ANWAL ynX

Building the Legal Knowledge Graph for Smart Compliance
Services in Multilingual Europe

D4.4 Initial Implementation and Report of Data and Content
Curation Services

PROJECT ACRONYM i Lynx

1 O T . .
PROJECT TITLE i I?wldmg.t.he Legal Knowledge Graph for Smart Compliance Services
1in Multilingual Europe

GRANT AGREEMENT i H2020-780602
FUNDING SCHEME 1ICT-14-2017 - Innovation Action (1A)

STARTING DATE
(DURATION)

PROJECT WEBSITE
COORDINATOR

RESPONSIBLE
AUTHORS

|
501/12/2017 (36 months)

http://lynx-project.eu
Elena Montiel-Ponsoda (UPM)

Julidn Moreno Schneider (DFKI), Georg Rehm (DFKI)

iJuIién Moreno Schneider (DFKI), Georg Rehm (DFKI), Filippo Maganza
E(ALP), Sotiris Karampatakis (SWC), Victor Rodriguez Doncel (UPM)

Andis Lagzdins, Eriks Ajausks (TILDE), Victor Rodriguez Doncel (UPM),
Socorro Bernardos (UPM)

VERSION | STATUS V1.0 | Final

CONTRIBUTORS

REVIEWERS

NATURE {Other

DISSEMINATION i bublic

LEVEL |

DOCUMENT DOI §10.5281/zenodo.3557757
DATE 129/11/2019 (M24)

This project has received funding from the European
Union's Horizon 2020 research and innovation
programme under grant agreement No 780602

http://lynx-project.eu/

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

VERSION MODIFICATION(S) DATE AUTHOR(S)
P _ i i Julidan Moreno Schneider (DFKI),
0.1 { First TOC Version { 22.10.2019 |
; ; I Georg Rehm (DFKI)
i Second TOC based on reviewer’s I I Julidn Moreno Schneider (DFKI),
0.2 I 1 03.11.2019 !
| comments : : Georg Rehm (DFKI)
0.3 E Inclusion of content in Section 2 E 04.11.2019 E Sotiris Karampatakis (SWC)
0.4 i Inclusion of LKG content in section 2 i 05.11.2019 i Victor Rodriguez Doncel (UPM)
0.6 i Including content con Section 3 i 06.11.2019 i Filippo Maganza (ALP)
E Including content in and finishing : : Julidn Moreno Schneider (DFKI),
0.7 I . 1 07.11.2019 !
i Section 3 i i Georg Rehm (DFKI)
i Finishing Executive Summary, i i Julidn Moreno Schneider (DFKI),
0.9 i . . i 08.11.2019 |
i Introduction and Conclusions : : Georg Rehm (DFKI)
: o) | iJuhénIWorenoSchnemer(DFKm
1.0 I Including final reviews and feedback 1 28.11.2019 !
: : I Georg Rehm (DFKI)
ACRONYMS LIST ' '
BB Building Block
BPMN Business Process Model and Notation
CWM Curation Workflow Manager
DAG Directed Acyclic Graph
DCM Document Manager
DS Dataset
EntEx Entity Extraction
GEO Geolocation information extraction
GUI Graphical User Interface
LKG Legal Knowledge Graph
NER Named Entity Recognition
RDF Resource Description Framework
RelEx Relation Extraction
RFP Request for Proposal
SC Scenario
SeSim Semantic Similarity
StrEx Document Structure Analysis
Summ Summarization
TERM Terminology extraction
TIMEX Temporal Expression Analysis
ToClass Topic Classification (Detection)
TRANS Translation
ucC Use Case
URI Uniform Resource Identifier
WM Workflow Manager
WME Workflow Manager Engine
WP Work Package
WSD Word Sense Disambiguation

D4.4 | Initial Implementation and Report of Data and Content Curation Services

AL ynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

EXECUTIVE SUMMARY

This report describes the initial implementation of the curation workflow manager (WM), which controls
the workflows associated to every business use case (as defined in D4.1 [LynxD41]). This implementation
is based on the definition provided in D4.2 [LynxD42] and D4.3 [LynxD43], in which we outlined four
workflows: a common workflow, LKG population, and three use case specific workflows, namely Contract
Analysis (OLS), Geothermal Project Analysis(DNVGL), and Labour Law Question Answering (CuatreCasas).

