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1 Executive summary

1.1 Topic overview

Cyber attacks pose a substantial risk on nations, companies and
individuals, and with the ever rising use of technology and process
automation, the risk of high impact attacks is daunting. Further, standard
defences primarily use signature based methods that have serious flaws; for
example, they are only useful against known malware. As such, there is
increasing attention from both government and industry towards the use of
statistical, machine learning and broader data science techniques for
improving cyber-security approaches. Data-driven analytics which monitor
network traffic, user behaviour and running processes, amongst other
statistics, are becoming the most likely means for detecting the intruder.
Timely detection of the attacker is paramount if they are to be prevented
from achieving a malicious objective and this drives the need for both
broader and deeper data analysis tools of such data.

1.2 Challenge overview

This Data Study Group (DSG) challenge aims to carry out a preliminary
investigation of some statistical and machine learning tools for analysing
certain types of cyber-relevant data sources. Specifically, we consider a
unified repository released by Los Alamos National Laboratory (LANL)
comprising both network flow records and process-level Windows service
logs collected on the same enterprise computer network over a three-month
period.

Three aspects tackled in this challenge include anomaly detection, data
fusion, and visualisation. Within the DSG week, we have aimed to consider
if fusion of the data sources can give a more coherent view of this network’s
behaviour and what visualisations can be used to aid a prioritisation of of
potential threats for analysts. Other explorations developed during this
study group have been provided and the potential applications or
limitations described. This report does not provide a ‘white paper’ on
cyber-security tools, but rather aims to detail the methods attempted by
different groups of participants in this DSG.
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1.3 Data overview

CSV format summary data is taken from the Unified Host and Network
Dataset [29], available from https://csr.lanl.gov/data/2017.html. This
data contains a subset of internal network and host event logs collected from
the Los Alamos National Laboratory (LANL) enterprise network over the
course of approximately 90 days. Specifically, the data considered is:

• Unique network flow connections per day between pairs of
communicating devices on the network (21,286,000 events per day on
average),

• Unique authentication events per day collected from computers running
the Microsoft Windows operating system (177,000 events per day on
average),

• Unique process start events and the parent processes that invoked
them per day collected from computers running the Microsoft
Windows operating system (622,000 events per day on average).

The labels for devices and user accounts, whilst deidentified to protect the
security of LANLs operational IT environment, match across all the
datasets to allow for data fusion and proper analysis. There are
approximately 60,000 unique devices, 15,000 unique user accounts and
26,000 unique process names across the 90 days. More detailed information
about the datasets can be found in [29] and in Section 2. In addition,
labelled ‘red team’ data consisting of known malicious authentications,
process starts and compromised devices is used for validation of any
anomaly detection methods. This sample malicious behaviour data exists
for days 57–90.

1.4 Main objectives

This challenge aims to take a first step towards exploring a broad range
of methods to effectively analyse relevant data sources for cyber-security
applications. The sponsors of this Data Study Group (DSG) have identified
three aspects of potential interest.

1. Data fusion: Investigating how data sources can be merged to give a
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more concise view of the available information, whilst maintaining
completeness. This is with the aim of reducing dimensionality,
developing more powerful network monitoring tools and potentially
establishing situational awareness.

2. Visualisation: Exploring what meaningful and informative graphical
visualisations of cyber data can be generated to aid an analyst in
prioritising which potential threats require most urgent attention.

3. Anomaly detection: Detecting unlabelled malicious activity hidden
within the data. This malicious behaviour is refered to as ‘red team’
data, as discussed in Section 1.3.

There are of course difficulties and challenges associated with these broad
aims, most notably datasets in this domain are notoriously large
(businesses generate terabytes of log data on a daily basis) and are highly
heterogeneous (e.g. network flow data versus process logs). This raises
questions about how to fuse data sources and how to prioritise identified
anomalous behaviours. Cyber-security is a vast and complex area and
therefore here, we have narrowed our focus to utilise the skill set of our
group and chosen to use familiar methods to conduct initial explorations
into this dataset, as outlined in Section 1.5.

1.5 Outline of approaches

This challenge is atypical in the sense it is open-ended. We aim to explore
good directions for future development of data science tools towards the big
goal of anomaly detection in cyber-security. During the DSG week, we have
conducted the following explorations.

• Section 3 discusses visualisation of the data by self-organising maps, a
type of unsupervised neural network. We thought that this was an
interesting way of presenting the data which may not have been
attempted before.

• As mentioned, the large dimensionality of the data poses difficulties for
analysis. Therefore, we tackled methods for reducing this dimension via
topic modelling in Section 4.1, and also considered how clustering of the
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data might give direction to the question of how it can be meaningfully
fused in Section 4.2.

• Identifying anomalies was explored in two key ways. Section 4.3
considers user–process relationships, working on the premise that
users in similar jobs/function would run comparable processes.
Secondly, section 4.4 details methods that could allow for ranking of
anomalies, including attribute-value frequency (AVF) and formal
concept analysis (FCA).

• Another method of identifying unusual network activity is given in
Section 4.5. Here the use of Quantile Additive Models (QAMs) is
explored.

• The issue of identifying variation in the behaviour of normal activity
versus attack, is explored in Section 4.6 via a very different method.
Here procrustes anlaysis, a common technique for statistical shape
analysis, has been used on adjacency embeddings for NetFlow data.

• Finally, in Section 4.7 we aimed to reconstruct the possible path of the
red team attack in the computer network graph. This was so as to
retrospectively have a better idea as to how the attack propagated.
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2 Detailed description of the dataset

In addition to the data aggregated per day, described in the previous section,
two types of raw data were also provided from LANL, Imperial and Heilbronn
for this challenge:

• Netflow data. Network event data contains logs of the network flow
connections per day between pairs of communicating devices on the
network (21,286,000 events per day on average). The raw data
consists of NetFlow records exported from core network routers to a
centralised collection server, limited to Protocols 1 (ICMP), 6 (TCP),
and 17 (UDP). These records were transformed using bi-flowing,
obtaining a directed flow. IP addresses and hostnames were mapped,
and the failed mappings were anonymised as IPxyz rather than
CompXYZ. A typical NetFlow record contains the following
information: time and duration of the connection, source and
destination devices, protocol, source and destination ports, bytes and
packets sent and received.

• Windows Host Log data. The host event data is a subset of host event
logs collected from computers running the Microsoft Windows
operating system (OS). Examples of such events include successful
logons, failed logons, and Windows shutting down, for example. On
average there are approximately 177,000 authentication events per
day. The host event data further provides process activity
information. These have five attributes being UserName, Device,
ProcessName, ParentProcessName, DailyCount. On average there are
approximately 622,000 such events per day in this dataset.

In summary, the following data sources were available:

• Full raw dataset, described above and in [30],

• Three aggregated datasets of daily summaries (netflow, processes

and authentication),

• Labelled red-team data consisting of known malicious authentications
from stolen credentials, malicious processes, and compromised hosts
from Day 57 to 90.
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Figure 1: Example of NetFlow data.
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Figure 2: Example of process data.
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Figure 3: Example of authentication data.
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3 Data visualisation

Data visualisation, when used effectively, can be a powerful tool for
uncovering patterns and structure in complex data. The standard approach
of graphically representing numerical data is useful for identifying trends
and seasonalities or for exposing relationships. However, this standard
approach has limited applicability when dealing with high-dimensional,
temporal data, such as that generated within an enterprise network.

3.1 Self-organising maps

A self-organising map (SOM) [19] is a type of unsupervised neural network
that produces a low-dimensional representation of an input domain. Building
on Alan Turing’s model of morphogenesis [31], SOMs use a neighbourhood
function to preserve the topological properties of the input space, providing
a useful framework for data visualisation.

Consider a dataset X, containing N p-dimensional samples,
xi = {xi1, . . . , xip}. An SOM is an ordered collection of J neurons, each
with an associated reference vector wj = {wj1, . . . , wjp}. To train an SOM,
each wj is initially assigned a random vector from the domain of X. When
a sample xi ∈ X is presented to the SOM for training, the neuron whose
reference vector has the smallest distance from xi is identified as the best
matching unit (BMU) for that input:

bi = arg min
j=1,...,J

‖xi −wj‖ .

