
Axe: A Novel Approach for Generic, Flexible,
and Comprehensive Monitoring and Adaptation

of Cross-Cloud Applications

Jörg Domaschka, Daniel Seybold, Frank Griesinger, and Daniel Baur

University of Ulm, Institute of Information Resource Management,
Albert-Einstein-Allee 43, 89081 Ulm, Germany

{joerg.domaschka,daniel.seybold,

frank.griesinger,daniel.baur}@uni-ulm.de

http://www.uni-ulm.de/in/omi

Abstract. The vendor lock-in has been a major problem since cloud
computing has evolved as on the one hand side hinders a quick transi-
tion between cloud providers and at the other hand side hinders an ap-
plication deployment over various clouds at the same time (cross-cloud
deployment). While the rise of cross-cloud deployment tools has to some
extend limited the impact of vendor lock-in and given more freedom
to operators, the fact that applications now are spread out over more
than one cloud platform tremendously complicates matters: Either the
operator has to interact with the interfaces of various cloud providers
or he has to apply custom management tools. This is particularly true
when it comes to the task of auto-scaling an application and adapting it
to load changes. This paper introduces a novel approach to monitoring
and adaptation management that is able to flexibly gather various mon-
itoring data from virtual machines distributed across cloud providers,
to dynamically aggregate the data in the cheapest possible manner, and
finally, to evaluate the processed data in order to adapt the application
according to user-defined rules.

1 Introduction

Since the beginning of cloud computing, vendor lock-in has been a major prob-
lem. It is still around mainly due to the fact that cloud standards such as
CIMI [6] and OCCI [16] have not been widely adopted by cloud providers. Tools
abstracting the differences between cloud providers, and thus allowing multi-
cloud deployment—the capability to deploy one application at different cloud
platforms using the same application specification—have been a first step to
overcome vendor lock-in. Yet, it is only cross-cloud deployment—the capability
to spread a single application instance across different cloud providers—that en-
ables users to take full advantage of different providers and their capabilities.
In particular, it enables trading off the properties of application requirements
against the offerings on a per-component or even per-component instance basis.
This for instance allows a hybrid-cloud deployment where a database containing

2 Jörg Domaschka, Daniel Seybold, Frank Griesinger, and Daniel Baur

sensitive data is deployed in a private cloud, while the rest of the application
resides in different public clouds.

Both approaches, multi-cloud and cross-cloud, give the application opera-
tor the chance to change its current application deployment and to adapt to
changed conditions such as the workload, e.g., more load than originally antici-
pated, and changed environmental conditions, e.g., the prices of other operators
have changed. In order to benefit from these features, however, the application
operators need to be able to actively judge the quality of the current deploy-
ment. For pure multi-cloud systems the application operator may refer to the
monitoring tools of the currently selected cloud operator. While basic monitoring
data may come for free on some cloud providers, often the user needs advanced
metrics that either cost (Amazon, Rackspace) or require him to set up own mon-
itoring tools. In addition to that, he has to familiarise with the user interfaces
of various cloud providers.

For cross-cloud deployment using the providers’ monitoring infrastructure is
technically feasible, but tremendously increases the effort as multiple tools have
to be used in parallel. Moreover, it is difficult to access metrics that involve
the crossing of provider domains (such as network traffic from provider A to
provider B). Furthermore is hard to access application-specific or component-
specific metrics. Also, a sophisticated and configurable aggregation on the met-
rics is currently not easily possible. Finally, while most cloud providers support
a simple approach to auto-scaling for application adaptation, e.g. metrics-based
scale-out, there is currently no built-in mechanism that supports a cross-cloud
adaptation of applications.

In this paper, we address these issues by introducing Axe, a generic, flexible,
and extensible monitoring and adaptation engine for cross-cloud deployments.
Besides the fact, that we introduce the tool, our contributions are as follows: (i)
We present a powerful API that enables the specification of rules independent of
the concrete deployment. (ii) We discuss a heuristic of how to reduce the cross-
cloud provider network traffic and hence reduce costs. (iii) We introduce the first
engine to deal with the Scalability Rule Language (SRL)[8, 12]. All of the features
are embedded in Cloudiator, our cross-cloud, multi-tenancy deployment and
application management tool [2, 7].