The implementation of the curation workflow manager is based on the Camunda BPMN engine
(https://camunda.com/products/bpmn-engine/), which allows the definition, implementation and

execution of workflows inside the same tool. The main components of the curation workflow manager
are:

1. Workflow Manager Engine: it is responsible for converting workflows in tasks for the workers.
Workers: they are responsible for the execution of tasks inside a workflow.
Shared memory service: it is the service that both the Workflow Manager Engine and the Workers
use to share large data objects.

4. CAMUNDA API: it is a complete set of RESTful APIs useful to manage BPMN process definition
[OMG2011], process instances and their history.

5. PILOTS API: it is a component of the WM which is responsible for the access to manage and
execute workflows.

6. Camunda Modeler: it is a graphical user interface for defining workflows.

At the moment of writing this deliverable we have already implemented three workflows of the four
defined in D4.3 [LynxD43].

e Legal Knowledge Graph Population
e Contract Analysis
e Geothermal Project Analysis

This report also describes the implementation of the document manager(DCM), which is responsible for
the storage of the Legal Knowledge Graph and the documents once they have been processed through
the different workflows. The document manager is implemented using Trellis Linked Data Platform (LDP)
(https://www.trellisldp.org/), so that it extends the idea of the Knowledge Graph (KG) including also the
documents. By utilizing the flexibility of JSON-LD and the capabilities of an LDP, the DCM is the main
building component of the Lynx Legal Knowledge Graph (LKG) and where the LKG lies.

In the time left to finish the project, the following implementations will be completed:

e The workflow defined in D4.3 that is not yet implemented (Labour Law workflow).
¢ Some modifications in the curation workflow manager to support more efficient communication
capabilities between the services.

D4.4 | Initial Implementation and Report of Data and Content Curation Services 2

https://camunda.com/products/bpmn-engine/
https://www.trellisldp.org/

AL ynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

TABLE OF CONTENTS
1 INTRODUCTION ..oovvooeeeeeeeee oo seesessesesssesesssssessssses s sssesssssesssssesss s saseesssseesssessssesssssesssssessssneees 5
1.1 PURPOSE OF THIS DOCUMENTo.vveoevernesessessessssesssssessssessssssssssesesssssssssessssssssssessssnsssssessssesssens 5
1.2 STRUCTURE OF THIS DOCUMENTo.ocooeveoeeeeaeseesssesessesessssssssssssssesssssesssssssssssessssessssssssssssssnn 5
2 DOCUMENT MANAGER........overveeeeeeeeseeeesssssssssssssssessssesssssessssessssesssssesssssessssesssssssssessssesssssessssnssonns 6
2.1 ANNOTATION CONTROLLER.......ovveomrveeoeeeeeeseeseseessssessssssssssessssessssses s ssssssssessssses s sssesesss 6
201 GET oo ss s 7
2.1.2 POST cooeeteeeeeeeeeee e e s 7
213 PUT oo 7
204 DELETE covooovveoceeeseceeseesssessssesssssesssssssssssse s sse s s sss s sse s s s ss s s 8
2.2 LEGAL KNOWLEDGE GRAPH IN THE DOCUMENT MANAGERooovverrrreerreesessesesesessseseeseenesens 8
3 CURATION WORKFLOW MANAGERervveeereesesesessssesssesssssssssssesssssssssssssssssssssessssssssssessssssssssasssens 9
3.1 WORKFLOW MANAGER ENGINEorvverreeereeeessesessesessessssssssssssesssssssssssssssssesssesssssessssessssa 9
3.2 WORKERS «....coovveanrsssaessssssssessssessssss s ssessssse s s sssessssse s s s s s ssess s ssssne s 10
33 SHARED MEMORY SERVICEcorvveoreeeeseesseseessssessessssssssssssssens 11
3.4 CAMUNDA APLL...ooovvooeveeseeeesssesessssssssesssssessssssssss s s sssse s ssessssses s s s s ssess s sssssnssaenssens 11
3.5 PILOTS APIS w.coooovveoceeeoesessssssesssesessssesssssesssssessssssssssssssse s s s s s sssessssss s esssses s sssssesssenees 11
3.5.1 POST = LKGP, GPA GNA CA ..orvoeeevereeveeeseeeeseesssees s ssssss s ssesesssssessssss s ssssesssssessasssssess 12
3152 GET coooeeeeeeeeeeeeeeseeese e s 13
3.6 GRAPHICAL USER INTERFACE FOR DEFINING WORKFLOWSooeveerreenreeeeneseseeeeseseseessenesens 13
3.7 EXECUTION OF A WORKFLOWoovvorrvereeresressesssssesssessssessssssssssesssssessssssssssssssssesssssnssssssssssnness 13
B CONCLUSIONSooovveeceeeeeseeeeseeesseesessseessssess st s ssssessssses s ssssessssesssssessssesssssesssssssssesssssesssssessnsenssnes 15
ANNEX 1 — IMPLEMENTATION DETAILS (CODE)ouovveeereeereeeeseeensessessssessssesessssssssssssssesssssssssssssssnssones 16

