan in één keer de sequentie van het hele genoom (whole genome sequencing/WGS) of het hele exoom (whole exome sequencing/WES) worden vastgelegd.¹ Het is overigens niet zo dat alle ruwe data die door sequencing beschikbaar komen direct ook geanalyseerd zullen (moeten) worden; het huidige Europese standpunt binnen de klinisch-genetische zorgverlening is dat gericht wordt gezocht naar 'kandidaat-genen' die verband houden met de ziekte of aandoening waarvoor hulp wordt gezocht.² Het punt is echter dat aan de hand van voortschrijdende

- Deze bijdrage is gebaseerd op onderzoek uitgevoerd in het kader van de projecten TANGO respectievelijk ELSI-Personalised Medicine (ELSI-PM), beide gefinancierd door ZonMw. Binnen het eerste project verscheen eerder C. Ploem, C. Mitchell, W. van Harten & S. Gevers, 'A Duty to Recontact in the Context of Genetics: Futuristic or Realistic?, Eur J Health Law 2018, p. 537-553. De auteurs danken de onderzoekers van TANGO en ELSI-PM voor hun waardevolle opmerkingen bij eerdere versies van dit artikel.
- Sjef Gevers is emeritus-hoogleraar gezondheidsrecht, Universiteit van Amsterdam. Corrette Ploem is universitair docent gezondheidsrecht bij de afdeling Sociale geneeskunde van het Amsterdam UMC en redacteur van dit blad. Wim van Harten is wetenschappelijk groepsleider in het NKI, hoogleraar aan de Universiteit Twente en voorzitter van de raad van bestuur van Rijnstate.
- 1 C. Ploem e.a., 'Invoering van next generation sequencing in de zorg', Ned Tijdschr Geneeskd. 2014, p. 172-175.
- 2 Zie aanbeveling 2 van de European Society of Human Genetics: 'When in the clinical setting either targeted sequencing or analysis of genome data is possible, it is preferable to use a targeted approach first in order to avoid unsolicited findings or findings that cannot be interpreted. Filtering should limit the analysis to specific (sets of) genes. Known genetic variants with limited or no clinical utility should be filtered out (if possible neither analyzed nor reported).' C.G. van El, M.C. Cornel e.a., 'Whole-genome sequencing in health care. Recommendations of the European Society of Human Genetic, *Eur J Hum Genet.* (22) 2013, p. S1-S5.

Technology Assessment of Next Generation Sequencing in Personalized Oncolog

1 van 1

Experts reflecting on the duty to recontact patients and research participants; why professionals should take the lead in developing guidelines^{*}

Colin Mitchell^{a,*}, Corrette Ploem^a, Valesca Retèl^b, Sjef Gevers^{a,1}, Raoul Hennekam^{a,1}

^a Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, Netherlands ^b Netherlands Cancer Institute—NKI, Amsterdam, Netherlands

ARTICLE INFO	A B S T R A C T
Keywords: Dury to recontact Genetics Genomics Dury of care	Sequencing technology is increasing the scale of information that could benefit patients who have been tested in the past. This raises the question whether professionals have a duty to recontact such patients or their families. There is currently no clear basis for a legal duty to recontact, and professional guidelines are limited. We conducted interviews with 14 senior professionals from the Netherlands and UK to obtain a range of opinions on what obligations are estimated to be possible or desirable. There was (near) consensus that a lack of resources currently inhibits recontacting in clinical practice, that recontacting is less desirable in research, that information on recontacting should be part of informed consent, and that a legal duty should follow professional standards. There was a diversity of opinions on the desirability of a more systemaxic approach, potential obligations in hybrid clinical-research projects, and who should be are responsibility for seeking updates. Based on the literature, legal framework and these interviews, we conclude that a general duty to recontact is unlikely, but that in specific circumstances a limited duty may apply if the benefit to the individual is significant and the burden on professionals in to extensive. The variation in opinion demonstrate that further deliberations are desirable. The development of guidelines—a process the European Society of Human Genetics has begum—is important to ensure that the courts, in deciding a recontacting case, can take into account what professionals

1. Introduction

The debate over whether to update patients or research participants with changes in genetic knowledge goes back several decades (Knoppers, 2001; Letendre and Godard, 2004). Developments towards genomic medicine and the large number of 'hybrid' clinical-research projects using genome-sequencing technology greatly increases the scale of potentially significant test results for patients, research participants and their family members, due to consequences for treatment, prevention and reproductive choices. There is no legal basis that provides guidance for indications, timing, and procedures to healthcare professionals (HCPs) or researchers for re-analysing sequencing data, updating results and recontacting individual patients or research participants (Phoem et al., 2018; Otten et al., 2015; Carrieri et al., 2018; However, recontacting is already taking place on an *ad* hoc basis