This document is structured as follows: Section 2 introduces background on
Cloudiator and Scalability Rule Language (SRL) and further defines require-
ments towards our approach. Section 3 introduces our approach by presenting
the individual tools of our platform and their configuration. It also discusses ar-
chitectural options and introduces our architecture as well as the API. Section 4
exhibits the current status and upcoming tasks. Section 5 discusses related work,
before we conclude with a report on our current status and open issues.

2 Background

The design of Axe has been heavily driven by constraints of cross-cloud environ-
ments. In addition to that, Axe builds heavily on earlier work. In the following,

Axe 3

we first introduce the constraints and derive requirements from them. In the next
step, we present our Cloudiator tool that we use as the basis for the Axe im-
plementation [7]. Finally, we roughly describe the Scalability Rule Language that
constitutes the meta-model for our monitoring and scaling solution.

2.1 Requirements and Constraints

For supporting in-depth analyses of existing deployments, several requirements
have to be considered: (a) The fact that on the one hand, the monitoring of
large-scale applications does generate huge amounts of data and on the other
hand cloud providers usually charge for network traffic that leaves their data
centre gives motivation that as much of data processing shall happen within the
domain of individual cloud providers. (b) In order to avoid single points of fail-
ures, the architecture of a monitoring solution should not rely on a centralised
approach, but rather favour distributed approaches with no central entity. As
the amount of monitoring data usually increases with the number of allocated
virtual machines (VMs), the resources assigned to monitoring shall increase with
the size of the application. (c) The operators of a cloud application may discover
that they have to monitor further high-level or even low-level metrics or need
monitoring to happen at a higher resolution. Hence, it is necessary that monitor-
ing properties can be changed also after an application has been deployed. (d)
The same considerations that hold for monitoring, have to hold for scaling rules.
In addition, it is necessary that rules can be defined in a generic way without
having to know the exact number of instances per component in advance. (e)
The monitoring platform has to be able to capture application-specific metrics.

2.2 The Cloudiator Tool

Cloudiator1 is a cross-cloud deployment tool that also supports adaptation
and re-deployment. In this section, we present the Cloudiator architecture to
the extend necessary to understand how it embeds Axe. Figure 1 summarises
the architecture as of the original Cloudiator tool (green), but also the en-
hancements of Axe (yellow). The Axe specific components Aggregation, Scaling
Engine, and Visor are introduced in detail in Section 3.

The figure shows that Cloudiator consists of a home domain for which
Colosseum is the entry point offering a JSON-based REST interface. This is
used by a graphical Web-based user interface, but can also be used by adapters
and automatisation tools. It also comprises various registries that store the
Cloudiator users, information about cloud providers, the cloud accounts of
the users, and meta-information about cloud offerings such as the operating sys-
tems of images. Moreover, the home domain contains a repository of application
components together with their life-cycle handlers as well as applications com-
posed of these components. In addition, the registries contain information about
started VMs and the component instances deployed on them as well as about the

1 https://github.com/cloudiator

4 Jörg Domaschka, Daniel Seybold, Frank Griesinger, and Daniel Baur

Remote DomainHome Domain

Colosseum

Scaling Engine

VM

Lifecycle-Agent

Visor

REST

Docker
Container

Registries SwordWorkers

Application Repo.

Aggregator

EC2

Openstack

VM VM

VM

TSDBAggr.

UI

Fig. 1. The Cloudiator architecture

wiring between the component instances. Finally, they hold the workers syncing
the registries with the cloud provider information, and executing the provision-
ing of virtual machines or the installation of application components on virtual
machines. The Sword abstraction layer realises the communication with the
various cloud provider APIs based on Apache jclouds2.

The remote domain comprises all VMs at various cloud providers as well
as the component instances running on them. In addition to that it contains
Cloudiator’s life cycle agent on each of the VMs that the home domain uses
in order to distribute component instances over VMs and to poll the status of
the component instances when it needs to be shown in the user interface.