D4.4 | Initial Implementation and Report of Data and Content Curation Services 3

AL ynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

TABLE OF FIGURES

Figure 1. Discrete methods available in the Annotation CoNtroller.........cccoeevuvveeeiiieiiiicciieeeeee e 7
Figure 2. Visualization of the LKG information ingestion procCess......cccuuuveiiiiiiieiiiiiieee e 8
Figure 3. Architecture of the Camunda-based curation workflow manager.cccccvveiviiieiiiniiee e, 9
Figure 4. Image of the Gitlab repository of the Workflow Manager engine.........ccccceceeeevecvvveeeeeeeeeeincnnnnee, 10
Figure 5. Screenshot of the Gitlab repository of the implemented Workers’ types......ccccoevvvveevieeirincnnnee. 11

Figure 6. Visualization of the Swagger Open API Specification of the APIs defined in the Workflow Manager
Lo T 1 g Tl o7 [o] 3PP PPTTPPPRRRRPPRR 12

Figure 7. Example of @ WOrkflow defined.ocuuiiiiiiiiiiiie ettt 13

TABLE OF TABLES

Table 1. List of repositories related to DCM and WM.ooooiiiiiiiee ettt ee e 16

D4.4 | Initial Implementation and Report of Data and Content Curation Services 4

AL ynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

1 INTRODUCTION

A curation workflow manager (CWM) is needed in order to orchestrate all the different services of the
Lynx platform because it has been designed using a microservice architecture. This manager is responsible
for the execution of all workflows defined in Lynx, therefore it must be able to contact all the services,
named Building Blocks (BB) in Work Package 3 (WP3), and datasets in order to implement the required
functionality. The datasets are stored by another module, namely document manager (DCM), that is
responsible for the storage of the Legal Knowledge Graph (LKG) and the enriched documents that are
processed through the workflows.

The document manager is implemented in a flexible manner using different data storages (Elastic Search
and the Trellis Linked Data Platform (LDP)), so it extends the idea of the documents to the level of a
Knowledge Graph (KG). By utilizing the flexibility of JSON-LD and the capabilities of an LDP, the DCM is the
main building component of the Lynx Legal Knowledge Graph (LKG) and where the LKG lies. Further
information on the Legal Knowledge Graph can be found in the devoted section of D2.4, Data
Management Plan [LynxD24].

The main components of the CWM are the different components that are responsible for orchestrating
the execution, namely Workflow Manager Engine, the internal and external storage of information,
namely Shared Storage, and the different elements for contacting the services involved in the workflows,
namely Workers.

At the moment of writing this deliverable we have already implemented three workflows of the four
defined in D4.3 [LynxD43].

e Legal Knowledge Graph Population
e Contract Analysis
e Geothermal Energy

1.1 PURPOSE OF THIS DOCUMENT

This report describes the initial implementation of the curation workflow manager and the document
manager as components of the Lynx platform. The document is based on D4.3 [LynxD43], which defines
the final version of the workflows, and aligned with D1.1 [LynxD11] and D4.1 [LynxD41], which define the
requirements for the Lynx platform collected from the use case pilots.

