
Cloud Orchestration Features:
Are Tools Fit for Purpose?

Daniel Baur, Daniel Seybold, Frank Griesinger, Athanasios Tsitsipas, Christopher B. Hauser, Jörg Domaschka
Institute of Information Resource Management

University of Ulm, Germany
Email: {firstname.lastname,joerg.domaschka}@uni-ulm.de

Abstract—Even though the cloud era has begun almost one
decade ago, many problems of the first hour are still around.
Vendor lock-in and poor tool support hinder users from taking
full advantage of main cloud features: dynamic and scale. This
has given rise to tools that target the seamless management and
orchestration of cloud applications. All these tools promise similar
capabilities and are barely distinguishable what makes it hard
to select the right tool. In this paper, we objectively investigate
required and desired features of such tools and give a definition of
them. We then select three open-source tools (Brooklyn, Cloudify,
Stratos) and compare them according to the features they support
using our experience gained from deploying and operating a
standard three-tier application. This exercise leads to a fine-
grained feature list that enables the comparison of such tools
based on objective criteria as well as a rating of three popular
cloud orchestration tools. In addition, it leads to the insight that
the tools are on the right track, but that further development
and particularly research is necessary to satisfy all demands.

I. INTRODUCTION

The last decade has been dominated by the Cloud in both
research and industry. Nevertheless, many problems have been
around since the beginning of the cloud era and are sub-
stantially hindering the move forward. These include vendor
lock-in, the incomparability of cloud providers with respect to
performance per price, the weak adoption of cloud standards
from the providers, etc.

Particularly, researchers from domains that make use of
clouds such as software engineering and data mining, but
also software architects and DevOps teams need robust and
powerful mechanisms to bring their applications and inno-
vations to the Cloud—ideally to many cloud providers. In
order to perform evaluations and test the elasticity of their
application, these users need to be able to seamlessly change
the distribution of their application across multiple cloud
providers. They also have to be able to quickly change the
scaling factor of individual components. Similar considerations
hold for start-ups whose demands change with the growth of
the business.

In order to satisfy these demands, a powerful and reliable
cloud orchestration and operation platform is needed. Indeed,
there are multiple commercial and open-source tools available
that promise to solve above mentioned issues. Yet, it is hard to
find a visible distinguishing factor. Also, there are barely any
sources available that report on the success of using these tools.
This document aims at closing this information gap by the
following contributions: (i) We establish a fine-grained feature
list that enables the comparison of such orchestration tools

based on objective criteria. We also provide a guideline on
how to grade tools according to the features. (ii) We identify
tools that promise to realise some or multiple of the above
mentioned features. (iii) We rate three tools according to our
feature list.

Based on our feature extraction, it becomes possible to
compare existing and upcoming orchestration tools: What is
more, the identified lack of supported features shall drive future
research and development with respect to cloud orchestration.
The remainder of this document is structured as follows:
Section II introduces the terminology of the document as well
as the methodology of our approach. Section III introduces
background and basic capabilities of the tools. Section IV
introduces the feature list and does the comparison for each
introduced feature. Section V presents the comparison results
from applying the list in tabular I. Section VI discusses related
work before we conclude.

II. BACKGROUND

In the following, we briefly introduce the terminology
that we use throughout the document and further classify the
methodology of our comparison.

A. Terminology

Even though more advanced terminologies have been pub-
lished (e.g. [1]), we follow the well-known NIST standard [2]
defining the three service models IaaS, PaaS, and SaaS.

We define (cloud) application as a possibly distributed
application consisting of multiple interlinked application com-
ponents. For illustration consider a blog application B that may
consist of the three components load balancer lb, application
server together with the business logic as, and a database db.

We depict cloud orchestration tool, as a software compo-
nent that manages the complete lifecycle of a cloud application.
It therefore needs to fulfil the following criteria: (1) appli-
cation specification (definition); (2) deployment of specified
applications: the tool has to acquire virtual machines and then
distribute component instances over them; (3) collection of
monitoring data from deployed instances. This data further has
to be consolidated and aggregated and provided to the opera-
tors. (4) If application management shall be (semi-)automatic,
the tool has to allow the definition of rules that capture when
to execute which management task (e.g. scaling). We therefore
explicitly exclude pure deployment tools like Chef.

B. Methodology

While the primary goal of this document is to present a feature
list that helps rating cloud development tools a secondary
goal is to show its applicability to existing software tools.
For this purpose we select three tools fulfilling the above
mentioned four criteria: Apache Brooklyn1, Cloudify2, and
Apache Stratos3.