The reference vector of the BMU and those of the neurons close to it in
the SOM grid are adjusted towards the input vector. The magnitude of
the change decreases with time and with the grid-distance from the BMU.
The update formula at iteration t for neuron j with reference vector wj(t)
is:

wj(t+ 1) = wj(t) + α(t)φ(bi, j, t) ‖xi(t)−mj(t)‖ ,
where α(t) is a monotonically decreasing learning rate and φ(bi, j, t) is a
neighbourhood function centred at the BMU bi.

The neurons in a trained SOM are not equally distributed among the entire
input space; rather, more neurons are designated for regions with more
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Table 1: NetFlow features constructed for each time bin.

Name Description

TotalIn Total no. of inward communications
TotalOut Total no. of outward communications
InDegree No. of unique inward communications
OutDegree No. of unique outward communications
BytesIn Total no. of bytes received
BytesOut Total no. of bytes sent

samples in X (high density) and fewer ones for lower density regions in X.
This may be visualised using a 3-dimensional representation of the unified
distance matrix (U-matrix) – a matrix of Euclidean distances between
reference vectors of neighbouring cells of the SOM. Cluster borders are then
indicated as ‘mountains’ of high distances separating ‘valleys’ of similar
neurons.

3.2 Experiments

Enterprise network data is temporal in nature and tends to follow a daily
seasonal pattern. In this section we describe an approach to visualise the
overall state of the network at a given time, in order to highlight deviations
from normal operating state. [24] use SOMs to depict multistate process
operations in an industrial chemical plant. An enterprise network can
similarly be considered to operate in different states, based on user activity
at a given time of day.

For our experiment, we chose a set of 10 computers, 5 of which were known
compromised hosts where the red team had command and control. Each
day of NetFlow data was divided into 1-hour bins and a set of 6 features
computed for each computer within each bin. These are described in Table
1. Each of these 60 variables were first normalised and an SOM was trained
using days 52–55, resulting in 96 samples. The resulting U-matrix is shown
in Figure 4.
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Figure 4: A 3-dimensional visualisation of the U-matrix.

We then tested the model using data from days 56 and 58 in order to
compare the corresponding mappings. Day 56 provides us with input
vectors representing activity prior to the red team’s attack, whilst on day
58 the network is known to have been compromised. Visualisation of this
mapping transitioning over the course of a day has been given as a
‘trajectory’ through the 3-dimensional distance space, and is presented in
Figures 5 and 6. As is illustrated, when testing the model on data from day
58, over the course of the day the process ‘traverses’ through more regions
that represent low density in feature space than on day 56, prior to the red
team’s attack. In particular, we see that during hours 4, 5, and 20–23, the
BMUs lie within these ‘mountainous’ regions. In this way, this analysis
explores an interesting and viable method for exposing potentially
suspicious phases based on the input space of features.

For this simple example, we only considered features derived from NetFlow
activity. However, the feature space explored could be constructed using data
from a combination of sources. In this way, our approach serves as a very
promising basis for visualising high-dimensional multi-source data.
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Figure 5: A contour plot of the U-matrix with the state BMUs for day 56.
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Figure 6: A contour plot of the U-matrix with the state BMUs for day 58.
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4 Analysis

4.1 Topic models of process data

In this section, we extract structure from Windows event log process data.
Each record in the data consists of a tuple:

(date, user, device, process, parent process, count),

where ‘count’ refers to the number of times that a process with the given
parent process was started on the given device, user and date. Learning
methods often do not work well for high dimensional categorical data and it
is therefore worth applying methods to reduce this.

Topic models are a widely used tool for grouping together high dimensional
categorical variables [3]. Originally developed for text analysis, they can be
adapted to the cyber context. Here, we illustrate this by creating a low
dimensional embedding of devices based on the processes ran, and of users
based on the devices used.

4.1.1 LDA Model: Device embeddings

Here, we focus only on the tuple of device, process and count. To make
the analogy to topic modelling, we treat each device (on a single day) as a
‘document’ and each process as a ‘word’, with the number of times that the
process runs as the document word count. We will then fit a Latent Dirichlet
Allocation (LDA) model. The outputs of model are the following.

• Topics. Each topic is a distribution over processes (words) represented
as a P -vector where P is the number of possible processes. Each topic
represents a grouping of processes and thus we interpret topics as a
proxy for different activities that a device can engage in.

• Distribution over Topics. For each device (document), the model
decomposes that document into a mixture of topics and provides us
with the mixing weights. So, for each day, we obtain a new topic
distribution per device reflecting the activity of that device for that
day. If the usage/function of the device remains relatively stationary,
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then the topic distributions associated with a device should also be
relatively constant and in fact this is what we observe in the data.
Most machines are peaked around a few topics that captures their
daily activity as shown in Figure 7).

4.1.2 Details on Model Training

We trained our topic model on process data from days 52 to 90. We made
the following choices regarding data processing and model tuning:

• For each process, we calculated its frequency defined as:

F =

∑90
d=1 #{distinct devices running process on day d}∑90

d=1{distinct devices with activity on day d}
. We excluded processes with frequency greater than 0.4 as we are
primarily interested in those processes that help us to distinguish
between devices.

• As standard, we performed term frequency inverse document frequency
(TFIDF) transformation:

Cj · logF−1j ,

where Cj is the count for the jth process and Fj is the process frequency
as defined in the previous bullet. Again, our motivation is to up-weight
those processes that help us to distinguish between devices.

• We trained the model in Python using the gensim package. We chose
K = 20 topics and default settings were used for all other parameters
in gensim’s implementation.

4.1.3 Results

The 15 panels in Figures 7 and 8 plot the topic distributions for 15
randomly sampled devices, from the set of devices which ran at least one
malicious process during red team activity. Each blue line represents the
topic distribution associated with process activity on a normal day.

We summarise the conclusions that can be drawn from Figures 7, 8.
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• Most devices have topic distributions for daily activity that
concentrates around a few topics (these represent the ‘canonical’
activities for which the device is used).

• Malicious processes are compactly captured by a few topics. This was
accomplished in an unsupervised manner without labels for malicious
activity. This shows that unsupervised learning can potentially be a
powerful for creating features/representations that are then used in
anomaly detection.
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Figure 7: Topic distributions associated with 15 randomly sampled devices. Each
blue line represents the topic distribution for a single day. Most devices concentrate
around only a few topics reflecting the fact that devices have fixed usage. The
red line represents the topic distribution associated with the malicious processes
running on the device (with all other non-malicious background processes removed).
The figure shows that topics 2, 8 and 16 capture malicious processes.
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Figure 8: Topic distributions associated with 15 randomly sampled devices. Blue
lines are for activity during normal days. Red line is activity during a day with
malicious process.
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4.1.4 LDA Model: User embeddings

Using the same approach as described above, we separated users based on
device usage. In this case, users represent the documents and devices the
words. When looking at the number of users that use a particular device on
a particular day, we find the following:

Figure 9: For each device, we find how many users used that particular device
on a particular day (a random day was chosen from the summary data). The
table shown here tells us how many devices had a particular number of users. For
example, there were 2131 devices on this particular day which were used by exactly
1 user, and 6491 devices were used by exactly 2 users.

We observe that, for the particular day investigated, about 23% of all devices
are only used by a single user and almost 70% of devices were used by either
one or two users. Similar results were obtained for other days. We may want
to collapse all devices used by a single user into one ‘super device’ which is
likely to represent a personal computer. Doing this will significantly reduce
the number of words used in our documents by grouping together words of
similar type. Using this reduced device space, we can use an LDA model to
find topic distributions (where each topic is now a distribution over devices)
for each user (Figure 10). We observe from Figure 10 that most users show
very little change in their topic distribution as the days pass. This may not
be surprising, as many users will use their own personal computer every day
and may not start processes on other devices. As before, we also visualised
red team activity, however there was little difference between compromised
and non-compromised distributions.
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Figure 10: Similar to Figures 7 and 8, each subplot represents a single randomly
sampled ’document’ (in this case a user) and each blue dotted line within the subplot
represents the topic distribution for a single day without red team activity. Most
users are very concentrated around a single topic and their topic distribution is
very similar over different days.