1.2 STRUCTURE OF THIS DOCUMENT

Section 2 Document Manager describes the document manager which handles the stored information
inside the platform. Section 3 Curation Workflow Manager describes the curation workflow manager as a
component of the Lynx platform. Section 4 Conclusions concludes this deliverable. Annex 1 presents the
implementation details of the curation workflow manager.

D4.4 | Initial Implementation and Report of Data and Content Curation Services 5

AL ynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

2 DOCUMENT MANAGER

The document manager (also referred to as DCM) is a central part of the Lynx platform in terms of the
general platform capabilities. Its main functionalities include the storage of documents and their
annotations; with special emphasis on keeping the synchronization among them, providing read and write
access, and update of documents and annotations.

The document manager can be queried in terms of annotations (e.g. “which documents mention entity
X"), and in terms of documents (e.g. “what are the contents/annotations of document X”). All queries to
the DCM are executed via a REST interface. The interface includes a set of Create, Read, Update, and
Delete (CRUD) APIs to manage the following resources within the Lynx platform: collections, documents
and annotations.

The DCM has been designed with the intention of being an abstract entity with different possible
implementation in order to respond to the different needs of the pilots, in terms of volume of data, speed
of access, etc. The DCM, implemented in Java, has as central contract an interface (DocumentManager),
which so far has had three different implementations: one based on files, one based on ElasticSearch?
and one based on the Trellis Linked Data Platform?. Although the first has been left only for informative
purposes, the implementations based on ElasticSearch and on Trellis are fully functional and perfectly
interchangeable. The adopted design pattern to manage these implementation has been the dependency
injection, implemented with the Spring @autowired, and enabling the automatic detection of
relationships between beans.

By having a representation of the documents in JSON-LD (namely, RDF), the Lynx documents are not only
isolated elements but nodes in a graph; and the use of semantics to formalize the meaning of the classes
and properties qualifies this graph to be called Knowledge Graph. The DCM is the main building
component of the Lynx Legal Knowledge Graph (LKG) and where the LKG resides. Basic architecture and
description of the core functionalities are already described in D1.4[LynxD14]. We document here a more
detailed description of the Annotation Controller, the decision to use JSON-LD as the core data
interchange format within the Lynx Platform and a description of how the DCM builds the Legal
Knowledge Graph.

2.1 ANNOTATION CONTROLLER

The Annotation Controller is the endpoint of the DCM, which allows the manipulation of and the
interaction with annotations of a document. It consists of 7 discrete methods (see Figure 1):

e 3 HTTP GET methods to retrieve one, all or a list of some annotations of a document
e 1 HTTP POST method to create new annotations on a document

e 1 HTTP PUT method to update annotations

e 2 HTTP DELETE method to delete annotations.

L https://www.elastic.co

2 https://www.trellisldp.org

D4.4 | Initial Implementation and Report of Data and Content Curation Services 6

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

annotation Annotation Controller e

‘ ﬂ fcollections/{collectionId}/documents/{documentId}/annotations

Gets all the annotations
of a document

Creates new
annotation(s)

‘ m fcollections/{collectionId}/documents/{documentId}/annotations

Updates annotations of a

fcollections/{collectionId}/documents/{documentId}/annotations S g——

ﬂ fcollections/{collectionId}/documents/{documentId}/annotations/** Getsanannotation

Deletes an existing

m fcollections/{collectionId}/documents/{documentId}/annotations/** ——

Lists all the
ﬂ fcollections/{collectionId}/documents/{documentId}/annotations/list annotationsofa
document

Figure 1. Discrete methods available in the Annotation Controller.

All annotations within the Lynx context are described in RDF (Resource Description Framework) by using
the NIF2.1 vocabulary. Additionally, annotation IDs within the DCM are equal to the annotation URIs
(Uniform Resource Identifier), thus uniquely identifiable. A complete documentation and testing
environment can be found online3. The rest of the section describes the methods in brief.