For the evaluation we install the tools in our local data
centre and apply the defined features. As a sample application
we select a three-tier application consisting of NGINX as a
load balancer, Node.js as an application server running the
Ghost blogging application, and PostgreSQL as a database
management system. The used application descriptions are
available on Github4.

III. INTRODUCTION TO TOOLS

All three selected tools make use of third party IaaS platforms
for running applications and all of them offer a PaaS-like in-
terface to operators. Below we introduce the tools in particular
with respect to their terminology and define the versions used
for the evaluation. As a rule of thumb, we used the latest stable
version available at the time writing this document.

Apache Brooklyn is compared using milestone release 0.7.0-
M2-incubating. Brooklyn’s application description is based on
blueprints written in a domain specific language (DSL) in
YAML format. A blueprint contains global properties (e.g.
name, cloud provider configuration) as well as a services
block defining application components. The definition of the
components is split into abstract types and entities. The type
captures the structure for entities such as defining the proper-
ties and interfaces. The entities refer to those types and provide
the concrete configuration. Each type is linked to a Java
implementation. Besides deployment, Brooklyn also supports
a monitoring interface and elastic adaptation at runtime.

Cloudify by GigaSpaces Technologies is offered in a free open-
source edition and a commercial Pro edition. Our comparison
is based on the open-source edition version 3.2. Cloudify
uses a TOSCA-aligned modelling language for describing
the topology of the application which is then deployed to
allocated virtual machines in the cloud environment. TOSCA-
like, Cloudify splits the blueprint in a type and template
definition. Types define abstract reusable entities and are to
be referenced by templates. The types therefore define the
structure of the template, by e.g. defining the properties that
a template can have/must provide. The template then provides
the concrete values. This mechanism is used for nodes as well
as for relationships.

Apache Stratos is compared using the release candiate 4.1.0-
RC2. Stratos makes use of an abstract virtual machine de-
scription, named cartridge, with an application component
type (named cartridge type) like an application runtime con-
tainer (e.g. Tomcat). An application is described by a single
cartridge or/and a set of cartridges (groups), combined with
deployment and scaling policies. The cartridges, applications

1https://brooklyn.incubator.apache.org/
2http://getcloudify.org/
3http://stratos.apache.org/
4https://github.com/dbaur/orchestration comparison

and other configurations are represented in a Stratos specific
JSON format. For the deployment itself, it solely relies on
the DevOps tool Puppet. The application itself is subsequent
cloned from a Git repository. Stratos is installed as one central
controller and in all virtual machines by having a virtual
machine image prepared with the necessary software (Stratos
and Puppet agents) installed.

IV. FEATURES AND COMPARISON

In this section we perform the actual comparison. Each of
the following two sections introduces a set of features. Sec-
tion IV-A addresses cloud-related aspects and Section IV-B
considers application-related features.

In the individual sections, we introduce the features of
the set and for each of them, (i) define the feature in detail
and argue why it is desirable. In case sub-features exist for
a feature, they are introduced as well (highlighted in italics).
Moreover, we (ii) discuss to what extend each feature and all
its sub-features are actually supported by each of the three
tools.

A. Cloud Feature Set

The Cloud Feature Set relates to the cloud infrastructure.
Hence, its features focus on supported deployment across
multiple cloud providers and levels.

1) Multi-Cloud Support Feature: Supporting multiple
cloud providers is one of the most crucial features for cloud
application management tools, as it allows the selection of the
best matching cloud offer for an application from a diverse
offering landscape. Cloud providers often differ from each
other regarding their API. This causes the user to suffer from
a vendor lock-in once he depends on the native API of a cloud
provider. For that reason cloud orchestration tools should offer
a cloud abstraction layer which hides differences and avoids
the need for provider-specific customisation thus removing the
vendor lock-in.

Apache Brooklyn Support: Brooklyn uses Apache
jclouds as cloud abstraction layer and therefore supports many
public and private cloud providers.

Cloudify Support: Cloudify comes with plugins sup-
porting AWS, Openstack and VMWare vCloud. It also offers a
contributed plugin for Apache Cloudstack and two commercial
plugins (Pro version) for VMWare vSphere and SoftLayer.
Nevertheless, Cloudify does not support an abstraction layer
and each model needs to explicitly reference cloud provider
specific features.

Apache Stratos Support: Stratos utilises jclouds as a
cloud abstraction layer, supporting multiple providers. Support
is tested for AWS EC2, Openstack and Google Compute
Engine. Yet, the abstraction is imperfect as application speci-
fications still need to refer to cloud specific entities.