2.3 Scalability Rule Language

The SRL [8] is a provider-agnostic description language. It provides expressions
to define the monitoring raw metric values from VMs and component instances
and also mechanisms to compose higher-level metrics from raw metrics. More-
over, it comprises mechanisms to express events and event patterns on metrics
and metric values. Finally, SRL captures thresholds on the events and actions
to be executed when thresholds are violated. A simple SRL rule in prose may
be add a new instance of this distributed database if (i) all instances have a
5 minute average CPU load > 60%, (ii) at least one instance has a 1 minute
average CPU load > 85%, and (iii) the total number of instances is < 6.

3 Approach

This section sketches our approach in order to realise a flexible monitoring and
adaptation tool that satisfies the requirements imposed on cross-cloud tool-
ing (cf. Section 2). Basically, our auto-scaling process maps to the MAPE loop [15,
11] consisting of the following phases: monitoring, analysis, planning, and exe-
cution of changes. With respect to our setting, this means that first, we have to

2 https://jclouds.apache.org/

Axe 5

retrieve monitoring data from the virtual machines and component instances. In
a second step, the raw data gathered there has to be aggregated and processed.
Third, the rule processing has to happen on the aggregated data and finally, the
resulted rule has to be executed.

3.1 Visor: Gathering Monitoring Data

In order to be able to gather the raw monitoring data from the VMs and compo-
nent instances, we introduce Visor as a monitoring agent to the remote domain.
Just as the life-cycle agent, Visor is deployed on every VM and provides a re-
mote interface the home domain uses in order to configure a particular Visor
instance. This allows Visor to adopt to the application and to only collect the
required metrics, thus saving space and bandwidth. Visor supports the captur-
ing of data on a per component instance basis as well as on a per-VM basis. The
sooner is achieved by sensors monitoring basic system properties on virtual ma-
chine level, e.g. by accessing system properties such as CPU load. The latter is
done by exploiting the fact that all component instances are run inside a Docker3

container and the resource consumption can be retrieved on a per-container ba-
sis. By default, Visor offers various sensors supporting system metrics such as
CPU load, memory consumption, disk I/O, and network I/O.

In order to support custom metrics, Visor supports the implementation of
custom sensors, by providing an easy-to-implement Java interface. It exploits
the dynamic class loading properties of Java in order to be able to add those
implementations at runtime. For supporting application-specific metrics that can
only be retrieved from within an application such as the length of queues or the
degree to which buffers have been filled, Visor offers a telnet-based interface
where applications can push their metrics data to. This interface is compatible
with the carbon daemon of graphite4, thus allowing an easy migration to Visor.

3.2 Buffering Monitoring Data

A key element when computing higher-level metrics especially over larger time-
windows is the need to buffer raw monitoring data. Time-series databases (TS-
DBs) have been designed to store timestamped data in an efficient way and also
to provide quick access to the stored data. Many TSDB implementations sup-
port applying functions on stored data right out of the box what makes them a
perfect match not only for buffering, but also for aggregation (cf. Section 3.3).
The following paragraphs first derive a strategy on how to implement buffering
including the constraints and then compares TSDBs found in literature and the
open source community with respect to the required properties.

3 http://www.docker.io
4 http://graphite.readthedocs.org/en/latest/carbon-daemons.html

6 Jörg Domaschka, Daniel Seybold, Frank Griesinger, and Daniel Baur

Strategy With respect to our requirements (cf. Section 2) the buffering and
therefore the TSDB approach needs to be able to work with limited resources,
have no single point of failure, and increase available resources when more VMs
are being used. In order to cope with these requirements, we use the following
approach: from each VM acquired for an application, we reserve a configurable
amount of memory and storage (e.g. 10%) that we further split between a local
storage area and a shared storage area. Both storage areas are managed by a
TSDB instance running on the VM. The Visor instance running on this VM
will then feed all monitoring data to the TSDB. The TSDB will store data
from its local Visor in the local storage area and further relay the data to
other TSDBs where it is stored in the shared storage area. This feature avoids
that a TSDB becomes a single point of failure, but still enables quick access
to local data. In order to keep network traffic between cloud providers low,
any TSDB will only select other TSDBs running in the same cloud to replicate
its data. If not enough instances are available to reach the desired replication
degree, the maximum possible degree is used. Hence, this concludes to a ring-like
topology that has been introduced in peer-to-peer systems [3] and is also used
by distributed databases [13].