2.1.1 GET

The HTTP GET methods of the DCM allow clients to access the annotations of a document.

The client may request a list of all annotations of a document either in RDF or JSON format. Additionally,
a client may request all annotations of a document, or a particular annotation of a document, by specifying
the particular annotation ID. Annotations can be provided in various RDF formats and in JSON.

2.1.2 POST

In order to create new annotations, a client may use the POST method of the Annotation Controller. All
annotation producing services of the Lynx Platform are providing annotations in NIF2.1 format, using the
TURTLE serialization of RDF, thus the method accepts input in TURTLE format. Multiple POST requests on
the same document will be accepted as separate resources. The actual RDF content of the body request
is then consolidated with the existing annotations.

2.13 PUT

The PUT method allows to update annotations of a document. The method accepts inputs as RDF (in
TURTLE format). Existing annotations of the document will be replaced by the new content. The LDP
backend of the DCM allows a more advanced approach in updating the annotations by accepting SPARQL
Update queries, giving better flexibility on the client on how to update resources, but this is currently not
accepted by the DCM.

3 http://docmanagerldp-88-staging.cloud.itandtel.at/swagger-ui.html#/annotation

D4.4 | Initial Implementation and Report of Data and Content Curation Services 7

http://docmanagerldp-88-staging.cloud.itandtel.at/swagger-ui.html#/annotation

MLY"X

2.1.4 DELETE

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

The DELETE method allows to delete annotations of a document. A client may delete all the annotations
of a document or a particular annotation, by specifying the annotation ID (the annotation URI).

2.2 LEGAL KNOWLEDGE GRAPH IN THE DOCUMENT MANAGER

As stated in the proposal document, “Lynx aims to create a knowledge graph of legal and regulatory data
towards compliance, in which heterogeneous data sources from different jurisdictions, languages and
orders are aggregated and interlinked by a collection of advanced services”.

The DCM has an integral role in the construction and curation of the Legal Knowledge Graph within the
LYNX platform (see Figure 2). As the DCM is implemented using an LDP server such as Trellis, basic
metadata about the document itself are stored as triples natively —the implementation based on Elastic
Search storing equivalently the JSON-LD syntax of RDF. Additionally, document structure metadata and
various types of metadata such as subject, jurisdiction, language etc. are also triplified through the DCM
at storing time. Ontology NIF v2.1 is used to describe structure metadata and a mashup of metadata
specific ontologies are used for other descriptive, structural or administrative metadata. Moreover,
annotations of each document are also described using the NIF v2.1 ontology. An overview of the data
model used to describe documents and their metadata within Lynx can be found in http://lynx-
project.eu/data2/data-models. Triples from all documents including data and metadata can be queried

using the SPARQL endpoint provided by the Trellis platform, thus providing access to the LKG and ability
to evaluate complex queries —the equivalent for the ElasticSearch implementation being made by periodic
data exports, queryable in the endpoint http://spargl.lynx-project.eu/. The extensive usage of

vocabularies as values for metadata or annotations enhances the value of the LKG and increases the
interoperability of the system.

Figure 2. Visualization of the LKG information ingestion process.

(X :
| 2 - integration I
| :annntatjan, linking, - i_' I
| translation) I

| Business cases]
/ \\ vocabularies (compliance services ! I
legal resources | : I
| Pilot 1: Data protection . !
| Legal Knowledge Graph : I
— | ~ |

tandards | = @ -p :
srandanes El\ : % K -ﬂ Pilot 2: Ol and gas ol
I indexed documents Ao 4 . I
language resources | | iy ¢ o
I b Pilot 3: Labour Law ; :

\ ,

exlernal open dala

e a | - | I
- I
m private docimenta 3 - exploitation I
\ \ 1 - acquisition J

M o o o o o o o e e e e e e e e e e e e o e -

Data value chains

D4.4 | Initial Implementation and Report of Data and Content Curation Services

http://lynx-project.eu/data2/data-models
http://lynx-project.eu/data2/data-models
http://sparql.lynx-project.eu/

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

3 CURATION WORKFLOW MANAGER

Using a microservice architecture enforces the usage of some kind of management in order to orchestrate
the execution of the different services involved in more complex tasks. The combination of several
functionalities from different services is defined as a workflow and the module responsible for
orchestrating them is called curation workflow manager (CWM).