2) Cross-Cloud Support Feature: Cross-cloud support en-
hances the multi-cloud feature such that the user is able
to deploy a single application in a way that its component
instances are distributed over multiple cloud providers. For
instance, the database may be deployed in a private cloud on
the user’s premises while numerous instances of the application

server run in a public cloud. The advantages of cross-cloud
deployment are three-fold: (i) It allows a sophisticated per-
component instance selection of the best-fitting offer. (ii) It
leverages the availability of the application as it introduces
resilience against the failure of individual cloud providers. (iii)
It helps coping with privacy issues (private vs. public cloud).

Apache Brooklyn Support: Brooklyn supports cross-
cloud deployments on a per-component level: Each component
can be bound to a separate cloud provider by referencing its
configuration.

Cloudify Support: Cloudify offers cross-cloud support.
For each virtual machine defined in the model, the user can
reference a different cloud provider.

Apache Stratos Support: Stratos allows the definition of
network partitions which are logical groups of IaaS resources
such as regions or availability zones. Network partitions enable
cross-cloud scaling and deployment using policies like round
robin through available network partitions. Cartridges may
only be configured for a subset of network partitions.

3) External PaaS Support Feature: In addition to support-
ing IaaS clouds, the support of PaaS clouds (e.g. Google
App Engine) is desirable. For PaaS offers ready-to-deploy
application containers, it reduces complexity compared to IaaS.
This also reduces the management effort for the user. On the
downside, it comes at the cost of reduced flexibility, it is the
provider that defines the container configuration.

Tool Support: None of the three tools allows the use
of external PaaS clouds.

4) Support of Cloud Standards Feature: In addition to sup-
porting multiple provider APIs (cf. Section IV-A1) the support
of cloud API standards such as CIMI [3] or OCCI [4] enables
support for any cloud provider adapting such a standard.

Tool Support: None of the three tools supports any
cloud interface standard.

5) Bring Your Own Node (BYON) Feature: BYON captures
the ability to use already running servers for application
deployment. It enables the use of servers not managed by
a cloud platform or virtual machines on unsupported cloud
providers.

Apache Brooklyn Support: Brooklyn supports BYON
by providing an IP address and login credentials for the server.

Cloudify Support: Cloudify supports BYON through
an externally installable Host-Pool Service that works as a
cloud middleware mock-up. When enabled, Cloudify requests
IP addresses and login credentials from this service whenever
it needs to provision a new server.

Apache Stratos Support: Stratos does not support
BYON, despite the general ability of jclouds to do so.

B. Application Feature Set

This section discusses features related to the deployment
and automation of applications. It starts with features related
to the application description language and deployment, con-
tinues with features related to runtime adaptation, and finally
discusses additional features such as support of the Windows
operating system.

1) Application Standards Feature: Supporting open stan-
dards such as TOSCA [5] and CAMP [6] for modelling
the application topology, the component life cycles, and the
interaction with the cloud management tool facilitates the
usage of the tool and further increases the reusability of the
topology definition, as it avoids moving the vendor lock-
in from cloud provider level to management tool level (cf.
Section IV-A1). Moreover, it reduces the initial effort and costs
to learn a new DSL.

Apache Brooklyn Support: Brooklyn’s YAML format
follows the CAMP specification, but uses some custom ex-
tensions. Yet, it is possible to deploy CAMP YAML plans
with Brooklyn and via the separately provided CAMP server.
Support for TOSCA is planned for a future release.

Cloudify Support: While Cloudify’s DSL for the de-
ployment description is strongly aligned with the TOSCA
modelling standard it does not directly reference the standard
types, but instead defines its own profile following the TOSCA
Simple Profile in YAML. Full TOSCA support is planned.

Apache Stratos Support: Stratos does not implement
any standard.

2) Resource Selection Feature: The resource selection is
part of the application topology description. It defines the
resources used for the deployment of a component instance
in an IaaS cloud. Hence, a resource will commonly refer to
the virtual machine type/flavour, an image, and a provider-
specific location: 〈location, hardware, image〉. A tool has
mainly four possibilities to define or derive such a tuple: (i)
In an manual binding the user provides the concrete unique
identifiers of the cloud entities. (ii) In an automatic binding the
user defines abstract requirements regarding the defined tuple
(e.g. number of cores). These are then bound to a concrete offer
at runtime by the tool. Automatic binding can be enhanced by
offering an iii) optimised binding. Here, the specification of
optimisation criteria based on attributes of the cloud provider
such as price or location is possible. Finally, (iv) dynamic bind-
ing offers a solving system that enables changes to the binding
based on runtime information, e.g. metric data collected from
the monitoring system. Automatic binding is a prerequisite
for complex deployment and runtime adaptation scenarios,
as it allows the cloud management platform to dynamically
select the concrete offer during runtime. Optimised binding
offers optimised selection based on simple criteria like price.
Dynamic binding offers the possibility to use a solver applying
an optimisation algorithm for selecting the best-fitting offer
based on complex criteria (performance or performance per
$).

