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Purpose of the Talk

Objective
This presentation is supposed to provide you with

selected challenges that arise in the financial industry,

an introduction to how these challenges can be tackled by means of
machine learning techniques.

Disclaimer

This introduction does not provide a comprehensive overview of
how machine learning techniques are applied in the financial industry.

The presented topics may grant an essential competitive advantage.
However, please be aware of inherent risks.

This talk does not disclose any profitable investment strategies.
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Valuation and (Over-)Hedging

What is a fair price P(0,T ) of getting one monetary unit at time T > 0
as seen from t = 0?

naive approach:
P(0,T ) = 1

issues: inflation risk, credit risk, liquidity risk

static approach:

P(0,T ) =
1

(1 + r)T

for some interest rate r

Risk-Adjusted Valuation

P(0,T ) is the minimal cost to (super-)replicate the desired payoff.
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Monte-Carlo
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Valuation and (Over-)Hedging

Option Pricing

strike K

payoff max
{
K − St , 0

}
price of the European option
price of the American option

sup
τ∈Tt,T

EQ

[
e−

∫ τ
t

ru du max
{
K − Sτ , 0

}∣∣∣Ft

]

price of the underlying St



Valuation and (Over-)Hedging

Dynamic Programming

t = 0 t = 1

price of underlying: 100
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Valuation and (Over-)Hedging

Dynamic Programming

t = 0 t = 1

price of underlying: 100

110

90

Discrete World: K = 110, r = 5%

76%

24%

payoff: 0

payoff: 20

present value: 10 = max
{

10, 24%× e−0.05 × 20
}



Valuation and (Over-)Hedging

Flaws of Classical Valuation Approaches

Monte-Carlo-techniques or dynamic programming tend to be
computationally intensive.
The level of sophistication remains limited.
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Valuation and (Over-)Hedging

The Curse of Dimension

Discretisation of
No. of Underlyings Space and Time Runtime Scale Unit

1 1 000 1 millisecond
2 1 000 000 1 second
3 1 000 000 000 17 minutes
4 1012 12 days
5 1015 32 years
6 1018 317 centuries
...

...
...

...

Longstaff-Schwartz (2001): 20 underlyings

Becker-Cheridito-Jentzen (2018): 500 underlyings below 10 minutes
with techniques inspired from machine learning



Valuation and (Over-)Hedging

Hierarchy of financial assets from the accounting and pricing viewpoint
(according to FASB 157):

Level 1: Quotes are readily observable in the market.

Level 2: Prices can be inferred through models and observable
quantities.

Level 3: Valuations involve complex models and subjective
assumptions.

A professional and well-calibrated valuation platform must meet the
following requirements:

The model reprices level 1 products.

The model features generally observed market phenomena.

The model accounts for the significant risk drivers in a realistic
manner.



Valuation and (Over-)Hedging

Risk-Adjusted Valuation

What is a fair price π0 of getting h(S) at time T > 0 as seen from t = 0,
where S = (St)0≤t≤T is a d-dimensional underlying risk factor and h some
payoff function?

Finding realistic dynamics is almost impossible due to the statical
uncertainty.

The (super-)replication strategy is often not known explicitly.

Trading off complexity, mathematical tractability and inherent
model risks is very challenging.

Analytically, it is very hard to deal with transaction cost.

Maintaining and automating a suitable, efficient and well-calibrated
valuation platform (e.g., stochastic local volatility models) for several
thousand derivatives is tough.



The Game Has Changed

In 2017 a research group of DeepMind published the following results:

White Black Wins3 Draws Losses

AlphaZero1 Stockfish 25 25 0
Stockfish2 AlphaZero 3 47 0

1 AlphaZero is an algorithm that learns to play chess from scratch solely by smart
self-play.

2 Stockfish is a powerful open-source chess engine and TCEC world champion 2016.
3 Outcome as seen from AlphaZero’s perspective.

This results stimulates the imagination that quantitative methods for
finance enter a new era.

Paradigm

Regarding the presented challenges, what would a clever financial agent
with a lot of experience and a decent risk appetite do?
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Neural Networks

Input Output

Hidden Layers

Machine Learning from the Mathematical Viewpoint

Simply put, it is the approximation of a high-dimensional non-linear
function in terms of a (deep) neural network (DNN).



Neural Networks
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Neural Networks

Mathematical Properties

Universal Approximation Theorems: Provided that they are
sufficiently large, neural networks can approximate complex functions
arbitrarily close.