4.1.5 Conclusions

Topic models are a useful tool for performing dimension reduction when
faced with discrete variables with a large number of categories. They are
trained very quickly using stochastic approximation variational inference.
The work above is a preliminary investigation and we expect improved results
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by adopting the following ideas:

• Implement device or user specific topic models. For example, each
device may have its own pattern of variation in regards to process
activity. However, there may not be sufficient sample size per device
for doing so which makes the use of hierarchical LDA models
potentially useful.

• Tuning model performance. Key parameters include frequency TFIDF
weighting, and number of topics. In particular, the current model
used only 20 topics. This means that malicious processes will with
high probability need to share a topic with non-malicious processes.
With a larger number of topics, we may be able to more cleanly
separate malicious and non-malicious processes. We have some
preliminary evidence that malicious processes can indeed be identified
more accurately using 30 topics rather than 20.

• Quantitative measures. Up until now, we have used visual inspection
to check for anomalies in process activity (as represented by topic
distribution). The development of test statistics and rigorous
inference would be of value.
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4.2 Clustering based cross-domain data fusion for
anomalous activity detection

In this approach, we look into other clustering venues that we intend to use
for data fusion. Due to limited time we did not have results for data fusion
so we describe the logistic briefly here. We assume that each user belongs
to a group with certain set of behaviour patterns. We can consider the
group that each user belongs to as a latent variable and use the clustering
of user activities within each domain to model the hidden group belonging
index. Assuming cross-domain consistency, we consider a user an anomaly if
it exhibit changes in behaviour that is dissimilar from its group or behave like
another group that it does not belong to. A similar method is used by [8] for
anomaly detection on practice data and successfully detected all (artificially
injected) anomaly by scanning only 50% of the data.

4.2.1 Event mixing/pairing of processes-ports/destinations

The dataset we are looking at contains three different types event-streams:
network traffic summaries (given as events in the Netflow format), summaries
of authentication events, and process start activity on Windows machines.
All three types of events can be associated with the machine they originated
or were directed to. Furthermore, all events are discrete in time and contain
a corresponding time-stamp. Despite describing different things, different
types of events associated with one machine are not necessarily independent
in nature. Instead, it is quite likely that individual events in one stream
can trigger events in another, such as the arrival of network information
being responsible for the start of a particular process or vice versa. In this
analysis, we focus on a method that could mine strong associations of events
in different data streams.

As we are looking at events on individual machines, the first thing to do is
gather all events associated with that particular machine into on stream.
For that, we select a subset of 13 Windows personal computers being active
in the network (identified as Comp866344, Comp531955, Comp032933,

Comp567734, Comp912319, Comp762316, Comp185550, Comp653812,

Comp882990, Comp709308, Comp564857, Comp152636, and Comp643355).
We then filtered the data different data streams for events associated with
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these machines (by being the LogHost for the authentication and process
events, or by being the source or destination machine for Netflow events),
and merged them into 13 unified data streams containing all three types of
events. In order to process the data in a meaningful way, the events have to
be sorted according to their respective time-stamp.

Previous work, [26], has shown that network flow events are not uniformly
spread in time, but instead occur in small groups of events. It is not
unreasonable to assume the same about process events and authentication
events. In this work, we will define an event group, called a session, as set
of events where each member is separated in time from at least one other
member by less c seconds, where c is a chosen threshold. In other words, if
the time between event A and its predecessor B is less than c, A is added
to the existing session. If not, A marks the start of a new session.

Previous analysis has shown that 95% of network flow events are separated
by their nearest neighbour in time by less than 9 seconds. We therefore chose
c = 9 seconds as a reasonable threshold.

We then proceed to create sessions in the described fashion for each machine’s
unified data stream, and label all events with the corresponding session they
belong to. Figure 11 depicts a sample session of events with their respective
properties.

Figure 11: Sample session, group of traffic events on machine Comp567734 with
corresponding event properties. As visible, no event is separated from its neighbours
by more than 9 seconds.

Session lengths can vary, stretching from just one event to more than a
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thousand. Figure 12 is a depiction of the session length distribution for the
examined machines. The distribution appears to be more or less stable across
the machines, with shorter sessions of just a few events dominating.

Figure 12: Distribution of session lengths for the examined computers.

We have now grouped the data temporally into narrow intervals. As we
want to examine the relationship between different types of events, we will
in particular look at sessions that contain more than one type of events.
The temporal spread of individual sessions is small compared to eventless
periods on a typical machine. Therefore, independent events are unlikely to
fall into the same session. If events from different event streams are strictly
independent from another, we would expect very little mixing inside
individual sessions, i.e. the overwhelming majority of sessions would consist
exclusively of Netflow, authentication, or process events.

While creating the session labels, we recorded whether more than one type
(and if so which) of event was present in each session. Figure 13 compares
the number of single event-type sessions to those with more than one type
of events.
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Figure 13: Mixing distribution of sessions for individual machines.

As expected, most sessions only contain one type of events. However, we
see that sessions that contain both Netflow and process events are occurring
very frequently as well, with a stable distribution across almost all computers.
Furthermore, events mixing all types of events also occur regularly on most
machines. Due to time constraints, we will concentrate in this work on the
relationship between network flow events and process events.

After examination of a few mixed Netflow/process sessions, there seems to be
some consistency in the specific processes and the corresponding destination
computers and network ports that are occurring together. In other words,
we see a lot of mixed sessions that contain both the start of a specific process
and the subsequent contact of one or more specific computers on a specific
network port. We are therefore interested if we can examine the frequency
with these specific events are happening and compare them with the number
of sessions where these events are not mixed.

In particular, we are looking at three different sets of event features that
occur in mixed sessions:

25



• The name of the started process.

• The destination computer contacted.

• The destination port used for a connection.

For each machine, we gather the set of all specific process names,
destination computers, and destination ports that can be observed within
sessions containing both network flows and process starts. We will in the
future call these sessions ProcFlow-sessions. We will call the set of observed
process names P , the set of destination computers DC, and the set of
destination ports DP .

For each member of the three sets, we calculate the overall occurrence
number, and the percentage α of these events occurring in
ProcFlow-sessions. We then proceed to calculate the pairwise percentage
with which members of P are occurring together with members of DC and
with members of DP . To be precise, for p ∈ P and b ∈ DC or DP , we
calculate the number of times in which p can be observed in a session with
b, and divide it by the total number of times p is observed in a machines
data stream. This can indicate whether p is only or mostly occurring
together with b, and consequently if there exists a generative association
between these two events. As appears more likely that a process is
responsible for traffic generation compared to network events generating a
process start, we looked at this relationship. However, it is definitely worth
investigating the opposite relationship, however time constraints prevented
us from doing so.

In principle, the number of pairs can grow quadratically as we observe more
and more members in P and DC/DP the longer if we observe a machine. We
therefore need to discard some less informative members. Here, we discard
members that see less than 10 events in total.

Figures 14 to 15 depict the occurrence percentages for a number of pairs
machine Comp866344.
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Figure 14: Percentages of processes occurring together with specific ports for
machine Comp866344.

Figure 15: Percentages of processes occurring together with flows specific
destination computers for machine Comp866344.

We can observe very high association between a number of services and
port/computers, for instance we observed 414 sessions where the
svhost-process occurs together with a flow using port 514 and contacting
Comp576031, while this process occurs virtually never (only 1 time) in other
sessions. Specifically, the association between processes and destination
ports can be observed over multiple machines while the contacted
computers are changing. This (and other combinations) can also be
observed on other computers. However, some computers (for instance
Comp567734) show a lot less clear associations, with the strongest ones only
occurring 60% of the time together.

