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Abstract

This report presents the output of a week-
long collaboration between Spend Network,
and lead academics from the University of
Manchester and the University of Oxford that
attended the Data Study Group at The Alan
Turing Institute. Spend Network is a platform
that aims to enable efficient public procure-
ment. The goal of this work was to match
suppliers to tenders. Our approach consists
of building vector representations of suppli-
ers and tenders and identifying their compat-
ibility with the distance between the respec-
tive vectors. In building their representations,
we make use of both their textual descriptions
and the knowledge of previously awarded con-
tracts. We find previous contracts informative
of future procurement decisions. Our best re-
sults use Correlated Topic Models (Blei et al.,
2007) for extracting representations of textual
descriptions.

1 Introduction

Spend Network is a platform that aims to enable
efficient public procurement, by connecting sup-
pliers to government tenders. The goal of our
project was to find discover connections between
tenders posted on the platform and suppliers reg-
istered on the platform.

We had two applications in mind. First, to use
these connections to improve relevancy of results
when suppliers search for tenders. Second, to
build a recommender system that would alert rele-
vant suppliers when a new tender is released.
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1.1 Data Overview

We had access to historical data from Spend Net-
work. The data contains information in terms of
different aspects in public procurement, and is di-
vided into two files.

The first file contains information about previ-
ous contracts. Once a supplier has won the bidding
process to carry out goods, works, or services, de-
tailed in a tender, and they have made a contract
agreement with the buyer, a contract document is
published. This shows a successful connection be-
tween a supplier and a tender.

The second file contains public raw text data
scraped from each supplier’s website.

1.2 Methodology Overview

We employed several methods of discovering con-
nections between tenders and suppliers. For each
tender and supplier, they all proceed by first build-
ing a tender representation from the textual de-
scription of the tender, a supplier representation
from the textual description of the supplier in
conjunction with text scraped from their website.
Then, they assess the appropriateness of the sup-
plier for the services demanded by the tender by
looking at the similarity between the two repre-
sentations.

The first category of approaches are com-
pletely unsupervised and only make use of the
text data described above. Such approaches build
the supplier and tender representations as low-
dimensional embedding vectors of the correspond-
ing texts. We call such an approach a textual em-
bedding approach.



The second category uses not only the descrip-
tion text to build embeddings, but also exploits
previous connections, that is, previous successful
contracts, in our dataset. They embed information
about the topology of the graph of previous con-
nections in these embeddings. We call such an ap-
proach a graph embedding approach.

The third category only looks at text, but trains
topic modelling systems on our dataset and repre-
sents each entity (supplier or tender) as their per-
document topic proportions, where a document
consists of the textual description. We call such
an approach a topic modelling approach.

1.3 Main Conclusions and Limitations

Graph embedding approaches proved more bene-
ficial and robust to irregularities than textual em-
bedding approaches, particularly when one sup-
plier seemed to dominate a lot of past connections.
Topic modelling approaches proved most benefi-
cial of all in recommending tenders to suppliers.
All in all, our methods could be used to refine
Spend Network’s search and recommendation sys-
tem.

Our data, especially the subset of it which was
scraped from websites, is particularly noisy, espe-
cially in the sense of including information that
would not be useful to particularise a specific sup-
plier. This proved disruptive of the performance of
our methods. The textual description, apart from
website data, was also missing for some of our
suppliers.

Furthermore, previous connections only in-
cluded information about suppliers that won the
bid for a tender, not about suppliers who bid and
did not win. Such side information could provide
important additional insights regarding the assess-
ment of a match between a supplier and a tender.

Finally, there was no structured mapping from
contract data to the set of tenders. This mapping
had to be inferred based on the description of the
associated tender attached to each contract.

2 Data Analysis

In this section we provide a more detailed descrip-
tion of our datasets, our data analysis, the prepro-
cessing steps we employed.

2.1 Datasets

We have two datasets to discuss. The contracts
dataset and the supplier website text dataset.