Computing the derivative of the network output with respect to the
weights is straightforward. Therefore, an incremental learning
process becomes feasible.
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Machine Learning

Supervised Learning

Training: Minimise a Loss Function

input prediction

DNN

sample

data

sample
output
data

loss
update weights

Validation: Check Accuracy of Prediction on Concealed Data



Machine Learning

Supervised Learning
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Machine Learning

Supervised Learning
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Machine Learning

Supervised Learning
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Machine Learning

Supervised Learning
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Machine Learning

Supervised Learning
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Machine Learning

Supervised Learning
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Machine Learning

Supervised Learning
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Machine Learning

Supervised Learning
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Machine Learning

Supervised Learning
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Machine Learning

Supervised Learning
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Machine Learning

Supervised Learning
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Machine Learning

Supervised Learning
Number of Nodes: 1–30–30–10–10–1
Number of Epochs: 25 000
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Machine Learning

Supervised Learning
Number of Nodes: 1–30–30–10–10–1
Number of Epochs: 25 000
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Machine Learning

Observations

The learning process evolves in small and random steps.

The update of the weights results from the backpropagation
algorithm. It can be seen as a very smart way of combining
Monte-Carlo techniques and dynamic programming.

Choosing suitable hyperparameters for the learning process might be
tricky.

Computing power is crucial.

Neural networks can be evaluated efficiently by using pertinent
software libraries, e.g., TensorFlow.

Storing neural networks requires comparatively little storage space.



Machine Learning

Re-inforcement Learning

Training: Maximise a Reward Function

DNN

reward
update weights

DNNDNN

t = 0 t = 1 t = 2 t = 3 t = n

DNN

Validation: Check Performance of Decisions on New Scenarios



Machine Learning

Re-inforcement Learning
Scenarios, Features and States
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Machine Learning

Experiment on Deep Hedging

Exposure: We issue a call option with payoff max{ST − K , 0}, strike
K = 100 and maturity T = 30d .

Market Environment:

bank account
underlying

Rules:

Investment strategies must be self-financing.
Re-allocations are possible once a day and may involve
proportional transaction cost.

Objective: We aim to minimise the quadratic discrepancy between the
due payoff and the value of the hedge.

Training: 10 000 scenarios



Machine Learning

Deep Hedging (without Transaction Cost)
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Machine Learning

Deep Hedging (without Transaction Cost)
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Machine Learning

Deep Hedging (without Transaction Cost)
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Machine Learning

Deep Hedging (without Transaction Cost)
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Deep Hedging (without Transaction Cost)

80 90 100 110 120 130
price

0.0

0.2

0.4

0.6

0.8

1.0

he
dg

e

Hedging Strategy at Time 30



Machine Learning

Deep Hedging (with Transaction Cost)
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Machine Learning

Deep Hedging (with Transaction Cost)
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Machine Learning

Deep Hedging (with Transaction Cost)
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Machine Learning

Summary

Traditional Programming:

data + program −→ output

Supervised Learning:

data + output −→ program

Re-inforcement Learning:

rules + scenarios −→ convincing strategy



Machine Learning

Hypothesis

Techniques inspired from re-inforcement learning pave the way for a new
era in quantitative risk management from various viewpoints.

1. It is a disruptive technology; high-dimensional optimisation
problems of this kind were not accessible until only recently.

2. It is a very efficient and powerful technology with
super fast requests-on-demand,
instantaneous validation (model risk management).

3. It is a very flexible technology. In a few lines of code, one easily
accounts for

arbitrary path-dependent payoffs,
complex stochastic environments,
liquidity squeezes/transaction cost/price impacts,
regulatory constraints,
risk appetite,
...
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Applications

Balance Sheet of an Enterprise in the Financial Industry

Assets Liabilities

Debts
Investmentportfolio

Equity

Objective
Maximise the expected utility of the return-on-equity over different time
instances while not exceeding a certain draw-down and while
guaranteeing the regulatory constraints with a high probability.



Applications

Balance Sheet Roll-Forward
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Applications

Model Ingredients for Re-inforcement Learning

economic scenario generator
yield curves
credit migrations
stock prices
client behaviour
...

parameterisation of the states

rule book
constraints
eligible re-allocations
frictions

objective



Applications

Deep Asset-Liability-Management

Simply put, one solves high-dimensional hedging problems with
constraints in the presence of frictions by means of re-inforcement
learning techniques.

retail bank: replicating portfolio

insurance company: strategic asset allocation that accounts for the
necessary returns and institutional liquidity, optimised re-insurance
programme

commodity trading: optimal procurement in the presence of
uncertainty, pricing impacts and storage cost

pump-storage hydropower plant: optimised production plan,
pricing and hedging in an illiquid environment



Applications

Further Research

Reach a suitable level of complexity.

Deal with uncertainty of model assumptions.

Model choices and regulisations that promote robust solutions.

Corroborate that sophisticated approach and additional complexity is
profitable.
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