4.2.2 Application to anomaly detection

Mining event associations between between different data instances help to
understand the structure of traffic generated by one machine. Very tight
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associations can tie a specific type of network traffic to specific processes
(and possibly authentication events), and indicate anomalous and
potentially malicious behaviour if we observe traffic going from or to that
machine without the associated process. For example, if we can associate
traffic to a specific destination computer in the network completely with a
set of processes that generate this type of traffic, a malicious software or
exploit that generates this traffic independently from these processes, we
have a tool to observe this as anomalous. As we were mining association of
events from different data streams, it is very hard for an attacker to fake
these associations for fly under the radar as he would need the ability to
generate spoof events on multiple channels. Future approaches can merge
several pairwise association together in a similar manner as proposed above
to create even stronger associations. Furthermore, associations that are not
100% tight can be used to give an probabilistic estimate how frequently
events appear without their corresponding partner event.

4.2.3 K-means clustering of NetFlow Data, Authentication and
Process Data

Although we started with the intention to explore data fusion, the actual
question we were able to address is more How can we use unsupervised
techniques to construct latent variable for identify anomalies in NetFlow
and Windows event logs? In this subsection, we present our analysis that
suggests using K-Means clustering on Process and Authentication
data.

We try K-means in clustering for the first stage of data fusion motivated by
the scalability. We first explore K-means for NetFlow data only and then
on Process and Authentication data. We manually scanned the NetFlow
summary datasets and observe there are several source device and destination
device entries that use a particular protocol number. Leveraging on this
observation we develop a process to compress the number of entries in the
NetFlow summary datasets. This process is given as follows:

• Split the attributes into two groups. Group 1 contains attributes
Source Device, Protocol and Daily Count. Group 2 contains
attributes Destination Device, Protocol and Daily Count.
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• Aggregate daily count by Source Device and Protocol for group 1.

• Aggregate daily count by Destination Device and Protocol for group 2.

Day 2 Day 3
Total Group 1 Group 2 Total Group 1 Group 2

Entries Entries Entries Entries Entries Entries
8,439,505 58,100 37,446 21,435,961 61,757 170,558

Table 2: Aggregated NetFlow data.

From Table 2, we observe that the number of entries in the NetFlow summary
datasets is reduced by 99% for Group 1 and Group 2. For day 2, we observe
there are more entries in Group 1 and fewer entries in Group 2 whilst for day
3, we observe fewer entries in Group 1 and more entries in Group 2.

Figure 16 shows the aggregated daily counts for Group 1 and Group 2 for
day 2. We observe that only a small number of both source device and
protocol pairs, and destination device and protocol pairs, have large
aggregated daily counts. Looking into the aggregated data we find
EnterpriseAppServer, ActiveDirectory, VPN and various devices have
large aggregated daily counts and these devices use the TCP protocol
(protocol number 6) and UDP protocol (protocol number 17).

(a) Day 2: Source Device and
Protocol.

(b) Day 2: Destination Device and
Protocol.

Figure 16: Aggregated daily counts.
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To obtain the clusters, we apply K-means clustering method and set the
initial number of clusters to 10. Figure 17 shows the size of each cluster. We
adopt the assumption that normal instances belong to big and dense clusters,
while anomalies belong to small clusters [4].

(a) Day 2: Source Device and Protocol. (b) Day 2: Destination Device and
Protocol.

Figure 17: Cluster sizes.

SrcDevice DstDevice Protocol Port Daily count
Comp251637 Comp708267 6 80 315
Comp251637 Comp186884 6 443 574
Comp251637 Comp282947 6 80 1
Comp251637 Comp186884 6 80 2
Comp251637 Comp282947 6 443 1
Comp251637 Comp073658 6 Port85926 22
Comp251637 Comp326103 6 Port88837 15
Comp251637 Comp364152 6 445 142
Comp251637 Comp326103 6 Port01352 163

Table 3: Anomalous communication path.

We map the source device in the small cluster to the source device in the
NetFlow summary dataset to obtain the communication paths from the
source device to the destination device. We identified 12 different mappings
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of anomalous source device to destination devices in three of the smallest
clusters on day 2. The communication path between an anomalous source
device and destination devices are given in Table 3.

4.2.4 Conclusion

Anomalous communication paths are identified by using the K-Means
clustering method due to time constraints. Further anomalous
communication paths can be identified by applying other unsupervised
techniques. As future work, we plan to apply hierarchical clustering
methods to identify new anomalous communication paths. Compared with
the analysis of NetFlow data, we do clustering analysis with authentication
and process data on summary data without doing aggregation. The
intention for this is to understand unusual patterns in user level. More
importantly, the Authentication and Process data have certain amount of
distinctive user IDs, with which we can implement data fusion through
cross domain comparison and anomaly score computing. Due to the time
limitation, we adopted a simple algorithm to measure anomalous patterns
across domains, replicating the original method outlined in [8] is highly
recommended due to the great performance on the Carnegie Mellon
data.
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4.3 Anomaly detection in user-process bipartite
graphs

In this study, we leverage the user–process relationship to find compromised
user accounts. We make use of the process log summary data, which
contains the set of processes initiated by each user. Our proposed model
can be deployed in real time and returns a list of suspicious users for
investigation.

4.3.1 Methods

We represent the processes that users run as a bipartite graph, G, such
that the nodes are divided into two groups and no edge connects vertices
in the same group. More formally, let V1 be the set of processes and V2
the set of users. The bipartite graph G is defined as G = V1 ∪ V2, where
V1 = {pi|1 ≤ i ≤ k} and V2 = {ui|1 ≤ i ≤ n}. An edge e connects a
process p and a user u, if the user u ran process p. The relationship between
users and processes is represented by a binary adjacency matrix. We expect
that users in similar job functions or departments use many of the same
processes. For example, a finance account manager will rarely run Android
programming frameworks. Our aim is to score processes on a measure of
‘similarity’, and use this metric to identify users that are anomalous with
respect to the diversity of processes they use.

Our approach adapts the framework described in [27] and considers logs
over a 7-day moving time window. We set eij = 1 for process i and user j if
the user ran process j at any time during the 7-day period. First, we
compute the relevance, R. Given a process node p ∈ V1, R computes the
relevance scores of all the nodes in V1 with respect to p. The nodes with
higher relevance are the ‘neighbours’ of p. For example, given the process
WorkBright (an online application for employee onboarding), we compute
the relevance scores for all other processes with respect to it, and would
expect that an Android development framework, such as the Android
Software Development Kit (SDK) (Google’s mobile UI framework), would
score low.

Given a row node a ∈ V1, we would like to compute a relevance score for
all other row nodes, b ∈ V1. Intuitively, we conduct multiple random walks
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starting from a, and count the number of times that we visit each b ∈ V1.
The probability of visiting b from p is the relevance score we want to obtain.
The final result is a 1×k vector consisting of all the relevance scores to a. A
process b typically has a high relevance score with respect to a if b has many
connections to a or the connections are exclusive between a and b.

Next, we compute the set of anomaly scores, A. Given a process node p in V1,
we compute the anomaly scores for nodes in V2 that link to p. A node with
a low anomaly score is an anomaly to p. Thus, anomalies are the individuals
that use processes specific to more than one department or team. Given
the natural inter-group connections (between V1 and V2), our objective is to
discover the outliers within the group.

Based on the relevance scores for V1, we compute the anomaly scores for the
nodes in V2. We identify nodes with a low score as anomalous. Given a
column node u ∈ V2, we first find the set Su of row nodes to which u links:
St = {p| ≤ p, u ≥∈ E}. If u is ‘normal’, then the relevance scores between
any pair of elements in St should be high. In order to assess the performance
of our model, we test whether the anomalous users flagged by our model
are among the known compromised accounts. We hence define the label for
a user to be 1 if it is compromised during the observation window, and 0
otherwise.