Table 1. Details of considered times series databases

Name KairosDB OpenTSDB InfluxDB

Version 1.0.0 2.1.0 0.9.0
Datastore H2/Cassandra HBase BoltDB
Distributed no/yes yes yes
InMemory yes/no no yes

Selection of TSDB Table 1 shows a comparison of established TSDB imple-
mentations [10] and several of their properties. The results are intermediate as
our evaluation is this ongoing (cf. Section 4.1).

The for us relevant details of the TSDBs are its maturity, available datastores,
support of distribution and in memory storage. The TSDB should be in some
mature state in order to provide a stable version, client libraries and an available
documentation. Following the strategy exposed in Section 3.2 the datastores shall
be lightweight and ideally support an in memory mode. Also they have to offer
a distributed architecture to ensure horizontal scaling and replication.

OpenTSDB offers the best maturity regarding the version number. The un-
derlying datastore HBase supports distribution but regarding the architecture
of HBase [9] an in-memory mode is missing. Also, it is not a lightweight data-
store [10] and an automated set-up as required in our scenario is not a trivial
task and hard to script. Consequently, OpenTSDB is not an applicable solution.

From its capabilities InfluxDB seems suited for the outlined approach. Yet,
the recently released version 0.9.0 comes with extensive changes in the stor-

Axe 7

age architecture and API design compared to 0.8.05. Given these changes there
currently are no client implementations for version 0.9.0 available.

KairosDB also provides a mature version 1.0.0. It supports the single-site,
in-memory datastore H2 and the distributed Cassandra datastore supporting
scalable to a hundreds of instances [13]. While Cassandra’s resource usage can
be limited, in-memory storage is only supported in the commercial version6.

Following this comparison KairosDB is currently the most appropriate TSDB
to use in Axe based on maturity, distribution and the possibility to limit the
resource consumption of Cassandra.

3.3 Aggregation

In order to make use of the time series produced by the various raw metrics,
these have to be aggregated. Aggregation includes for instance the computation
of average values, of maxima, minima, or simply the normalisation of values. In
addition to that, aggregation may include merging of metrics, e.g. when comput-
ing the average of averages. Hence, aggregation is always application-specific.

Strategy The strategy followed by Axe is based on the metric and metric
aggregation concepts provided by SRL (cf. Section 2). In particular, it supports
the hierarchical aggregation of metrics with an unlimited depth. In addition,
it supports the use of time-bound or element-bound windows specifying the
interval of a time series to be used for computations. Finally, the user may
specify a schedule for each metric that defines how often a value of a metric
shall be computed.

In order to satisfy the requirement for minimum network traffic and scale of
the monitoring system, Axe performs aggregation as close to the data source as
possible. Hence, all aggregations that require input data from a single VM will be
performed on this VM. We refer to this computation to happen in the host scope.
For this approach only the local storage is accessed and no communication is
required which further reduces latency. Aggregations that need input only from
VMs from a particular cloud are performed in cloud scope. Such computations
exclusively access the shared space spanning a cloud. While it is desirable to dis-
tribute all computations of a particular cloud scope amongst the affected VMs
the definition of a suitable heuristic is currently work in progress. Finally, com-
putations that require input from multiple clouds happen in cross-cloud scope
(or global scope). These are performed in the home domain of Cloudiator.

It is important to note that values for higher-level aggregated, metrics have
to be buffered just as the values of any other metric as well. Here, we use the
following strategy to write to our storage platform: Values from local scope
computations are treated just like values from raw metrics. Values from compu-
tations in cloud scope are written to the shared store of their cloud. The results

5 https://influxdb.com/docs/v0.9/introduction/overview.html
6 http://www.datastax.com/

8 Jörg Domaschka, Daniel Seybold, Frank Griesinger, and Daniel Baur

from cross-cloud scope computations are stored in a possibly distributed TSDB
operated at the home domain.