2.1.1 Contracts Dataset

The contract dataset discussed above contains
11,815 contract notice records with 1,288 unique
government buyers and 3,592 unique suppliers.
Each record in the dataset has 27 fields as follows:

e json: the format of the OCDS content, con-
taining all information of the tenders;

e ocid: global unique ID of the notice, com-
prised of a prefix, a source id and a notice id;

e source: indicates the source the data was col-
lected from;

e releasedate: date the information was first re-
leased (equal to, or before the publish date);

e aw_title: title of the award;
e aw_description: description of the award;

e cpv_code: category codes related to the ten-
der notice;

e cpv_string: description of the primary CPV
code;

e levell: government level one;

e level2: government level two;

e level3: government level three;

e buyer_id: official ID of the buyer;

e buyer: entity purchasing the goods or ser-
vices;

e countryname: country of the buyer;

e supplier: the supplier the tender was awarded
to;

e supplier_id: official ID of the supplier;
e supplier_type: company type of the Supplier;

e supplier_is_sme: whether the supplier is a
small or medium enterprise;

e supplier_locality: locality of the supplier;

e supplier_postcode_geo_point:
postcode;

suppler geo

e supplier_status: status of supplier organisa-
tion;



e aw_contract_start: starting date of contract,
where provided;

e aw_contract_end:
where provided;

ending date of contract,

e aw_value string: total value of award, as a
string;

e clean_aw_val: clean value as float, O if non
numeric;

e aw_currency: currency of the value;

e text: concatenation of the title, description,
aw title and aw description fields.

2.1.2 Supplier Website Text Dataset

The supplier website text dataset contains 255
records of the textual information from the web-
sites of the suppliers. Each record has 4 fields as
follows:

e company_name: name of the company;

e company_url: URL of the companys home-
page;

e home_page_text:
homepage;

text from the companys

e about_or_contact_text: text from the compa-
nys about us or contact us page;

2.2 Exploratory Data Analysis

To explore the contract dataset, we start by visual-
ising the bipartite graph between the government
and the suppliers (4,880 nodes in total), which is
shown in Figure 1.

In the figure, each entity (buyer or supplier) is
marked with a circle, of which the radius is pro-
portional to the number of contracts the respective
entity is involved in. We can see that there are
a few buyers which are very popular. Thus, it is
interesting to identify which local subgraphs have
a high proportion of edges present, i.e. are more
dense. One way of assessing the density of node
neighbourhoods is by computing the graph Lapla-
cian, L = D — A, where A is the adjacent matrix
of the graph and D is its diagonal degree matrix.
We consider the eigenvector corresponding to the
second largest eigenvalue, v which can be subse-
quently used to give an indication of how dense
the local neighbourhood of a node is. Here, we
mark the top 20 buyer nodes according to vy, and

mark their neighbour suppliers (447 in total). They
cover 5443 contracts in the data sets. The visuali-
sation for this is shown in Figure 2.

Finally, another interesting fact about the data
set is that there are actually two disjoint subgraphs.
This is found by looking at the eigenvalues of the
Laplacian corresponding to the adjacent matrix A,
of which the number of leading Os indicates the
number of connected components. By looking at
the actual subgraphs, we find that one of them
contains 4,841 nodes with 1,275 buyers and 3,566
suppliers, and the other has 39 nodes with 13 buy-
ers and 26 suppliers. It could be relevant to inves-
tigate why are these subgraphs disconnected from
one another.

2.3 Data Preprocessing

We preprocess the data sets to extract the needed
information to train our systems and to generate
the data needed to evaluate the performance. As
the ground truth (i.e., which contract was awarded
to which supplier) is contained in the contract data
set, we use it as a main source to extract the infor-
mation about contracts and suppliers. We extract
following fields:

e ocid (renamed as contract_id): the ID of the
contract;

e supplier (renamed as company_name): the
name of the supplier of the contract;

e aw_title + aw_description + cpv_string +
levell + level2 + level3 (concatenated and re-
named as contract_text): the textual informa-
tion of the contract, including its title, its de-
scription, the string that describes its procure-
ment category, and three strings related to its
government level.