4.3.2 Results and discussion

We present results from four 7-day observation periods, beginning with day
51 in Table 4. On average, we have over 9,000 active users during each
period, running over 5,000 unique processes. As we slide the window forward
in time, we observe a greater number of compromised days (1 day, 2 days, 5
days, and 7 days). We achieve promising results in terms of overall accuracy
of the algorithm and the ROC curve for each of the four moving windows is
shown in Figure 18.
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Compromised days All Users Compromised Users AUC

1 Day 8897 2 0.87
2 Days 8939 2 0.96
5 Days 8695 4 0.96
7 Days 8654 4 0.90

Table 4: AUC results for 1-7 compromised days. All users is a count of the total
number of users active during the period, and compromised users is the number of
malicious users.
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Figure 18: ROC curve for each window including 1, 2, 5, and 7 compromised
days. We consistently achieve high AUC scores.

The distribution of the normalised anomaly scores for each user is shown in
Figure 19. The lower the score, the more anomalous a user is. In a real-world
setting, we imagine that all users below a certain threshold of suspicion will be
flagged as anomalous, and that list of users can then be further investigated.
The threshold selected will likely depend on two factors, being the level of
tolerance to false positives, and the capacity of the organisation to manually
inspect users. We find that applying a threshold of 3% typically results in
under 200 employees and allows us to find at least one compromised user in
each time window considered.

34



0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
0

100

200

300

400

500

600

700

800

Figure 19: Distribution of anomaly scores for days 52-58 (two compromised
days). The lower the score, the more anomalous a user is. The vertical represents
the threshold for identifying anomalous users.

4.3.3 Future Work

There are a number of promising avenues for future work. First, a richer
graph model can be constructed by using weighted edges in order to further
improve accuracy. For example, edge weights can represent the number of
days the process was used by each user. Second, we have only explored one
observation period (a 7 day window), and further investigation is needed in
order to determine the optimal observation window. The results presented
only considered users. It would also be interesting to extend the analysis to
computer accounts as well, in order to see whether results generalise.

Lastly, in order to improve confidence in the anomalies detected and also
decrease the number of suspicious user flagged, we can draw on insights
from multiple types of activities and combine predictions. For example, we
can re-define the graph in terms of authentication activity (where nodes
would represent users and the devices they authenticate to), and in terms of
network flow activity (where nodes would represent users and the IP
addresses they connect to). The three models models can be integrated
such that the resulting set of anomalous users would be a function of the
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results from each model (e.g., the intersection of anomalous users).
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4.4 Anomaly detection on categorical data

4.4.1 Problem statement and motivation

Here we introduce several anomaly detection methods that flag unusual
activity for further manual inspection (similar methodology to [2]). We
motivate our approach by noting that enterprise environments tend to be
relatively homogeneous, with many applications being restricted or
centrally provisioned; and with users leveraging similar tools on a
day-to-day basis. Thus, we investigate the possibility that, upon account
compromise, the user significantly changes behaviour in terms of processes
launched. Consider a sequence of length l of matrices Lt of size ut × pt,
where

Lt
ij =

{
1, if user i has launched process j on day t,

0, otherwise,

and

ut = number of users in system at time t,

pt = number of unique processes in system at time t.

Our objective is to produce, for each time step t, a ranking vector rt of size ut,
ordered by the anomaly score corresponding to each user. A high anomaly
score corresponds to unusual activity; thus it may indicate that the user
requires closer monitoring. The generation of the anomaly score depends on
the particular patterns in the matrices Lt being examined. These approaches
summarise user activity using categorical or binary features. We have focused
on the identifiers of the processes launched by a particular user. Figure 20
gives a general overview of the data processing and analysis pipeline.

For computing anomaly scores, we consider two methods: Attribute-Value
Frequency (AVF) - also described in [2] - and Formal Concept Analysis
(FCA). For the following descriptions, we consider each user-process matrix
Lt as a dataset D. We also introduce and motivate our evaluation method,
normalised discounted cumulative Gain (nDCG). In what follows, we call
attributes the columns of matrix Lt and objects/data points its rows.
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Original datasets

Step 1:
Feature extraction

Construct Boolean matrices Lt for each time step t

Step 2:
Context processing/Anomaly detection

Anomaly score rankings rt

Step 3:
Comparison with ground truth

Evaluation of true positives and ranking metrics (e.g nDCG)

Evaluation steps (optional)

Figure 20: General anomaly detection approach

4.4.2 Attribute Value Frequency

Attribute Value Frequency (AVF), introduced in [20], is a fast, scalable and
accurate non-parametric outlier detection technique for categorical data. The
intuition behind the algorithm is that outliers have attribute values which
are infrequent across the dataset. We denote x(i) a typical record/row of

matrix Lt at position i and write x
(i)
j for the value of attribute j in x(i).

If cj is the number of occurrences of attribute value 1 for attribute j, i.e.

cj = |{i | x(i)j = 1}| = ∑n
i=1 x

(i)
j for a dataset D of size n, then the AVF score

of a data point x (as described in [20]) is then computed as

AVF(x) =
1

m

m∑
j=1

xjcj + (1− xj)(n− cj).

That is to say, the contribution to the score for attribute xj is cj, the number
of occurrences of j-value of 1, when xj = 1, otherwise, the contribution is
the number of occurrences of a j-value of 0. The initial multiplication by
1/m effectively averages the counts, so 0 ≤ AV F (x) ≤ n, but such scaling
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has no effect on the relative ordering among scores. To make this score
potentially suitable for a streaming setting (where the original score would
monotonically increase and be meaningless), we modify the AVF score to use
the probability of occurrence of attribute values (with pj = cj/n) instead raw
counts such that:

AVF’(x) =
1

m

m∑
j=1

xjpj + (1− xj)(1− pj).

In our setting, this modification only changes the scale of the scores (now
comprised between 0 and 1) but not the relative ordering among scores. For
more details, see [20].

4.4.3 Formal Concept Analysis

Formal concept analysis (FCA) is a mathematical model for data analysis
and knowledge discovery. Given a dataset, structured as a set of objects
O, a set of attributes A and the binary relation R ⊆ O × A between these
two sets, the aim of FCA is to derive the implicit relationships between
objects and attributes i.e group together objects (or observations) by shared
attributes. Typically, if the dataset is matrix Lt, objects would be the rows
of the matrix, user identifiers here, and attributes would be its columns, that
is process names. FCA outputs concepts formed by a set of objects and a
set of attributes such that:

• All objects in the set of objects have all the attributes in the set of
attributes.

• There are no other objects in the formal context that have all the
attributes in the set of attributes (of the formal concept).

• There are no other attributes in the set of attributes (of the formal
concept) that all the objects (in the set of objects of the formal concept)
have.

FCA can therefore be considered to be a conceptual clustering method
since the attribute set of each formal concept provides an explanation for
the grouping of the concept’s objects together. Association rules (i.e.
dependencies between attributes) can also be derived based on the concepts
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generated by FCA ([33, 34, 1]). Further details on FCA and association
rule mining are provided in [32, 12, 13, 21, 33, 34, 1].

The idea behind using FCA for anomaly detection is as follows:

1. FCA is used to extract frequently co-occurring sets of attributes from
the data, thereby inferring highly likely rules for system behaviour.

2. Each user is then scored according to the number of rules it violates
and an associated confidence.

3. The users are then ranked in order of anomaly score (the highest score
being the most anomalous in this setting).

4.4.4 Normalised Discounted Cumulative Gain (nDCG)

The output of the anomaly detection methods we used is a ranking of users
according to their anomaly scores. Here, we suggest using the normalised
discounted cumulative gain metric or nDCG for short, which is a metric
frequently used in information retrieval to assess the quality of a ranking. [17]
considered a typical document search application and argued that relevant
documents found further down a list of returned results are highly unlikely to
be looked at by a user as they would need more time and effort to be found,
thus they become less valuable. This concept motivated the introduction of
the nDCG measure [17] and here we apply this to lists of potentially malicious
or anomalous behaviour.