Using this set of hierarchical scopes, we expect to have effectively minimised
latency and network traffic while at the same time having equally loaded all
VMs with monitoring tasks and hence also equally spread the risk of failures.
The deployment of the aggregation tasks onto the Aggregators residing in the
system, and hence the decision which scope to use for it, is handled by the Scaling
Engine component.

API The API provided by Colosseum in order to configure the monitoring
and aggregation functionality of Axe as described above mainly supports the
power of SRL. Yet, in order to ease the specification of sensors and aggregation
functions independent from the number of deployed virtual machines and the
cloud they are currently deployed on, we offer a richer interface.

Monitor doMonitorVms(AppInst app, Component comp, SensorDescription sens);

Fig. 2. API example. This method will trigger the monitoring of all VMs of this ap-
plication instance where component comp has been installed using sensor sens.

The methods (cf. Figure 2 for an example) for defining raw metrics consist of
filters (e.g. by the component type) specifying all instances to be monitored, and
a sensor description defining what to monitor. The sensor description consists
of scheduling information and information which sensor type to be deployed on
Visor. The return value of such an invocation can be used in further methods
to define higher-level metrics (cf. Figure 3). Here, a map functionality is used
to specify the high level metric: That is, for each ingoing (raw) metric a new
metric is created (e.g. average CPU usage in the last 5 minutes). The API also
supports reduce-like semantics where a single metric is generated from all input
metrics (e.g. average of above averages).

Monitor mapAggregatedMonitors(FormulaQuantifier quantifier,
Schedule schedule, Window window, FormulaOperator op,
List<Monitor> monitors);

Fig. 3. API example. This method will install an aggregation triggered according to a
schedule, based on an operator, and using a window of elements operating.

Axe 9

3.4 Auto-Scaling

In general, auto-scalers can be categorised in five different classes [14]. For Axe
we adopt SRL which mainly belongs to the threshold-based rules as well as time
series analysis class. SRL links a set of threshold-based conditions with each
other using binary operators. In addition, any set of thresholds may be linked
to the values produced by the metrics. Furthermore, any of such constructs has
attached a set of scaling actions to be executed whenever the condition has been
satisfied. So far, Axe supports to trigger the scale out and scale in of components.
Yet, the implementation of further actions is underway. The triggering of rules
leads to an invocation of the Cloudiator functionality to bring up a new or
shut down an existing VM.

Strategy The auto-scaling functionality of Axe builds on top of the monitoring
capabilities. In particular any of the conditions connected via Boolean operators
is considered to be a metric on its own taking the values 0 or 1. When the metric
turns to 1 the respective action will be triggered and forwarded as request to the
other Cloudiator tools, in particular Colosseum. These tasks are executed
by the Scaling Engine component.

API The scaling API provides the capability to attach an action to a monitor.
The action itself is described in terms of the component to deal with, the scaling
type, and its parameters. For instance for horizontal scaling, the parameters are
the amount of instances to add/remove, and the allowed maximum and minimum
number of instances of that component.

3.5 Architecture

Above descriptions and discussions lead to the architecture from Figure 1 and
whose main components are (i) the Scaling Engine, (ii) the Aggregator, and
(iii) Visor. The latter has already been introduced in earlier work [2].

The Scaling Engine is the central managing environment of Axe that con-
trols the distribution and outsourcing of the computation-heavy work to highly
scalable and loosely coupled components, the Aggregators. Nevertheless, it is
possible to scale the Scaling Engine up to having one instance per scaling rule.

The aggregations are managed and executed by the Aggregators in the sys-
tem. Due to the design of the system, this can be done in parallel. Also, for their
implementation, the focus has been set to minimise latency.

4 Current Status and Future Work

The following presents the current status and gives an outlook on our planned
work. We distinguish these aspects for data collection in a TSDB, data aggrega-
tion, and scaling.

10 Jörg Domaschka, Daniel Seybold, Frank Griesinger, and Daniel Baur

4.1 Time-series Database

The current version of Axe uses KairosDB with the Cassandra as a datastore.
Cassandra is configured to use only a low portion of a VM’s resources to keep the
impact on the components running on that VM small. Upcoming work comprises
a performance-oriented evaluation of InfluxDB and other NoSQL databases fo-
cusing on their capabilities for managing time-series data. Further, the Zipkin
framework7 will be evaluated on its suitability for cross-cloud applications.