We extracted the textual information of a com-
pany from the company’s homepage. For each
supplier, we use its name (company_name) as an
index, based on which we look for the information
of the supplier’s website from the second data set,
i.e. the supplier website text data set. If a record
can be found, we use the text from the supplier’s
homepage (i.e., home_page_text, renamed to com-
pany_text) and the text from the supplier’s about
us or contact us page (i.e., about_or_contact_text,
renamed to company_info).

The preprocessed data includes five fields (three
from the contract data set and two from the sup-
plier website text dataset. To generate the data
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Figure 1: Links from the contract dataset; only a random 20% of the total amount of links are shown.

for training our systems and evaluating their per-
formance, we randomly sample 90% of the pre-
processed data as the training set and use the re-
maining 10% as the testing set.

When we generated companies’ textual infor-
mation from the website description data set, some
companies’ names from the contract data set could
not be found. We only kept the companies with
textual information in our training and testing sets.
Our final training set had information about 13650
contracts, while the test set had information about
1740 contracts.

3 Methodology

In this section we formulate the computational
problems we are addressing, introduce notational
conventions, and suggest approaches for each
problem. Let S = {si,s9,...} be a set of sup-
pliers and T' = {t1, t2, ...} be a set of tenders.
We define the SEARCH problem as follows.
For a given supplier that enters the Spend Net-
work platform, retrieve those tenders that are most
compatible with the services that the supplier of-
fers. Formally, let n be an integer. The pur-

pose is to find a mapping ¢” C S x T™ with

O'n(si) = tw’itwé"‘tﬂa where s; € S, t; € T,

and 7* is the utility ordering function of supplier

s;. That is, ¢ is the tender that has precedence j
J

according to the preference of s;.

We also define the RECOMMEND problem as
follows. For a given tender posted on the Spend
Network, retrieve those suppliers that are most
suitable to the requirements of the tender. For-
mally, let n be an integer. The purpose is to
find a mapping 7" C T x S™ with 7"(¢;) =
SiSmi---Sm Where t; € T, s; € S, and 7t is
the utility ordering function of tender ¢;. That is,
Spi is the supplier that has precedence j according

to their suitability to be awarded tender ;.

We suggest the following approach for the prob-
lems defined above. First, create vector repre-
sentations of both tenders and suppliers. We
use the term embedding to refer to such a rep-
resentation. Then, for SEARCH, given tender
t;, retrieve the top n suppliers from S accord-
ing to the similarity between the embedding of
each supplier and the embedding of ¢;. That
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Figure 2: Same as Figure 1 with only top 20 most popular buyers marked with green circles and their suppliers

marked in blue circles (447 in total).

s
For RECOMMEND, given supplier s, we pro-
ceed in an analogous manner. That is, tﬂ =
arg max; cr cos(s;, t;) and so on.

What makes our approaches different from each
other is the way they create supplier and tender
embeddings, and the similarity metric they use.
This is what we focus on in the following sections.

I8, spi = argmax g cos(ti, s;) and so on.

3.1 Textual Embeddings

The first way to create tender and supplier embed-
dings that we suggest is completely unsupervised.
We first extract textual descriptions of each sup-
plier and each tender, as specified in Section 2.
We then use the ParagraphVector model (Le and
Mikolov, 2014) to create embeddings of each text.
As the similarity metric we use cosine similar-
ity between embedding vectors. We call this the
TEXT approach.

3.2 Filtered Textual Embeddings

We proceed as specified in the previous section,
but we filter out all words from the NLTK list of

English stopwords (Bird, 2006) from each text be-
fore creating the embeddings. We call this the F-
TEXT approach.

3.3 Graph Embeddings

The unsupervised approaches suggested so far
have the clear advantage of being able to handle
arbitrary tenders and suppliers, as long as these
have an associated textual description that can be
accessed. However, they make no use of historical
interactional patterns between tenders and suppli-
ers. In this section we include historical informa-
tion in the tender and supplier embeddings that we
build.