We have already published a paper about a generic workflow manager for curation technologies
[Bourgonje2016], and two different papers describing the curation workflow manager of the Lynx
platform [MorenoSchneider2018a, MorenoSchneider2018b].

At the beginning of WP4 we started the development of two different curation workflow managers —one
based on RabbitMQ (https://www.rabbitmg.com/) and one based on Camunda BPMN engine
(https://camunda.com/). Finally, we adopted the Camunda-based solution because it was in a more
mature state, so only the Camunda-based version is described in this deliverable.

Figure 3 shows the current architecture of the CWM. Its main logical components are described in the
following sections.

WM storage

* Workflow definitions @‘?
v

+ State of workflows in
execution

* Process variables

* History

Update state information

‘ Client app }—I—’
. Pilats . Access to shared Shared memory service
AR Workflow Manager 'y objects

;‘; N
o] i Camunda API

Camunda Modeler >

.mongol)li GridFS

Workers AP

FY

Lynx business manager

. A
i 4’ Get tasks and notify Access to shared

on task completion objects
Lyrnx admin Lynx developer

r’ ‘I

1

i Trans worker H EntEx worker H“ ‘ Summ worker f

! 1

' 1

: _—
: :

1 1

I NER worker ‘ Lynx workers pool Indexer worker 1 ‘ :

! b | [

. I

Figure 3. Architecture of the Camunda-based curation workflow manager.

3.1 WORKFLOW MANAGER ENGINE

The Workflow Manager Engine (WME) is responsible for converting workflows in tasks for the workers.
Its implementation is based on the Camunda BPMN engine [BPMN2019]. The main concepts of this
component are:

e Workflow: a direct acyclic graph whose nodes are associated with tasks;

D4.4 | Initial Implementation and Report of Data and Content Curation Services 9

https://www.rabbitmq.com/
https://camunda.com/

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

e Task: an atomic unit of business logic; a task is associated with one and only one Lynx peripheral
service;

e Process: a runtime instance of a workflow;

e Job: aruntime instance of a task.

It also provides a very complete REST interface for managing workflow executions and templates that is
completely described in Section 3.5.

Apart from that, the WME uses some internal storage to save the different objects (workflows, tasks,
processes and jobs) that are created during execution. All these elements are stored in the Workflow
Manager Storage, which is implemented using a PostgreSQL database (https://www.postgresql.org/).

All the code of the WME can be found at https://gitlab.com/superlynx/alp_wm. This repository is private
and accessible upon request, therefore an image of the repository is also provided in Figure 4.

.a alp_.wm ¥ superlynx > & alp.wm > Details
& -\
LY Project overview . alp_wm a AT (T m
. Project ID: 10574397
Details

Activity 73 Add license -0- 207 Commits 9 Branches ¢7 0 Tags [) 952 KB Files

o An implementation of the Workflow Manager based on Camunda BPMN process engine
eleases

Cycle Analytics

develop alpowm / + v History Q Find file Web IDE & v
B Repository

T 5 E_:‘ returning document id ob84384c Iy
' Filippo Maganza authored 3 days ago

19 Merge Reguests 0

£ CljCD [README Add CHANGELOG [Add CONTRIBUTING Add Kubernetes cluster [® Set up CI/CD

& Operations

Name Last commit Last update
8 Packages W src returning document id 3 days ago
O wiki 2 .gitignore init 9 months ago
Snippets Dockerfile Big refactorini weeks ago
3 pp (2 Dockerfil ig refactoring 2 weeks ag
L} Settings [3 Dockerfile-debug Add Dockerfile-debug for the local debug environ... 8 months ago
[README.md Update README.md 9 months ago
[3 docker-compose-debug.ym| Added documentation to LKGP_en 3 months ago
ocker-compose.ym removed dependecies 3 months ago
3 docks | d d h
&« Collapse sidebar Y .
3 pom.xml Big refactoring 2 weeks ago

Figure 4. Image of the Gitlab repository of the Workflow Manager engine.