4.2 Aggregators

Currently, the aggregation functionality is implemented for KairosDB and sup-
ports aggregation from and to arbitrary KairosDB instances. We plan to extend
these capabilities to fit all predefined operators of SRL. We currently implement
aggregators for other databases as well to support the TSDB evaluation.

4.3 Scaling Engine

So far Axe supports horizontal scaling actions. Vertical scaling is currently being
implemented. Furthermore, we work reducing the burden for the user when im-
plementing scaling rules. Therefore, we plan to encapsulate SRL’s complexity in a
simpler language possible inspired from complex-event-processing languages [17].

While SRL and with it Axe adopts concepts from auto-scaling concepts based
on threshold-based and time series analysis, other concepts exist that include
queuing theory, control theory, and reinforcement learning [14]. Accordingly,
Axe borrows all its strengths from SRL, but also the weaknesses and could profit
from the integration of other techniques. For instance, reinforcement learning
might be handled in external processing tools, that constantly adjust the scaling
rules. Future work includes the evaluation of such approaches.

5 Related Work

We compare related work with respect to monitoring and auto-scaling.

Cloud monitoring Lifting monitoring to the cloud comes along with vari-
ous requirements compared to traditional server monitoring [1]. Tools provided
by cloud providers, such as Amazon’s CloudWatch8 suffer from vendor lock-
in. Also, additional tools are required when data from different cloud providers
shall be aggregated. Established open source monitoring tools such as Ganglia9

or Nagios10 are designed to monitor large distributed systems, but struggle with

7 urlhttps://github.com/openzipkin/zipkin
8 http://aws.amazon.com/en/cloudwatch/
9 http://ganglia.sourceforge.net/

10 https://www.nagios.org/

Axe 11

the dynamic of cloud environments. More cloud-aware monitoring systems such
as Zipkin—which is based on Dapper [18]—can cope with the dynamic cloud
environment and offer a rich functionality. Yet, in order to scale the monitor-
ing system manual actions or additional tools are necessary. Compared to Axe
none of the mentioned tools supports a reduction of communication overhead
for cross-cloud applications.

Auto-scaling techniques In contrast to similar scaling engines [4], Axe is not
tied to a specific language, but targets to be open for various approaches.

Cloud orchestration tools such as Apache Brooklyn11, the rules are simple
threshold-based and any more complex rules have to be defined in an exter-
nal monitoring tool. Axe in Cloudiator goes beyond this, as it provides an
integrated and easy-to-use solution that even allows changes of the scalability
configuration at runtime.

Several projects deal with integrated auto-scaling mechanisms for cloud ser-
vices. One of them is the EU project CELAR[5]. Auto-scaling in CELAR is
based on a multi-level description of combined metrics. By that metrics are as-
signed to a certain level and when violations occur, the scaling is based on the
top level of the topology. While Axe also supports a multi-level description of
metrics, it goes beyond the CELAR approach due to the fact that it realises
metric aggregation and analysis in a distributed and hierarchical manner.

6 Conclusions

The integrated scaling solutions of current cloud orchestration tools lack an sup-
port for sophisticated implementations of auto-scaling techniques. Only such a
solution can achieve highly dynamic applications, with the ability to adjust their
configuration at runtime in order to cope with unexpected changes of work-
load. In this paper, we introduced Axe, a novel, cloud provider-independent
approach of cloud application monitoring and application adaptation manage-
ment. Axe supports distributed monitoring of cross-cloud applications and also
comes with a distributed, hierarchical aggregation of monitored metrics reduc-
ing the network traffic across cloud providers. The adaptation of the Scalability
Rules Language (SRL) enables the expression of powerful scaling rules based on
hierarchical metrics, complex events and threshold. The platform is scalable in
itself and hence also supports large-scale applications. It has been integrated in
our Cloudiator deployment tool12.

Acknowledgements The research leading to these results has received funding
from the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement number 317715 (PaaSage) and from the European
Community’s Framework Programme for Research and Innovation HORIZON
2020 (ICT-07-2014) under grant agreement number 644690 (CloudSocket).