Apache Brooklyn Support: Brooklyn supports manual
as well as basic automatic binding. For the latter it supports
resource boundaries for the hardware. The resource selection
happens either in the global or in the component-specific parts
of the blueprint.

Cloudify Support: Cloudify exclusively supports man-
ual binding of the resources used for a virtual machine. The
user needs to reference a cloud provider specific node type (e.g.
cloudify.openstack.nodes.Server for Openstack)
to provide the implementation for the chosen cloud provider,
as well as the specific properties defined by this type. These
include the location, the image and the flavour information.

Automatic binding of resources (like offered by TOSCA’s
nodes_filter requirements specification) is not supported
by Cloudify. Due to this shortcoming optimised and dynamic
bindings are also not possible.

Apache Stratos Support: The resource selection in
Stratos is a manual process when configuring cartridges by
referencing to (i) an image and (ii) a hardware description in
an IaaS cloud.

3) Life Cycle Description Feature: The life cycle descrip-
tion defines the actions that need to be executed in order to
deploy the application including all its component instances
on started virtual machines. The basic approach for the life
cycle description of the application is to provide shell scripts
that are executed in a specific order. This approach can be
extended to support DevOps tools such as Chef that offer a
more sophisticated approach to deployment management and
ready to use deployment descriptions.

Apache Brooklyn Support: In Brooklyn each defined
type provides basic life cycle actions called effectors. These
can be configured in the concrete application component def-
inition. The configuration can either happen with shell scripts
or by referencing Chef recipes.

Cloudify Support: Cloudify relies on the interface def-
inition of TOSCA for defining life cycle actions. The base
node type defines multiple life cycle actions as interfaces, that
are executed during deployment. The actions are defined as
shell scripts or by using Chef and Puppet. Support for Salt is
in development. Cloudify also has the possibility to provide
python scripts. This is evaluated and provides immediate
access to Cloudify’s API.

Apache Stratos Support: The life cycle description for
managing virtual machines is done by Stratos itself, while the
software setup is delegated to Puppet. Stratos cartridges have
a cartridge type, which is a reference to a Puppet module.
During application deployment, Stratos identifies and invokes
the needed Puppet modules.

4) Wiring and Workflows: Most cloud applications are
distributed applications where components reside on different
virtual machines, e.g. the application server resides on a
compute optimised host, while the database is on a storage op-
timised host. Hence, the modelling language needs to support
a way to configure those communication relationships between
the components by offering a way to pass the endpoint, either
before the start of the dependent component (database starts
before application server) or after (application server is added
to already running load balancer).

A straight-forward approach to resolve those dependencies
is attribute and event passing. That is, the tool allows the
user (life cycle scripts) to lock/wait for attributes to become
available or register listeners on topology change events. This
is commonly achieved by a global registry shared between all
component instances of an application.

Obviously, this approach offloads most complexity to the
user who needs to, e.g., make sure that the database URL is
only available when it already started. An improvement is a
manual workflow definition. Here, the user defines a workflow
taking care of the deployment order. Finally, the easiest way
for the end user is an automatic workflow deduction, where

the modelling language is sufficiently verbose to allow the
system to automatically deduce the correct workflow from the
defined life cycle actions on the virtual machines and their
relationships.

Additionally, a tool may offer extensions to its model,
allowing to refer to external services like PaaS (cf. Sec-
tion IV-A3) or SaaS services, to ensure that the deployment
engine is aware of this dependency and e.g., can open ports
on firewalls.

Apache Brooklyn Support: Brooklyn supports wiring
by attribute-and-event-passing. It offers a locking action, that
waits until the dependent service provides a required attribute.
The reverse way, where a later starting service needs to
reconfigure a running service, is not supported out of the box.
Instead, the user has to implement this functionality. Yet, for
the commonly used load-balancer scenario, Brooklyn supports
predefined static out-of-box load balancing. The tool neither
supports workflow scenarios nor access to external services.