(Carrieri et al., 2017a, 2018; Sirchia et al., 2018; Dheensa et al., 2017),

with nearly half of surveyed European genetic centres indicating that recontacting systems should be implemented (Sirchia et al., 2018). Currently, a variety of approaches are taken in clinical, research or hybrid clinical-research next-generation sequencing (NGS) initiatives to the possibility of updates in the future, whether patients/participants or their families may ask for such results or, whether they may be actively informed of new results. For example, in clinical exome/genome sequencing, patients are often informed that knowledge is likely to change and that they can ask their doctor for an update in the future, as well as the possibility that clinicians may recontact them (for example see the approach taken by the Amsterdam UMC). But patients may not always be asked about their recontacting preferences (Sirchia et al., 2018). In contrast, and frequently when NGS is applied in non-therapeutic research, participants may be informed that they will not

* This article is based on research carried out as part of the TANGO project (Technology Assessment of Next Generation Sequencing in personalised Oncology), financed by ZonMw, The Hague, The Netherlands.

* Corresponding author. Amsterdam UMC, Locatie AMC, Afdeling Sociale Geneeskunde, Kamernummer 205, Postbus 22660, 1100 DD, Amsterdam, Netherlands. E-mail address: cr.mitchell@amc.uva.nl (C. Mitchell).

¹ These authors contributed equally to this work.

https://doi.org/10.1016/j.cjmg.2019.03.006

Received 3 January 2019; Received in revised form 12 February 2019; Accepted 17 March 2019 1769-7212/ © 2019 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/A.0/).

Please cite this article as: Colin Mitchell, et al., European Journal of Medical Genetics, https://doi.org/10.1016/j.ejmg.2019.03.006

Technology Assessment of Next Generation Sequencing in Personalized Oncology

Belangrijkste gemeenschappelijke conclusies

"
 'Duty to recontact' heeft op dit moment geen juridisch 'fundament'

WW Tegen die achtergrond kan een dergelijke plicht tegenover de rechter niet worden afgedwongen

WW Deze conclusie geldt niet alleen voor Nederland, maar ook voor ons omringende landen, zoals UK

WW Tegelijkertijd is ook niet volledig uit te sluiten dat rechter *in concreet geval* tot vaststelling van recontact-plicht komt

WW Denk hierbij m.n. aan situatie waarin veel voor betrokkene op het spel staat terwijl recontacten weinig inspanning van vergt

WW Niettemin: vrees voor aansprakelijkheidsstelling begrijpelijk, maar kans daartoe vooralsnog beperkt

WW Beroepsgroepen kunnen zelf aan 'rechtszekerheid' bijdragen door met richtlijnen te komen waarin ze duidelijk maken wat wel resp. niet van hen verwacht mag worden (vgl. VKGN-richtlijn 'informeren van familieleden bij erfelijke ziekten)

WW De kans is groot dat de rechter zulke richtlijnen in een concreet geval rond recontacting bij haar beoordeling zal betrekken

Laatste publicatie

Recht en ethiek samen

WW Breder oncologisch of medisch tijdschrift

₩[™]Ploem en Retel schrijven eerste versie

Moet kort, krachtig en toegankelijk stuk worden, waarbij liefst TANGO-studie het vertrekpunt vormt en dat uitmondt in enkele praktische aanbevelingen, gericht op zowel medicus practicus/arts-onderzoeker als beroepsgroep(en)

Suggesties die we kunnen meenemen?

WP6: Ethical part

Overview

✓✓ Ethical analyses → paper a duty to recontact in genetics: context matters

 \checkmark Focus groups \rightarrow analyses

🥪 🔍 Joint paper

COMMENT

A duty to recontact in genetics: context matters

Noor A. A. Giesbertz^{1*}, Wim H. van Harten² and Annelien L. Bredenoord³

NATURE REVIEWS | GENETICS

VOLUME 20 | JULY 2019 | 371

Definition

Recontact patients (or participants) with new genetic information or developments that are relevant to their health or reproduction

(1) New screening recommendation or treatment possibility

(2) New technique or new genetic test

(3) New gene identified that may be relevant in relation to the disease

(4) Reclassification of variant

Ploem et al. 2018

Arguments in favor	Arguments against
Respect for autonomy requires recontact	Respect for autonomy does not imply recontact (right not to know)
Beneficence or a duty to warn requires recontact	Recontact can have harmful consequences (principle of non-maleficence)
Technology developments can simplify and facilitate recontact	Recontact is not feasible
Empirical studies support a desire for recontact	Recontact poses an untenable burden on professionals
Protect against legal claims	Health professionals become vulnerable for legal claims
Recontact is part of (genetic) health care *	Recontact is the patient's responsibility*
Recontact engages participants **	Therapeutic misconception **