The nDCG metric is computed in two steps. First, we compute a score
called discounted cumulative gain or DCG. The DCG score relies on the fact
that each document/entity in the ranking is assigned a relevance score and
is penalised by a value logarithmically proportional to its position/rank in
the list of results. We have

DCGN =
N∑
i=1

reli
log2(i+ 1)

,

where N is the number of entities/documents in the list, reli the relevance
score of the ith entity/document in the list. We then normalise the DCG
score by the ideal DCG score (iDCG), which is simply the best achievable
DCG score, i.e. the score that would be achieved if all relevant entities were
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at the top of the list. If we suppose we have p relevant entities in the list,
the scores can be computed as follows:

iDCGN =

p∑
i=1

reli
log2(i+ 1)

, and nDCGN =
DCGN

iDCGN

Here we only consider entities to be either relevant (user accounts that are
part of an attack) or irrelevant (user accounts with normal behaviour) and
assign a relevance score reli of 1 to compromised user accounts and of 0
to user accounts with benign activity, and the idealised score results from
ranking all k compromised user accounts at positions 1, . . . , k. The closer
the nDCG score is to 1, the better the ranking.

4.4.5 Results and brief discussion

We have considered l = 21 time steps, between days 54 and 74 of the provided
dataset, a period in which the red team was active. For each day, we produced
anomaly scores by the AVF and FCA methods, as well as a linear weighted
combinations of their scores. We then ranked these anomaly scores in order,
obtaining a ranking of users with the highest anomaly scores. Average nDCG
scores for the entire period are displayed in Table 5. The nDCG scores were
generally relatively low (in the 0.11-0.15 range). The strongest performing
anomaly scoring method was AVF, with an average performance of 0.147
over the days when red team data is available. However it is worth noting
that the maximum number of compromised accounts, defined a successful
login attempt by the red team, for a single day is 4.

Method Average nDCG

FCA 0.115
AVF 0.147
FCA + AVF 0.137

Table 5: Average nDCG scores obtained in the experiments.
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4.4.6 Limitations

It is important to note that the nDCG metric may not provide the full picture
in this context and for this type of problem, one should be careful trying to
summarise results with only one single metric. However, we have identified
the following possible limitations, which if addressed should increase the
feasibility of the presented approach for this problem.

1. Insufficient validation data: By analysing the percentiles in which the
compromised users were found, we empirically obtained promising
results. However, it is difficult to assess the reliability of these
approaches using standard metrics with such little ground truth
information.

2. Summary data insufficient : The summary data, whilst very useful
given our time and computational constraints, may not capture the
entire complexity of the user-process relationship. For better
performance, we would choose to work with the full process data.

3. Parameter tuning : While AVF doesn’t require any parameters, the
FCA-based anomaly detection does. Here, given time constraints, we
only selected two parameter settings that seemed likely to provide a
good trade-off between speed of execution and informativeness of the
rules extracted (and therefore anomalies detected). Selecting the right
parameter setting would require further exploration.

4.4.7 Future work

We have identified the following possible items as future work:

1. Explainable anomaly detection As explained earlier, the basis for the
FCA-based anomaly detection method is the scoring of entities of
interest depending on the number and severity of system rules’
violated. So we know, for each anomaly detected, which were the
rules that were violated and thus contributed to the anomaly score.
So we should be able to not only provide a listing of anomalies ranked
in order of ‘suspiciousness’ but also provide an ‘explanation’ for the
anomaly, or reasoning for its high score.
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2. Understanding the temporal trends of anomaly scoring. So far, we
scored anomalies on a day to day basis. Future work would include
exploring how anomaly scores relate to each other across time.

3. Using richer feature representations. Better anomaly score rankings
may be produced by using richer feature representations, such as
larger categories or numerical data (e.g using features from the
Netflows dataset that was not used here or making better use of the
authentication data).

4. Combining outputs of anomaly techniques on numerical data to our
techniques outputs. We would like to explore applying a variety of
anomaly detection techniques suitable for numerical data on features
such as these and combining the outputs of such techniques with the
outputs of the anomaly detection techniques we proposed here. One
possible candidate numerical anomaly detection technique would be the
Histogram-based Outlier Score (HBOS) introduced in [16] because of
its apparent scalability and the fact that it doesn’t seem to require too
much parameter tuning.

5. Building probabilistic models. The features presented here may be
combined with other hand-crafted features to build a probabilistic
model for anomaly detection, the simplest example of which is a
multivariate Gaussian. This would allow per-user alerts when
combinations of features are particularly unusual.

6. Using GPU-accelerated versions of algorithms. The matrix-based
algorithms we have presented are the ideal scenario for GPU
acceleration. Indeed, such implementations already exist for FCA,
[22, 21].
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4.5 Quantile additive model for NetFlow anomaly
detection

In [9] it is proposed to use quantile regression forests (QRFs) for NetFlow
anomaly detection, [23]. The idea consists in observing the number of
connections initiated in a fixed time bin and try to detect if the traffic is
unusual. However, as the network traffic varies over the day, it is not
possible to use a fixed limit that would determine if the traffic is unusual.
QRFs allow us to model a given quantile of distribution of the traffic
conditional on some covariates, say, the time of the day or the number of
packets sent. Once the quantile regression has been fitted, we can then test
if a traffic is unusual compared to previously observed traffic. Although
QRFs proved very useful, a major issue with their use is the difficulty to
interpret them. If the regression has multiple covariates and we use QRFs,
we cannot easily identify why a flag has been raised.

Quantile additive models (QAMs) are semi-parametric models that combine
flexibility with interpretability. Thanks to recent advances in QAMs, [10],
[14], QAMs could now be used instead of QRFs to obtain more interpretable
quantile regressions for anomaly detection. Linked to these articles, two R
packages are currently available (‘qgam’: [11], ‘aqmm’: [15]).

4.5.1 One Dimensional Example

As an example, in Figure 21, we fit quantile regression curves (here are 5%
and 95%) over a single day with a single covariate (epoch time).

4.5.2 Covariate Analysis

In this section, our observed variable is the number of connections in a 30
second time bin (referred to as time t). A list of potential covariates for the
quantile regression is given below.

1. Time of the day (t itself): This is the covariate used in Section 4.5.1.

2. Autoregressive coefficients: Number of connections during time bins
(t− 1, t− 2,...,t− k), where k is to be determined.

44



Figure 21: This example shows a fit using package qgacv of 5% and 95% quantiles
using a single covariate (epoch time). The data is NetFlow data from day 2. Epoch
time is split into 20 seconds bins and the number of connections per bin is counted.

3. Number of unique source computers/destination computers during time
bin (t− 1).

4. Average source/destination packet size during time bin (t − 1). To
calculate the packet sizes we used NumberOfBytes/NumberOfPackets.
If NumberOfPackets = 0, we set AveragePacketSize=0. The ratio of
these values can also be considered.

5. Average communication duration during time bin t− 1.

6. Number of communications over time bin (t − 1) that use a given
protocol. There are three protocols used in the dataset: 1 (ICMP), 6
(TCP) and 17 (UDP).

Using this list, we can begin to explore the relationships between these
variables and our output. In Figure 22 we consider each of days 3–6 and
show the number of communications for the time bins.

In the following figures, we consider using several covariates over a single day
(day 3) for the analyses.

45



Figure 22: This figure shows indication of a link between time of day and number
of connections.
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Figure 23: Plot of log connection count vs 4 potential covariates: number of
unique source computers, destination computers, and their average packet sizes
during time bin t− 1.

47



Figure 24: Plot of log connection count vs 4 potential covariates: ratio of
number of source packets to number of destination packets, average communication
duration, and the number of communications using each of protocol 1 (ICMP) and
6 (TCP).
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4.5.3 A four covariate fit

Based on our previous analysis, we can now fit a four covariate example.
We merge the data, from between midnight and 10am on days 3–6,
providing us with 4 observations for each 30 second time bin. In Figure 25
we show the 5% quantile regression curves for each of the 4 covariates,
being time, number of unique source computers at (t − 1), percentage of
previous connections over the previous 30 seconds (t − 1) that were using
protocol 6 and entropy destination at t − 1. Note that the entropy
destination is simply an empirical probability for each of the unique
observed destinations. We see that most covariates seem to have a relation
with the response, whilst the entropy destination (t-1) shows little
correlation with the response for the 5% quantile. Section 4.5 could be
complemented by fitting the regression over more days, or different parts of
the day, analysing other potential covariate combinations and comparing
the results to QRFs, [23].