We proceed by representing tenders, suppliers,
and previous interactions between them in a bipar-
tite graph, as shown in Figure 3. Each node in
the first partition represents a tender that has pre-
viously been assigned to suppliers, and each node
in the second partition represents such a supplier.
Each undirected edge between one suppliers and
one tender indicates a previous assignment of that
tender to that supplier. Note that a supplier can
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Figure 3: Example of a bipartite graph between con-
necting suppliers to tenders, as discussed in Section 3.3

satisfy multiple tenders. We assumed a tender can
be assigned to exactly one supplier, which was the
case in our training data, and is the most common
real-life scenario. In building corresponding em-
beddings, we would like to exploit the topologi-
cal structure of this graph. Intuitively, the nature
of a supplier should be deduced not only from the
textual description that the supplier provides about
themselves, but also by looking at tenders that they
were previously assigned. Furthermore, consider-
ing all previous tenders should provide more infor-
mation than considering only one historical tender.
Similarly, the nature of a tender should be deduced
not only from its textual description, but also by
looking at the supplier it was assigned to.

We now describe how we exploit the topol-
ogy of such a graph to build embeddings for the
tenders and suppliers represented in that graph.
We use the Structural Deep Network Embedding
method (SDNE) suggested by Wang et al. (2016).
Intuitively, it builds an embedding of each node
in a graph while trying to preserve first and sec-
ond order proximity information. Two nodes are
in first order proximity if they are connected by an
edge. Two nodes are in second order proximity if
they share many neighbouring nodes, i.e. there is
a big overlap between their neighbourhoods. For-
mally, let G = (V, E) be a weighted graph with
nodes V' = {vz}llzl1 and edges F = {e”}lj?:1
Each edge e; ; connecting nodes v; and v; has an
associated weight s; ; > 0. s; ; = 0 marks the fact
that the two vertices are not connected. For any
pair of vertices v; and vj, if s; ; > 0 we say there
exists first order proximity between the two ver-
tices. Second order proximity, on the other hand,
describes the proximity between the neighbour-

hoods of the two nodes. Let P; = {si,j}l-v |

de-
J=1
note the first order proximity between v; and the
other vertices. The second order proximity be-
tween v; and v; is specified by the similarity be-

tween P; and P;, which indicates the number of

common neighbours that v; and v; share. In ac-
counting for second order proximity, we assume
that two vertices are similar if they share common
neighbours. This has been shown to be a reason-
able assumptions in several fields. For instance, in
linguistics, the distributional hypothesis assumes
two words are are in semantic proximity if they
tend to be surrounded by similar contexts (Dash,
2008). Social media users tend to be friends if they
share many common friends (Jin et al., 2001).

The purpose of SDNE is to find a mapping
f:V = RYwhere d < N. If f(v;) = u
and f(v;) = y;, the objective is to make the sim-
ilarity between y; and y; preserve first-order and
second-order proximity between v; and v;. To ac-
count for first order proximity, the model uses a
loss term which applies a penalty whenever simi-
lar nodes are mapped far away in the embedding
space RY, referred to as first-order loss. This ob-
jective is similar to that employed in Laplacian
Eigenmaps (Belkin and Niyogi, 2003). To account
for second order proximity, the model passes the
adjacency matrix of the graph through an au-
toencoder (Rumelhart and McClelland, 1987) and
identifies the second-order loss with the recon-
struction loss. The first and second order losses
are jointly minimised. For implementation details
we direct the reader to the original paper (Wang
et al., 2016). In our experiments, we make use
of their implementation published at https://
github.com/suanrong/SDNE.

Using SDNE we construct node embeddings of
our bipartite graph of tenders and suppliers. Each
embedding preserves information about historical
interactions between entities (tenders and suppli-
ers). The SEARCH and RECOMMEND problems
can be easily addressed using the familiar cosine
similarity between corresponding embeddings if
the entities of interest are present in the graph.
However, we need an extra mechanism in place
to deal with unseen entities. Specifically, we need
two devices: (1) A way of finding existing corre-
spondents to unseen tenders (unseen suppliers for
RECOMMEND), in order to exploit historical in-
teractional patterns exhibited in our graph between
those correspondents and existing suppliers (exist-
ing tenders for RECOMMEND) and (2) An utility
ordering function for ranking those existing sup-
pliers (existing tenders for RECOMMEND).