Arguments in favor	Arguments against
Respect for autonomy requires recontact	Respect for autonomy does not imply recontact (right not to know)
Beneficence or a duty to warn requires recontact	Recontact can have harmful consequences (principle of non-maleficence)
Technology developments can simplify and facilitate recontact	Recontact is not feasible
Empirical studies support a desire for recontact	Recontact poses an untenable burden on professionals
Protect against legal claims	Health professionals become vulnerable for legal claims
Recontact is part of (genetic) health care *	Recontact is the patient's responsibility*
Recontact engages participants **	Therapeutic misconception **

Arguments in favor	Arguments against
Respect for autonomy requires recontact	Respect for autonomy does not imply recontact (right not to know)
Beneficence or a duty to warn requires recontact	Recontact can have harmful consequences (principle of non-maleficence)
Technology developments can simplify and facilitate recontact	Recontact is not feasible
Empirical studies support a desire for recontact	Recontact poses an untenable burden on professionals
Protect against legal claims	Health professionals become vulnerable for legal claims
Recontact is part of (genetic) health care *	Recontact is the patient's responsibility*
Recontact engages participants **	Therapeutic misconception **

Arguments in favor	Arguments against
Respect for autonomy requires recontact	Respect for autonomy does not imply recontact (right not to know)
Beneficence or a duty to warn requires recontact	Recontact can have harmful consequences (principle of non-maleficence)
Technology developments can simplify and facilitate recontact	Recontact is not feasible
Empirical studies support a desire for recontact	Recontact poses an untenable burden on professionals
Protect against legal claims	Health professionals become vulnerable for legal claims
Recontact is part of (genetic) health care *	Recontact is the patient's responsibility*
Recontact engages participants **	Therapeutic misconception **

echnology Assessment of Next Generation Sequencing in Personalized Oncology

Arguments in favor	Arguments against
Respect for autonomy requires recontact	Respect for autonomy does not imply recontact (right not to know)
Beneficence or a duty to warn requires recontact	Recontact can have harmful consequences (principle of non-maleficence)
Technology developments can simplify and facilitate recontact	Recontact is not feasible
Empirical studies support a desire for recontact	Recontact poses an untenable burden on professionals
Protect against legal claims	Health professionals become vulnerable for legal claims
Recontact is part of (genetic) health care *	Recontact is the patient's responsibility*
Recontact engages participants **	Therapeutic misconception **

echnology Assessment of Next Generation Sequencing in Personalized Oncology

Arguments in favor	Arguments against
Respect for autonomy requires recontact	Respect for autonomy does not imply recontact (right not to know)
Beneficence or a duty to warn requires recontact	Recontact can have harmful consequences (principle of non-maleficence)
Technology developments can simplify and facilitate recontact	Recontact is not feasible
Empirical studies support a desire for recontact	Recontact poses an untenable burden on professionals
Protect against legal claims	Health professionals become vulnerable for legal claims
Recontact is part of (genetic) health care *	Recontact is the patient's responsibility*
Recontact engages participants **	Therapeutic misconception **

Weight of the arguments context-specific

- Strong arguments in favor and against
- Balance

"Considering the wide variety of recontact situations, the force of the arguments differs accordingly."

Giesbertz et al. 2019

Factors

Information	 Validity Severity and probability of the condition Possibility to act Compare with previous information
Costs and efforts	
Personal preferences	
Who is contacted	
Clinic or research setting	
Time	

Technology Assessment of Next Generation Sequencing in Personalized Oncology

Focus groups

Aim: to verify and further explore our framework with both professionals and oncology patients.

Focus groups

VIX focus groups with oncology patients and professionals
VIX Total n=25

\u00ed \u00ed 1 patient group \u00ed \u00ed n=12 (7 male, 5 female; age 48-71; ex-patients/family member) \u00ed 2 professionals \u00ed \u00ed n=6 (6 female) \u00ed \u00ed n=7 (3 male, 4 female)

Professions: clinical geneticist, surgeon, laboratory specialist, pathologist, ethicist, mammacare/research nurse, social worker, oncologist

Outline

Mathematics

General thoughts

₩ Factors:

Information

Costs and efforts

Personal preferences

Who is contacted

Clinic or research setting

Time

Work in progress (1)

Patient group:

focus on receiving information

- Importance of information for family members (comparison general discussion on informing family members of genetic test results)
- Effect of information on people who had cancer vs. healthy people (family members)
- Informed about the possibility to be recontacted / asked for permission

Work in progress (2)

Professionals

Incomprehensive topic

More focus on the harmful effects of information

WMM On patients/participants

Costs and efforts

Also focus on the harmfull effects of discussing recontact (too much information?)

At the same time acknowledge importance of information in some situations

Work in progress (3)

Factors: hierarchy?
Patient preference
Information aspects

Closing session

Thank you all!

Employees

Technology Assessment of Next Generation Sequencing in Personalized Oncolog

Deelnemende centra

BESTRIJDING

Dit project (846001002) wordt mogelijk gemaakt door