Figure 25: QAM fit for 5% quantile together with 5% confidence interval.
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4.6 Procrustes analysis on adjacency embeddings for
NetFlow data

In this section, the graph adjacency matrices obtained from the daily
summaries of NetFlow connections are considered. For each day
t = 2, . . . , 90, a graph Gt = (VS, VD, Et) is obtained. The sets VS and VD are
two distinct node sets: VS represents the set of source nodes observed in the
entire dataset, and similarly VD is the set of destination nodes. The set Et

is a time dependent edge set, where (i, j) ∈ Et, i ∈ VS, j ∈ VD if i → j on
day t. Note that, in general, VS ∩ VD 6= ∅ since each node might
simultaneously act as a source or a destination. Usually, the behaviour of a
node when acting as a source is different from its activity patterns as a
destination, and therefore the graphs can be roughly interpreted as
bipartite, yielding binary adjacency matrices At ∈ {0, 1}|VS |×|VD|,
{At}ij = 1Et{(i, j)}, where 1·{·} represents the indicator function.
Potentially, it is also possible to consider weighted adjacency matrices
based on the daily counts of the number of observed events on each edge,
but this approach is not advisable since the counts are extremely
heterogeneous. A possible alternative could be to set weights
Wijt = log(1 + Nijt), where Nijt represents the number of observed
connections on the edge (i, j) on day t.

4.6.1 Embedding directed graphs

For any matrix M ∈ Rm×n of rank k, there are orthogonal matrices U ∈
Rm×m, V ∈ Rn×n and a diagonal matrix D = diag(σ1, σ2, . . . , σk) ∈ Rk×k,
where the σi’s are called singular values of M, and the columns of U and V
are the left and right singular vectors of A, such that:

A = U

[
D 0
0 0

]
V> with σ1 ≥ σ2 ≥ · · · ≥ σk > 0.

The above decomposition is called singular value decomposition (SVD) and
can be efficiently used to obtain low-dimensional embeddings for an adjacency
matrix of a directed graph.

The SVD is a standard method for embedding directed or bipartite graphs
[5, 7]. Given an graph with adjacency matrix At ∈ {0, 1}U×V , U = |VS| and
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V = |VD|, for one of the daily graphs introduced in the previous section, and
a positive integer r ≥ 1, consider the singular value decomposition

At =
[
Ut U⊥t

] [Dt 0
0 D⊥t

] [
V>t
V>⊥t

]
= UtDtV

>
t + U⊥t D⊥t V>⊥t ,

where Ut ∈ RU×r, Dt ∈ Rr×r
+ diagonal, Vt ∈ RV×r, and the other matrices

have consequently appropriate dimension. The r-dimensional adjacency
embedding of At in Rr are defined as:

Ût = UtD
1/2
t , V̂t = VtD

1/2
t .

Similarly, it is possible to construct an embedding of the graph based on the
normalised Laplacian matrix for the directed graph and its singular value
decomposition:

L = I−D
−1/2
out AD

−1/2
in ,

where Dout and Dout are the out-degree and in-degree matrices

Dout = diag
(∑n

j=1
Aij

)
, Din = diag

(∑n

i=1
Aij

)
.

4.6.2 Procrustes analysis of shapes

Procrustes analysis [see e.g. 6] is a common technique used in statistical shape
analysis. Given two shapes C1 and C2, Procrustes analysis aims to find the
optimal superimposition S(C2) of C2 on C1 using three types of operations:
translation, scaling and rotation. In some cases, reflection is also used.

Assume that the two shapes C1 and C2 are represented by two matrices of
equal size, say n × m, and that C1 is used as reference shape. Procrustes
analysis proceeds as follows:

1. translate the shapes by removing the centroid,

2. scale the shapes to have variance 1 on each dimension,

3. rotate the shapes resulting from the previous step by minimising the
sum of the squared distances between the points.

A 2-dimensional toy example of the steps involved in the Procrustes
alignment is presented in Figure 26.

51



Reference shape Translation Scaling Rotation

Figure 26: Pictorial representation of Procrustes alignment of two clouds.

Potentially, it is possible to use the same method to superimpose a set of q
shapes Cj, j = 1, . . . , q to a reference shape C0, but improved results are
usually obtained by generalised Procrustes analysis (GPA). The GPA
algorithm iterates standard Procrustes analysis, updating the reference
shape:

1. choose an arbitrary reference shape (e.g. select it from the available
shapes),

2. repeat (for a small number of iterations):

(a) apply Procrustes superimposition of the shapes to the current
reference shape,

(b) set the updated reference shape to the mean shape of the current
set of superimposed shapes.

4.6.3 Scoring source and destination nodes using Procrustes
analysis of the adjacency embedding

Assume that the adjacency embedding for the source nodes, Ût ∈ RU×r, for
a suitably chosen r, are calculated for t = 2, . . . , 90. The embedding can be
interpreted as a r-dimensional shape, and the normal activity of the
network can be roughly interpreted as the reference shape observed over a
training period of no attacks. Anomalous nodes will correspond to latent
positions on the shapes which largely deviate from the learned normal, or
reference behaviour. More formally, comparable re-aligned shapes
Û?

t ∈ RU×r for the entire dataset can be obtained from Procrustes analysis,
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generalised Procrustes analysis, or a combination of the two. Moreover, a
reference shape Û ∈ RU×r must be obtained for comparisons among
different graphs. Comparison between the aligned shapes and the reference
allows to understand which of the graphs deviate from the normal
behaviour of the network. A simple score of overall dissimilarity is, for
example:

∆t = ‖Û?
t − Û‖F ,

where ‖ · ‖F denotes the Frobenius norm. Similarly, standardised scores
∆it, i = 1, . . . , U, t = 2, . . . , 90 for detection of anomalous nodes can be
obtained as follows:

∆it =

√√√√1

r

r∑
j=1

(
Û?
tij − Ûij
Ûij

)2

.

Reference and realigned shapes, used for anomaly detection purposes, can be
calculated in different ways. Three methods are discussed here:

(1) calculate the generalised Procrustes alignments on a training set of
shapes, and take the mean of the resulting shapes as reference for
anomaly detection. Then align the shapes in the test set to the
reference shapes and calculate the anomaly scores,

(2) calculate generalised Procrustes aligments on the entire dataset, and
take the mean of the aligned shapes as reference. Then calculate the
anomaly scores from the distances between the realigned shapes and
the reference,

(3) calculate the mean shape on a training set, use it as reference, and
calculate standard Procrustes alignments with respect to the reference
for all the embeddings in the dataset.

Preliminary analysis of the results seems to suggest that method (1) does not
provide reliable scores since the test set shapes tend to be largely mismatched
compared to the training set shapes. More encouraging results have been
obtained using methods (2) and (3).

The scores ∆it can be compared across all the source nodes, on each day. A
similar analysis, following the same principles, can be carried out to score
anomalous destination nodes.
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A sequence of separate graphs separated by port number could also be
obtained, and Procrustes analysis could be used to obtain a mean shape at
each time point, to detect variations specific to connections on a specific
port.

4.6.4 Results

The NetFlow data, summarised per day, have been filtered to consider only
the successful mappings to CompXYZ. The failed mappings, anonymized as
IPxyz, have been removed. The number of latent features has been chosen
to be r = 50, by visual inspection of the scree plot of the singular values [see
e.g. 18].