Cloudify Support: Cloudify uses the relationship mech-
anism of TOSCA. It defines a generic depends_on relation-
ship type that offers the execution of custom actions on either
the source or the target of the relationship on specific events.
Combined with a shared configuration space available via e.g.
a shell extension, this allows the user to configure endpoints
before or after the start of a service. Using python the user
can implement custom workflows, making sure that the life
cycle actions are executed in the correct order. If the user
only uses the basic life cycle actions, Cloudify is capable of
automatically deducing the correct execution order. Cloudify
does not support external services by default. Yet, the modular
communication relationship might allow adding this feature if
needed.

Apache Stratos Support: Stratos provides a metadata
service where the component instances of an application can
export and import variables. This basic but manual wiring
using variable exchange must be implemented by the user
at application setup. In case of joining or leaving component
instances Stratos broadcasts a topology change event, which
is used by Stratos core functionality (e.g. notify the user for
a successful application deployment) or any load balancers
existing in a deployed application setup, to update their state
for redirecting client requests. For assessing the overall deploy-
ment workflow, support of both Stratos and Puppet have to be
considered. Stratos defines a startup order of virtual machines,
while Puppet has a more complex dependency expression for
each single virtual machine. Puppet modules can be depending
on each other and inside of one module, dependencies between
different steps can be defined. This rather static deployment
workflow is defined in advance of the application deployment.
The flow cannot be controlled during application boot or
execution time. Stratos does not support external services.

5) Monitoring Feature: Being able to track the behaviour
of the application is a key to assessing the quality of the
deployment. Consequently, it is necessary to monitor the
current resource consumption and the quality-of-service (QoS)
parameters of the application. Only if the end-user is aware
of current bottlenecks he is able to remove them. The cloud
management framework should therefore offer a way to mea-
sure system metrics like CPU usage and application specific

metrics like number of requests. If those predefined metrics
are not sufficient, the tool should offer a well defined way to
add custom metrics.

An aggregation mechanism enables users to compute
higher-level metrics (e.g. 10 minute average over CPU load)
and also to combine multiple metrics (e.g. average over 10
minute CPU average of all instances of a particular compo-
nent). For helping users in accessing and assessing the current
load on his application, it is beneficial to have the gathered
metrics presented through a dashboard. In order to support
higher-level evaluation of monitoring data access to historical
data is desirable.

Apache Brooklyn Support: Brooklyn’s uses a pulling
mechanism gathering the data from the virtual machines by
either executing remote actions or accessing an external tool.
It is the user’s responsibility to implement those actions, or to
provide an interface to an external monitoring tool. Brooklyn
does not store historical data and only supports access to the
latest measured value impairing aggregation. The latest value
of all metrics is shown in a dashboard.

Cloudify Support: Cloudify’s monitoring system relies
on the Diamond monitoring daemon that has built-in collec-
tors for the most common system and application metrics.
Additionally, it offers an interface for the implementation of
custom collectors. The Cloudify user interface for viewing
(historical) metrics is only available in the closed-source Pro
version. Aggregation of metrics is possible using the policy
framework (cf. Section IV-B6).

Apache Stratos Support: Stratos uses a cartridge agent
residing within each virtual machine. This agent comprises a
Health Publisher to avail itself of the machine’s health statis-
tics, load average, free memory, and the amount of in-flight
requests. It is not possible to define further custom metrics.
Monitoring data is sent to a central real-time processing engine
where aggregation and evaluation is performed. Support for
visualisation of current and historical health statistics through
the Web GUI is is planned for the future.

6) Runtime Adaptation Feature: While monitoring (cf.
Section IV-B5) lays one of the foundations for adapting the
configuration of the application during runtime, the cloud
management platform should be able to react upon deviations
automatically. For this purpose, the user needs to be able to
define (i) metric and QoS conditions that trigger (ii) actions
if violated: For instance, scale component horizontally, if the
CPU usage is > 80%. In order to support that, the cloud
management tool should at least offer a simple threshold-based
approach for the detection of violations and support horizontal
scaling. As extensions, we consider repair and the custom
definition of actions on the actions side, and more complex
rule engines with respect to QoS.

Another feature related to adaptation is continuous delivery
of the application. It enables the user to change the topology
model of an already deployed and running application (e.g.
add a load balancer, or update the software version of a
component). This should be possible with as few changes as
needed to the running components.

Apache Brooklyn Support: Brooklyn policies enable
the specification of metrics/QoS. By default a threshold-based

policy is available. Scaling is enacted in so called clusters.
By default Brooklyn supports horizontal scaling. Both the
policies and the clusters are in general customisable by new
implementations, but there is no easy way to plugin such
custom extensions. Continuous delivery is exclusively possible
on component level, namely by redeploying single components
with updated software.