We illustrate our suggested devices with the fol-
lowing example, depicted in Figure 4. Assume we
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Figure 4: Mechanism for recommending tenders to an unseen supplier sg, as discussed in Section 3.3. s1.3 and ¢1.3
are existing suppliers and tenders, respectively. g;, and g, represent tenders of similar proximity to gs,, which we
recommend according to the utility scheme discussed in Section 3.3.

have the set of suppliers S = {s1, s2, s3} and the
set of tenders T = {t1,%2,t3}. Let e, and ey,
be the F-TEXT embeddings of supplier s; € S
and tender t; € T, respectively. Similarly, let
gs; and g¢, be the SDNE embeddings of supplier
s; € S and tender ¢; € T, respectively. We ad-
dress the SEARCH problem first. Specifically, let
so be an unseen supplier for which we would like
to produce a sequence of recommended tenders.
We proceed by computing the F-TEXT embedding
es, of sg based on its textual description. We then
consider the closest suppliers of sqg in the F-TEXT
space. Assume these are s; and s3. The embed-
ding of sq in the SDNE space, g5, is then obtained
as the centre of mass of g,, and g;,. We recom-
mend tenders in the order dictated by their close-
ness to gs, in the SDNE space. However, to order
tenders of similar closeness, we implement a util-
ity scheme. Specifically, to ensure equal opportu-
nity, we perform a random uniform ordering. Note
that alternative utility schemes are possible, de-
pending on the objective. For instance, the tenders
may be ordered by urgency, to ensure fast comple-
tion, or by price, to ensure maximum profit.

As the similarity metric, we use the cosine sim-
ilarity between the SDNE embeddings.

3.4 Merged Embeddings

A further approach for building supplier and ten-
der embeddings that we suggest is merging F-
TEXT and SDNE embeddings by averaging. Our
merging strategy was plain arithmetic mean. Fu-
ture implementations should consider better merg-
ing strategies, that take into consideration the rota-
tion and direction of vectors within the individual

embedding spaces. We use the term MERGED to
refer to the resulting embeddings. We also use co-
sine similarity as the embedding similarity metric.

3.5 Automated Matching by Correlated
Topic Modelling

In the final approach that we suggest we use Cor-
related Topic Models (CTM) (Blei et al., 2007) to
create topic representations of textual descriptions
of suppliers and tenders.

CTM is a generative topic model. As such, it
assumes that documents have been generated by
sampling probability distributions. Its goal is to re-
cover these distributions by using posterior infer-
ence. From a Machine Learning point of view, this
is a case study in applying hierarchical Bayesian
models to grouped data. The advantage of using
a generative model is its natural ability to predict
relevant matches for suppliers and tenders that do
not appear in our training set. CTM is an extension
of Latent Dirichlet Allocation (LDA). The idea be-
hind LDA is to assume that each N-word docu-
ment w is a mixture of corpus-wide topics distri-
butions (. It assumes the following generative
process for each document:

1. Choose a prior distribution # ~ Dir(@) over
topics.

2. For each word w,,:

(a) Choose a topic z, ~ Multinomial(f)

(b) Choose w;,, ~ Multinomial(f3,, )

One limitation of LDA is that it cannot model cor-
relation between topics even though it is often the



case in practice that certain topics naturally co-
occur. This limitations arises from the usage of
the Dirichlet distribution to model the variability
among the topic proportions. Blei et al. (2007) ex-
pand more on the topic, suggesting CTMs, where
the topic proportions exhibit correlation via the
logistic normal distribution (Atchison and Shen,
1980). It assumes a similar generative process as
LDA, except the topic proportions are drawn from
a logistic normal, rather than a Dirichlet.

In our case, we represent each document (i.e.
textual description of a tender or supplier) as a
L-dimensional topic proportion generated from
a logistic normal distribution. We compute the
distance between suppliers and tenders using the
Jensen-Shannon divergence (Lin, 1991) between
the corresponding predicted topic proportions.
Given a new supplier or new contract, the al-
gorithm recommends top N tenders or suppliers
which have lowest distances to the new entity.