The plot in Figures 27 and 28 report the scores ∆it for the compromised
source node Comp215429, obtained using reference shape and realigned
shapes resulting from methods (2) and (3). Five spikes are clearly present
in Figure 27: LANL experts confirmed that the behaviour detected was a
scan of the network being performed from the compromised node. Evidence
of increased anomalous behaviour is also present at different dates, when
red team activity was performed in the authentication dataset. This is
more evident in Figure 28.
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Figure 27: Time series of anomaly scores ∆it for the compromised source node
Comp215429, using method (2) from Section 4.6.2.
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Figure 28: Time series of anomaly scores ∆it for the compromised source node
Comp215429, using method (3) from Section 4.6.2.

On the other hand, Figure 29 shows that the interpretation of the scores is
not straightforward: in general different scales are observed, and node specific
thresholding methods should be used to reliably detect deviations from the
normal behaviour of the network. Future work must necessarily address
the problem of normalisation of the scores for more direct comparison of
abnormal deviations from the learned reference shape.

In Figure 30, the analysis is repeated for the destination nodes, and shows
that the scores exhibit increased anomaly levels during the days when the
red team is active.
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Figure 29: Time series of anomaly scores ∆it for 4 source nodes chosen at
random, obtained using method (2) from Section 4.6.2.

55



0 10 20 30 40 50 60 70 80 90
0

50

100

150

Day

∆
j
t

Comp953804
Comp885293
Comp724879
Comp123959

Figure 30: Time series of anomaly scores ∆jt for 4 compromised destination
nodes, obtained using method (2) from Section 4.6.2.
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Figure 31: Time series of Frobenius anomaly scores ∆t for the entire destination
node embedding, using method (2) from Section 4.6.2.

Finally, Figure 31 shows the overall Frobenius scores ∆t for the destination
node embeddings. It is evident that the structure of the network did not
change consistently during the activity of the red team, and the scores are
only able to detect seasonal changes.
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4.7 Reconstruction of the attack chain in NetFlow
data

To understand the behaviour of the attack chain in the LANL network, we
consider a known compromised source node. The red team attack can be
seen to have started at node Comp215429 on day 57. For this analysis we
consider all network devices that are connected to Comp215429 over a
period of approximately 40 days. Edges where the destination nodes were
identified as IPxyz were excluded as these were not successfully attributed
to any known domain name. In the NetFlow data, we identified 55,025
unique edges emanating from this red team source node and consider the
corresponding daily counts for each. This provides us with a matrix, M , of
approximate dimension 55025×40, where each row represents a unique
edge, and the columns reference the day of interest.

In Figure 32, we plot the aggregated counts (over 40 days) for all the identified
unique edges having source node Comp215429. The labelled bars in Figure 32
are destination nodes with the highest overall activity across the 40 days. The
node with highest sum of counts corresponds to the EnterpriseAppServer

node, which is expected given it is a core machines in this network.
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Figure 32: Edges with corresponding counts of connection.
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In order to reconstruct the attack chain, for each of these nodes we show
the nature of the counts per day, as in Figures 33, 34 and 35. Thus we can
mark highly irregular activity as more suspicious than consistent behaviour
and iteratively apply this idea to identify ‘anomalous’ nodes. This allows
us to illustrate paths which are more likely to exhibit attack behaviour and
begin to reconstruct the most likely attack path(s), as illustrated in Figure
36.

Figure 33: Figure showing the daily counts for each of the destinations with
the highest frequency of connections across the attack period from source node
Comp215429.
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Figure 34: Daily counts for each of the destinations with the highest frequency of
connections across the attack period from source node Comp389338.

Figure 35: Daily counts for each of the destinations with the highest frequency of
connections across the attack period from source node Comp501516.
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Figure 36: Graph representation of the reconstructed attack chain, where the red
node denotes the known compromised red team client machine, and the orange
nodes denote some potentially suspicious devices.

We can now consider using spectral theory to test for regularities between
both suspected anomalous, and normal network edges. As mentioned
before, the red team source node is identified as Comp215429 based on the
authentication data. From this we consider the paths to three of the
connected nodes on day 57, focusing on the NetFlow data. For each of
these edges, we consider the transmission of information over the course of
the day as a series of aggregated counts per unit of time (here, per second).
In this way we can form a time series of events per bin and apply spectral
methods to these streams. In particular, we consider the estimated
spectrum, using a method known as multitapering, and from these compute
the estimated coherence and partial coherence [25]. Note that the coherence
function provides us a measure of correlation in the frequency domain,
whilst partial coherence between two processes measures the coherence
after removing linear effects from rest of the nodes in the network. In
essence, multitaper estimation uses K orthogonal data tapers to reduce
bias in the spectral estimation procedure. The resulting multitaper spectral
estimate used is an average of the K direct estimates. Here we consider
three time series, representing three edges within the LANL network, all
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originating at the red team source node, Comp215429. The figure 37
illustrates the result.

Figure 37: A figure illustrating the partial coherence between each of the three
edges considered. Frequency of oscillation goes from 0 to the Nyqiust frequency,
1/2.

Here we have used the number of events per second on day 57 for each of the
following edges:

1. S1: Comp215429 −→ C275646.

2. S2: Comp215429 −→ C528261.

3. S3: Comp215429 −→ EnterpriseAppServer.

Thus the above plot illustrates the relationship between each of these three
edges. The premise for doing this is that in theory, we do not expect
coherence between edges of a network and thus any regions of significant
coherence may indicate anomalous behaviour. Significance has here been
determined by using a multiple hypothesis test on each of the three partial
coherence estimates as given by theory in [28]. Whether this anomalous
behaviour is in fact malicious would need to be investigated using other
methods and further data sources. Nevertheless, it is of interest that the
partial coherence between S1 and S2, and S1 and S3 is non-significant
whilst between S2 and S3 is.
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5 Conclusion and Future Work

Overall, here we have explored a wide range of different ideas and methods for
investigating enterprise cyber-security data. Whilst no single method stands
as a clear solution, this is to be expected due to the vast and open-ended
nature of this challenge. Many interesting directions were explored here and
with improvements and combinations of these approaches, there is promise
for further developments in this area. Specific directions for future work
have been described in detail at the end of each analysis section, along with
a discussion identified limitations. We summarise the key areas for future
work here.

Self-organising maps, as explored in Section 3, provide a promising method
for visualising high-dimensional multi-source data, and further, identifying
unusual behaviour with interesting results. Thus, this has potential to be
a powerful method for application in cyber-security. As the experiments
presented have only considered features derived from NetFlow activity, it
would be useful to extend this to research how SOM’s might be able to
capture the behaviour of the network from multiple sources. For this, we can
also potentially consider combining this analysis with other methods explored
which aim to handle data fusion and dimensionality reduction.

Topic modelling methods as discussed in Section 4.1, highlighted that from
this dataset, malicious processes can be captured compactly by a few
topics, an important result. Whilst this methodology would need to be
made more robust and rigorous, it could prove interesting to investigate
using the output to inform other models tried here. Due to time
limitations, we were not able to present results for merging data effectively.
This is a key area which we would like to develop further. K-means
clustering methods have also been considered for grouping behaviours and
identifying anomalous communication paths. Extension of these ideas has
been shown to perform well on other datasets, [8] and so with further time,
this may also provide insight into how best to merge the data sources. By
investing in this area, we believe that many of the analysis methods
explored here could achieve better results.

Other areas which illustrated particular potential for anomaly detection were
FCA and AVF as they have scope to provide analysts with ranked anomaly
scores, and also an associated reasoning, and procrustes analysis.
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Bertrand Nortier is a PhD student at the University of Bristol (School
of Mathematics) and is currently a PhD enrichment scheme student at the
Alan Turing Institute. Bertrand wrote section 4.5 of this report (Quantile
Additive Model for NetFlow Anomaly Detection).

Camelia Simoiu is a PhD candidate at Stanford University. She is broadly
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and draws on methods from machine learning, applied statistics, and online
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academically rigorous. He likes to bring his enthusiasm for developing and
working on projects that achieve results on time and budget. He enjoys
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cyber-security.

Ghita Berrada, currently a Research Associate in Health Informatics at
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data fusion for anomalous activity detection.
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