Cloudify Support: Cloudify uses the event stream pro-
cessor Riemann for the definition of QoS requirements. By
default, they provide policies for host failure detection, simple
threshold and exponential weighted moving average threshold.
It enables the definition of custom aggregations and policies
using Clojure and Riemann. On the action side, Cloudify
offers workflows for healing the application (uninstall/reinstall)
and a scale workflow offering horizontal scaling. Complex
scaling scenarios (e.g. cloud bursting, vertical scaling) are not
supported out of the box. Instead, the user may define custom
workflows using a DSL. This enables support for complex
scenarios, but leaves the responsibility with the user. Contin-
uous delivery of the application is currently not supported by
Cloudify, meaning that the user has to un-deploy the entire
application, even for minor changes in the model. Support for
this has been announced for the Pro version.

Apache Stratos Support: Stratos balances the QoS re-
quirements by using policies, that enable a multi-factored auto-
scaling. Using client requests and system load as health data
(cf. Section IV-B5) combined with a complex event processor
and the Drools rules engine, Stratos enacts horizontal scaling
to the environment. Moreover, repair actions are supported,
in case some tasks within virtual machines of an application
topology fail (e.g. installation of required software), by auto-
matically destroying and re-creating the affected instance. The
implementation of custom actions is not foreseen. Continuous
delivery is not supported. Instead, the user has to un-deploy
the whole application first and change its definition.

7) Reusability and Sharing of Models Feature: When using
cloud management tools, the main task of the user is the
creation of the application description based on components.
As this imposes a high initial effort, this task needs to be
supported by sharing of existing models.

Regarding reusability the tool should offer a modularised
approach regarding the application description. Generally
speaking, each application description consists of components.
In order to facilitate re-use, modularisation shall be used to
an extend where the description and life cycle handling of
components is mostly self-contained and independent from
e.g. the application it is embedded in. At the same time
the composing mechanism that forms applications from sets
of components has to be powerful enough to capture the
most common use cases, such as setting the port numbers
wiring two components. In an ideal case, exchanging an
SQL-based database in an application with a different SQL-
based database should neither require changes to the invoking
component definition nor to the new database component.
Also, the application should be widely untouched except that
the configuration parameters for the new database have to be
set. Approaches to achieve this modularity include templating,
parameterisation, and inheritance.

In order to facilitate easy sharing of entire models and parts

thereof, the tool should offer a marketplace where users can
exchange their models with other users. If such a marketplace
does not exist, the tool provider should at least offer application
models for the most important standard services.

Apache Brooklyn Support: Brooklyn achieves the re-
usability of types by using inheritance. Yet types of the same
parent can not be exchanged without modifying the concrete
properties of connected types. Types can be shared either
locally or in a Git repository.

Cloudify Support: Cloudify uses the same reusability
mechanisms for its models as TOSCA: For the model is split
into types and templates, defined types are in general usable
in other templates. The separation of the server host and the
application using the hosted on relationship also decouples
the server from the application description. The reusability
is further increased by the import mechanism, that allows
to define types in another file location as the templates and
then import them. Another feature increasing modularity is
the relationship mechanism, that allows a custom wiring for
each type usage. Another mechanism that Cloudify shares with
TOSCA is the inheritance of types. This allows the user to
inherit from parent types, meaning that defined elements of
the parent type are also defined in the child type. Finally,
the input mechanism allows defining parameterised models.
Cloudify does not offer a marketplace.

Apache Stratos Support: Since Stratos defines its con-
figurations and applications in JSON, they can be shared
as any text file. Yet, the cartridges contain references to
IDs of IaaS snapshots and hardware configurations. Thus the
reusability is limited to a cloud. Moreover, the definitions of
an already deployed application can’t be changed dynamically;
it needs to be un-deployed first and then edit its definition.
Similarly, Puppet is built to be reusable and shareable also. Its
marketplace Puppet Forge contains more than 3, 300 modules,
which can be added to a Stratos setup. The reusability of
Puppet modules is gained by dependencies between modules,
which allows splitting work in smaller but linked modules.

8) Containerisation Feature: The use of containers such
like Docker is a reasonable approach for sharing a virtual
machine between several component instances, while keeping
them isolated. This leads to better utilisation of the virtual
machine [7]. Moreover, the increased isolation offered by
containers allows resource consumption to be configured,
controlled, and limited on the level of component instances.
This feature does not consider whether cloud providers use
containers instead of hypervisors, as this is transparent for the
users of the platform.