We use the term CTM to refer to this approach.
When the dimension L of the topic proportion
is relevant, we use the naming convention CTM-

(L).
4 Experiments

4.1 Performance Metrics

In this section, we first introduce the metrics that
we used to assess the performance of the methods
proposed in Section 3 for addressing the SEARCH
and RECOMMEND problems. Each paragraph
below discusses one problem.

SEARCH Recall from Section 3 that a method
which approaches the SEARCH problem, given
a supplier s and an integer n, produces a list
o™(s) = tmtny...tr, of n tenders ordered by
their suitability for the services that the supplier
offers, where the suitability is indicated by an or-
dering function 7. In our data set, we have knowl-
edge of which tenders were awarded to which sup-
pliers. Let T be the set of tenders awarded to sup-
plier s. We define the retrieval-threshold & € [0, 1]
such that n = ||T|k|, where |.]| is the floor func-
tion that takes a real number and returns the largest
integer less than or equal to the given real number.
We define the hit-count

Rt — |{teT,:teca™(s)}

That is, the cardinality of the set of true awarded
tenders that appear in the sequence 0" (s). Simi-
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Figure 5: Example computation of retrieval score for
4 suppliers and 6 tenders, as discussed in Section 4.1.
Each circle represents a returned tender. Full circles
represent correct returns (hits), while empty ones rep-
resent incorrect returns (misses).

larly, we define the miss-count
RMs = |{t € Ty : t € oTN(s) iy},

where the subscript |T'| — n : |T| refers to taking
the subsequence from o!”(s) from position |T'| —
n to position |T'], inclusive. In such a setting, we
define the retrieval score metric as follows:

1
Rpy=—— ——.
1 + 6er;uss_RZzt
Figure 5 shows an example of how the retrieval-
score is computed.

RECOMMEND Recall from Section 3 that a
method which approaches the RECOMMEND
problem, given a tender ¢ and an integer n, pro-
duces a list 7""(t) = Sy, Sr, - - - S, Of n suppliers
ordered by their suitability to be awarded tender
t, where the suitability is indicated by an ordering
function 7. Let 1{P} be the indicator function of
the logical proposition P, that is,

1{P} = 1, if P is true
~)o, ifPis false.

In our data set, we have knowledge of which ten-
ders were awarded to which suppliers. Let s; be
the supplier that undertook tender ¢. That is, s; is
the supplier that we know has been awarded ten-
der t. We define the hit threshold k& € [0, 1] such
that n = ||S|k]. In such a setting, we define the
k-hit-rate metric as follows:

st e T"(t)}
|T|

7|
Hk(T7 57 T) = =
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Figure 6: Example computation of k-hit-rate for 4 sup-
pliers and 3 tenders, as discussed in Section 4.1, with
k = 0.5. Each circle represents a supplier. Full circles
represent the target supplier for the respective tender.

Figure 7: Hit-rate for the RECOMMEND problem
achieved by TEXT (red), F-TEXT (green), SDNE
(blue) and MERGED (orange), as discussed in Sec-
tion 4.2. The horizontal and vertical axes corresponds
to the hit threshold and the hit-rate, respectively.

Intuitively, the hit-threshold & specifies the ratio
of suppliers, out of the total number of existing
suppliers, that the recommendation system should
return for a given tender ¢. Then, the k-hit-rate
is the ratio of tenders, out of the total number of
tenders, for which the target supplier was among
the suppliers returned at the hit-threshold k. Fig-
ure 6 shows an example of how the k-hit-rate is
computed.

4.2 Results

Figure 7 shows a plot of the hit-rate achieved
by TEXT, F-TEXT, SDNE and MERGED ap-
proaches for hit threshold £ € [0,1]. We no-
tice F-TEXT performs better than TEXT, with a
steep jump in the graph which represents recom-
mending the dominating supplier in our dataset,
that is, the supplier that was linked to most ten-
ders. SDNE follows a similar trend, but seems
to recommend this supplier earlier than F-TEXT.