11 http://brooklyn.incubator.apache.org/
12 https://github.com/cloudiator

12 Jörg Domaschka, Daniel Seybold, Frank Griesinger, and Daniel Baur

References

1. Aceto, G., Botta, A., De Donato, W., Pescapè, A.: Cloud monitoring: A survey.
Computer Networks 57(9), 2093–2115 (2013)

2. Baur, D., Wesner, S., Domaschka, J.: Towards a Model-based Execution Ware
for Deploying Multi-Cloud Applications. In: Proceedings of the 2nd International
Workshop on Cloud Service Brokerage September 2014 (2014)

3. Clarke, I., Sandberg, O., Wiley, B., Hong, T.: Freenet: A distributed anonymous
information storage and retrieval system. In: Federrath, H. (ed.) Designing Privacy
Enhancing Technologies, Lecture Notes in Computer Science, vol. 2009, pp. 46–66.
Springer Berlin Heidelberg (2001)

4. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: Sybl: An extensible language
for controlling elasticity in cloud applications. In: Cluster, Cloud and Grid Com-
puting (CCGrid), 2013 13th International Symposium on. pp. 112–119 (May 2013)

5. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: Multi-level elasticity control of
cloud services. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) Service-Oriented
Computing, Lecture Notes in Computer Science, vol. 8274, pp. 429–436. Springer
Berlin Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-45005-1_31

6. DMTF: Cloud Infrastructure Management Interface (CIMI) Model and RESTful
HTTP-based Protocol (2013)

7. Domaschka, J., Baur, D., Seybold, D., Griesinger, F.: Cloudiator: A Cross-Cloud,
Multi-Tenant Deployment and Runtime Engine. In: 9th Symposium and Summer
School On Service-Oriented Computing (2015)

8. Domaschka, J., Kritikos, K., Rossini, A.: Towards a Generic Language for Scala-
bility Rules. In: Proceedings of CSB 2014: 2nd International Workshop on Cloud
Service Brokerage (2014 (To Appear))

9. George, L.: HBase: The Definitive Guide. O’Reilly Media, 1 edn. (2011)
10. Goldschmidt, T., Jansen, A., Koziolek, H., Doppelhamer, J., Breivold, H.P.: Scal-

ability and Robustness of Time-Series Databases for Cloud-Native Monitoring of
Industrial Processes. In: 2014 IEEE 7th International Conference on Cloud Com-
puting, Anchorage, AK, USA, June 27 - July 2, 2014. pp. 602–609 (2014)

11. Jacob, B., Lanyon-Hogg, R., Nadgir, D., Yassin, A.: A Practical Guide to the IBM
Autonomic Computing Toolkit. IBM redbooks, IBM Corporation, International
Technical Support Organization (2004)

12. Kritikos, K., Domaschka, J., Rossini, A.: SRL: A Scalability Rule Language for
Multi-cloud Environments. In: CloudCom, 2014 IEEE 6th International Conference
on. pp. 1–9 (Dec 2014)

13. Lakshman, A., Malik, P.: Cassandra: A Decentralized Structured Storage System.
SIGOPS Oper. Syst. Rev. 44(2), 35–40 (Apr 2010)

14. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.: A review of auto-scaling tech-
niques for elastic applications in cloud environments. Journal of Grid Computing
12(4), 559–592 (2014)

15. Maurer, M., Breskovic, I., Emeakaroha, V., Brandic, I.: Revealing the mape loop
for the autonomic management of cloud infrastructures. In: ISCC 2011. pp. 147–
152 (June 2011)

16. Open Grid Forum: Open Cloud Computing Interface - Core (2011)
17. Paschke, A., Kozlenkov, A., Boley, H.: A homogeneous reaction rule language for

complex event processing. In: 33rd VLDB 2007 (2007)
18. Sigelman, B.H., Barroso, L.A., Burrows, M., Stephenson, P., Plakal, M., Beaver,

D., Jaspan, S., Shanbhag, C.: Dapper, a large-scale distributed systems tracing
infrastructure. Tech. rep., Google, Inc. (2010)