Apache Brooklyn Support: Brooklyn does not support
containers out of the box. Yet, the separate project Clocker
enables the usage of Docker.

Cloudify Support: Cloudify supports containerisation
using Docker. The user can use a docker container node
type what allows starting a docker container from a provided
Docker image. The Docker container, then can be deployed on
a virtual machine node using a contained in relationship.

Apache Stratos Support: Stratos supports containeri-
sation with Docker by using Google Kubernetes as a cluster
orchestration framework.

9) Windows Application Support Feature: While Linux
is dominating the cloud computing environment, there are
many professional companies running their applications on
a Windows operating system [8]. Hence, these applications
should be supported by cloud management tools.

Apache Brooklyn Support: Brooklyn relies heavily on
SSH which excludes native Windows support. Windows sup-
port is currently under development, though.

Cloudify Support: Cloudify supports Windows but re-
quires that the virtual machine (image)s have WinRM enabled.
Cloudify uses this protocol to install its agents on the machine.
The agents then operate in an operating system independent
manner.

Apache Stratos Support: Stratos cartridges for de-
ploying applications also support Windows, e.g. for .NET
framework applications. Both the Stratos agent running in
the applications’ virtual machines and Puppet support the
Windows operating system.

V. COMPARISON RESULT

Table I depicts the achievements of the three cloud tools
with respect to the features defined in Section IV. To be
able to account for different partial achievement or different
achievement quality we use a three-staged marker.

VI. RELATED WORK

To the best of our knowledge there is currently no directly
comparable work defining an in-detail comparison framework
based on features and applying it to the given tools. The work
of [9] and [10] present a general view of cloud computing
defining characteristics, features and challenges of the cloud
computing environment on a much higher level, from which
our features are derived. There is also multiple work defining
a taxonomy and doing a comparison of cloud computing
systems [11] [12]. However, those comparisons focus on cloud
computing in general. They hence put stress on features
offered by and comparison of cloud providers. A qualitative
and quantitive survey for the two IaaS management tools
Openstack and Synnefo5 is provided by [13]. [14] depicts
an elaborate overview of frameworks, projects and libraries
with respect to provisioning, deployment and adaptation of
cloud systems, but also stays at a much coarser granularity.
[15] compares multiple cloud brokerage solutions by first
categorising them, and then listing their core capabilities.
However, their comparison is also done on a much higher
level. Finally, Paasify6 gives a good overview of existing PaaS
and PaaS-like offers doing a feature comparison on higher,
quantifiable levels.

VII. CONCLUSION

In this paper, we have considered basic requirements of
cloud orchestration tools and derived a fine-grained list of
features any of the tools shall support. We also applied these
results by rating three publicly available cloud orchestration
tools based on our list: Apache Brooklyn, Cloudify, and
Apache Stratos.

5https://www.synnefo.org/
6http://www.paasify.it

TABLE I. COMPARISON OF BROOKLYN, CLOUDIFY, AND STRATOS.

Features Tools
Brooklyn Cloudify (Pro) Stratos

Cloud Features
Multi-Cloud

of Cloud Providers jclouds 3 (5) jclouds
Abstraction Layer 3 7 0

Cross-Cloud 3 3 3

External PaaS 7 7 7

Cloud Standards 7 7 7

BYON 3 3 7

Application Features
Model Standards 0 0 7

Resource Selection
Manual Binding 3 3 3

Automatic Binding 0 7 7

Optimised Binding 7 7 7

Dynamic Binding 7 7 7

Life Cycle Description
Shell Script 3 3 7

DevOps Tools 1 3 1
Wiring & Workflow

Attribute & Event Passing 0 3 3

Manual Workflow 7 3 3

Automatic Workflow 7 3 7

External Services 7 7 7

Monitoring
System Metrics 7 3 3

Application Metrics 7 3 3

Custom Metrics 3 3 7

Aggregation 0 3 3

Dashboard 0 7(3) 7

Historical Data 7 7(3) 7

Runtime Adaptation
Thresholds 3 3 3

Rule Engine 7 3 3

Horizontal Scaling 3 3 3

Repair 0 3 3

Custom Action 7 3 7

Continuous Delivery 0 7 7

Reusability and Sharing of Models
Reusability 0 3 0

Sharing 3 7 0
Containerisation 7 3 3

Windows Support 7 3 3

7= not fulfilled, 0= partially fulfilled, 3= fully fulfilled

When looking at the results it becomes evident, that
especially the resource selection feature is underrepresented
in all three tools. All tools require the user to manually
bind a concrete resource to the components at description
time causing vendor lock-in due to missing abstraction and
non-optimal placement due to an incorrect initial selection,
performance unpredictability and no possibility to change it at
runtime. Our own cloud orchestration tool CLOUDIATOR7 [16],
[17] has the goal to close this gap.