3.2 WORKERS

The Workers are responsible for the execution of tasks inside a workflow. Every task is identified by a
name that refers to the related services like “TimEx-LKGPopulation” or “NER-ContractAnalysis”. Workers
can be easily scaled in and out using Kubernetes.

A worker is a piece of Java code that uses the Camunda External Task Client library
(https://docs.camunda.org/manual/7.9/user-guide/ext-client/) to connect to the WME to obtain the
tasks it has to execute. At the moment of writing this deliverable, there are four implemented types of
workers. Each type of worker can be instantiated multiple times with different configuration files, i.e.,

D4.4 | Initial Implementation and Report of Data and Content Curation Services 10

https://www.postgresql.org/)
https://gitlab.com/superlynx/alp_wm
https://docs.camunda.org/manual/7.9/user-guide/ext-client/

AL ynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

each instantiated worker is responsible (based on its configuration) to connect to a different service, or
even to the same service but with different parameters (for example, lang=de or lang=en). The four types
of Workers (shown in Figure 5) have different functionalities:

e document-translation-worker: it is responsible to connect to the Tilde translation services.

¢ document-enrichment-worker: it is responsible to connect to one of the enrichment services
inside the Lynx platform: NER, TIMEX, SUMM, WSID, EntEx, etc.

e save-enriched-doc-in-LKG-worker: it is responsible to save an enriched document inside the DCM.

e create-enriched-document-worker: it is responsible to create an enriched document.

workers &

- B created upon request by Filippo Bo R4 &1
[l D document-translation-worker % 0 6 days ago
[l D document-enrichment-worker & * 0 6 days ago
[l S save-enriched-doc-in-LKG-worker (& * 0 1 week ago
[l C create-enriched-document-worker (& * 0 1 week ago

Figure 5. Screenshot of the Gitlab repository of the implemented Workers’ types.

3.3 SHARED MEMORY SERVICE

The shared memory service is the service that both the Workflow Manager Engine and the Workers use
to share large sized data objects. For instance, currently the WM uses it to share with the workers the
documents that they have to process.

The shared memory service uses a MongoDB (https://www.mongodb.com/) database to store the

information.

3.4 CAMUNDA API

The Camunda Rest Engine provides a complete set of RESTful APIs useful to manage Business Process
Model and Notation (BPMN) process definitions, process instances and their history. We have decided to
include some of these APIs in the Lynx Workflow Manager to extend its basic functionalities. As an
example, if a maintenance of the Lynx platform is required, it will be possible to pause the workflows in
execution for some time and then resume them when the maintenance is complete.

This interface will be available only to Lynx developers, administrators and business managers. A very
detailed documentation is available at https://docs.camunda.org/manual/latest/reference/rest/.

3.5 PILOTS APIS

The Pilots APl is a component of the CWM, which is responsible for the access to managing and executing
workflows. It consists of 4 discrete methods:

D4.4 | Initial Implementation and Report of Data and Content Curation Services 11

https://www.mongodb.com/
https://docs.camunda.org/manual/latest/reference/rest/

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

e 3 HTTP POST methods to execute and manage pilot specific workflows (one method per pilot);
e 1 HTTP GET method to retrieve the current state of a concrete workflow.

These methods are shown in Figure 6 and described further in the document, but the complete
information is online.*

Servers

| https:/lalp-api-88-staging.cloud.itandtel.at/api

Workflows Execution ~

OST /workflows/LKGP Startthe ingestion of a document in the Lynx system
/workflows/GPA Starl the analysis of a geotherm project.

| /workflows/CA Startthe analysis of a contract.

Workflows Status v

GET | /workflows/completionPercentage/{workflowId} Check the complelion percentage of a workflow

Schemas N

StartPopulationResponse >

LynxDocument >

Figure 6. Visualization of the Swagger Open API Specification of the APIs defined in the Workflow Manager for the pilots.