0.00 0.25 0.50 075 1.00

Figure 8: Hit-rate for the RECOMMEND problem
achieved by CTM-50 (red), CTM-100 (green) and
CTM-200 (blue), as discussed in Section 4.2. The hori-
zontal and vertical axes corresponds to the hit threshold
and the hit-rate, respectively.

Finally, MERGED shows not only an improve-
ment over all when k is low, but also seems ro-
bust to the dominating supplier effect, as its graph
presents no steep jumps. For CTM, Figure 8
shows the hit-rate achieved by CTM-50, CTM-100
and CTM-200 for hit threshold & € [0, 1]. We no-
tice CTM-200 performs the best out of these. Fi-
nally, Figure 9 shows the hit-rate for F-TEXT and
SDNE, the best performing individual embedding
approaches, compared to CTM-200, the best per-
forming topic modelling approach. We find that
CTM-200 achieves the best overall performance.

Figure 9: Hit-rate for the RECOMMEND problem
achieved by F-TEXT (red), SDNE (green) and CTM-
200 (blue), as discussed in Section 4.2. The horizontal
and vertical axes corresponds to the hit threshold, and
the hit-rate, respectively.
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He is interested in the development and math-
ematical & statistical analysis of algorithms
for data science, network analysis, and cer-
tain computationally-hard inverse problems
on large graphs, with applications to various
problems in machine learning, statistics, and
finance, often with an eye towards extract-
ing structure from time-dependent data which
can be subsequently leveraged for prediction
purposes. He coordinated the work in the
group, together with Luis Ospina-Forero.

Oduwa Edo-Osagie, a PhD student at Univer-
sity of East Anglia focused on machine learn-
ing methods for the detection and monitor-
ing of communicable and non-communicable
diseases via social media. He contributed to
this report by working on the generation of
text embeddings helping derive subsequent
adjacency matrices from text embeddings.

Hoang Le, a PhD student at the Trinity
College Dublin. His research focuses on
Bayesian methods for pair matching prob-
lems. He contributed to the report by build-
ing the topic modelling model and its recom-
mender system.

Silviu Oprea, a PhD student in Data Science
at the University of Edinburgh. He is inter-
ested in computational linguistics and natural
language processing, especially related to the

analysis of figurative language, such as sar-
casm and metaphor. He contributed to build-
ing the textual and graph embeddings. He
also worked on writing the final version of
this report.

Bemsibom Toh, a PhD student at Heriot-Watt
University, Edinburgh. His research focuses
on applying the theory of large deviations
to the study of queuing systems. He con-
tributed to the report by writing the scripts
to compute the similarity and adjacency ma-
trices from the text embeddings and defining
performance metrics for the recommendation
systems.

Erin Clark, the representative from Spend
Network. She has a background in physics
and has joined the company in 2015. Her
work was to collect, map and analyse the
datasets that were used, and will continue
work on the project after the challenge. She
oversaw the project by explaining the content
and the relevance of the data, and explaining
the company goals.

Aude Vuilliomenet, an MSc student at The
Center for Advanced Spatial Analysis at Uni-
versity College London. She is interested
in understanding the role of the urban envi-
ronment on peoples behaviour and currently
works on spatial analysis and spatial mod-
elling. She was the facilitator of the group,
mainly coordinating the project with the main
project researchers (Luis Ospina and Mihai
Cucuringu). She contributed to this report by
working on the validation for the topic mod-
elling.

Kai Xu, a PhD student at the University of
Edinburgh. His research focuses on proba-
bilistic machine learning, especially approxi-
mate methods in Bayesian inference. He con-
tributed the report by exploratory data anal-
ysis based on spectral algorithms for graphs
with the support from Mihai.

Yuchen Zhao, a postdoctoral research fellow
in the School of Electronics and Computer
Science at the University of Southampton.
He obtained his PhD in Computer Science
from the University of St Andrews. He con-
tributed to the project by data preprocessing,
evaluation, and report writing.
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