Future work will include the finalisation of a first release of
our CLOUDIATOR tool based on the experiences gained while
working with Brooklyn, Cloudify, and Stratos. In parallel, we
will evaluate and rate more tools and we plan to extend this
evaluation to ongoing research projects, also considering non-
function features like performance, availability or security.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement number
317715 (PaaSage) and 610711 (CACTOS), and from the

7https://github.com/cloudiator

European Community’s Framework Programme for Research
and Innovation HORIZON 2020 (ICT-07-2014) under grant
agreement number 644690 (CloudSocket).

REFERENCES

[1] S. Kächele, C. Spann, F. J. Hauck, and J. Domaschka, “Beyond IaaS
and PaaS: An extended cloud taxonomy for computation, storage and
networking,” in Proceedings of the 2013 IEEE/ACM 6th International
Conference on Utility and Cloud Computing, ser. UCC ’13. Washing-
ton, DC, USA: IEEE Computer Society, 2013, pp. 75–82.

[2] P. M. Mell and T. Grance, “SP 800-145. the NIST definition of cloud
computing,” National Institute of Standards & Technology, Gaithers-
burg, MD, United States, Tech. Rep., 2011.

[3] DMTF, “Cloud infrastructure management interface (CIMI) model and
RESTful HTTP-based protocol,” 2013.

[4] Open Grid Forum, “Open cloud computing interface - core,” 2011.
[5] D. Palma and T. Spatzier, “Topology and orchestration specification for

cloud applications version 1.0,” OASIS Standard, 2013.
[6] J. Durand, A. Otto, G. Pilz, and T. Rutt, “Cloud application management

for platforms version 1.1,” OASIS Committee Specification, 2014.
[7] K. Razavi, A. Ion, G. Tato, K. Jeong, R. Figueiredo, G. Pierre,

and T. Kielmann, “Kangaroo: A tenant-centric software-defined cloud
infrastructure,” in Proceedings of the IEEE International Conference on
Cloud Engineering, Tempe, AZ, USA, United States, 2015.

[8] Linux Foundation, “Enterprise end user trends report,” 2014.
[9] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

[10] R. Buyya, “Market-oriented cloud computing: Vision, hype, and reality
of delivering computing as the 5th utility,” in Proceedings of the 2009
9th IEEE/ACM International Symposium on Cluster Computing and
the Grid, ser. CCGRID ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 1–.

[11] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in Proceedings of the 2009 Fifth International
Joint Conference on INC, IMS and IDC, ser. NCM ’09. IEEE Computer
Society, 2009, pp. 44–51.

[12] C. Höfer and G. Karagiannis, “Cloud computing services: taxonomy
and comparison,” Journal of Internet Services and Applications, vol. 2,
pp. 81–94, 2011.

[13] E. Qevani, M. Panagopoulou, C. Stampoltas, A. Tsitsipas, D. Kyriazis,
and M. Themistocleous, “What can OpenStack adopt from a Ganeti-
based open-source IaaS?” in 2014 IEEE 7th International Conference
on Cloud Computing, Anchorage, AK, USA, June 27 - July 2, 2014,
2014, pp. 833–840.

[14] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg, “Towards
model-driven provisioning, deployment, monitoring, and adaptation of
multi-cloud systems,” in Cloud Computing (CLOUD), 2013 IEEE Sixth
International Conference on, 2013, pp. 887–894.

[15] F. Fowley, C. Pahl, and L. Zhang, “A comparison framework and review
of service brokerage solutions for cloud architectures,” in Service-
Oriented Computing ICSOC 2013 Workshops. Springer International
Publishing, 2014, pp. 137–149.

[16] D. Baur, S. Wesner, and J. Domaschka, “Towards a model-based
execution-ware for deploying multi-cloud applications,” in Advances
in Service-Oriented and Cloud Computing, ser. Communications in
Computer and Information Science, G. Ortiz and C. Tran, Eds. Springer
International Publishing, 2015, vol. 508, pp. 124–138.

[17] J. Domaschka, D. Baur, D. Seybold, and F. Griesinger, “Cloudiator:
A cross-cloud, multi-tenant deployment and runtime engine,” in 9th
Workshop and Summer School On Service-Oriented Computing 2015,
2015, in press.