3.5.1 POST - LKGP, GPA and CA

The HTTP POST methods of the CWM allow clients to manage workflow executions and templates. There
is one method per use case:

e LKGP for the Legal Knowledge Graph Population workflow (see deliverable 4.3 [LynxD43]).
e CA for Scenario 1 Contract Analysis (see deliverable 4.3 [LynxD43]).
e GPA for Scenario 2 Geothermal Project Analysis (see deliverable 4.3 [LynxD43]).

The client may execute a concrete workflow with a specific request whose body must contain a valid
LynxDocument JSON. In the parameters, it must specify the collection in which the document and its
annotations are going to be stored. The response is a StartPopulationResponse, which corresponds to a
confirmation that the workflows is running including a workflodid, which is needed to request its status
using the GET method.

4 http://lynx-project.eu/doc/api/alp_wm.html

D4.4 | Initial Implementation and Report of Data and Content Curation Services 12

http://lynx-project.eu/doc/api/alp_wm.html

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

3.5.2 GET

The HTTP GET method of the Pilot APls of the CWM allows clients to retrieve the current status of a
concrete workflow execution. The client must provide the workflowld as part of the URL to call the

method. The response will be a JSON one containing the relevant information about the current state of
the workflow execution.

3.6 GRAPHICAL USER INTERFACE FOR DEFINING WORKFLOWS

The first general definition of workflow in the domain of the Lynx project was simply a direct acyclic graph
where the nodes are tasks and the edges represent the order in which tasks must be executed. One of
the challenges of T4.4 has been deciding how to represent directed acyclic graphs (DAGs) in a computer
understandable format like XML or JSON. The solution we have adopted is BPMN.

BPMN is a standard for business process modeling that provides a graphical notation for specifying
business processes.

The definition of new workflows can be made generating a BPMN document, but since this is not user
friendly, we have integrated a graphical user interface for the definition of new workflows. Among all the
available interfaces we decided to use the Camunda Modeler
(https://camunda.com/download/modeler/) because it is directly usable together with Camunda.

LR Camunda Modeler

Proparties Panal

&b

Log

Figure 7. Example of a Workflow defined.

As depicted in Figure 7, the workflows are defined using a drag & drop approach to include new
components, each component being one of the services developed in the Lynx project.

3.7 EXECUTION OF A WORKFLOW

This section provides a brief description of the steps needed to test the curation workflow manager. In
particular, we use as an example the workflow corresponding to a part of the “LKG population” one, which

D4.4 | Initial Implementation and Report of Data and Content Curation Services 13

https://camunda.com/download/modeler/

AL ynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

has been described in the D4.3 [LynxD43]: the work consists of enriching a document with some of the
Lynx WP3 services.

1. SendaPOST request using the /workflows/LKGP controller. The body of your request must contain
a valid LynxDocument JSON. In the parameters, you must specify collection in which you want to
store the document and its annotations.

2. Wait until the workflow is completed. You can check the completion percentage using the
/workflows/status/{workflowInstanceld} controller, the workflowlInstanceld is provided in the
response obtained in step 1.

3. Once the workflow is completed you can verify that the document has been indexed and linked to
the LKG:

o Send a GET request using the Document controller of the DM. The documentld should be
the one returned in step 1.

o Perform a search using the Search module API. Search for some words contained in the
title of the document ingested in step 1, you should find it in the results.

Since the CWM and the services are under development we cannot ensure that this demo will continue
to work in the future. For further details please visit the complete documentation at http://lynx-
project.eu/doc/api/alp wm.html.

D4.4 | Initial Implementation and Report of Data and Content Curation Services 14

http://lynx-project.eu/doc/api/alp_wm.html
http://lynx-project.eu/doc/api/alp_wm.html

AL ynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

4 CONCLUSIONS

This report provides the description of the initial implementation of the Curation Workflow manager and
the Document manager. The curation workflow manager implementation described in this report is based
on the requirements presented in D1.1 [LynxD11] and D4.1 [LynxD41] and implements the workflows
described in D4.3 [LynxD43].

The initial implementation of the curation workflow manager is based on Camunda BPMN Engine together
with some self-implemented components, which allow not only the management but also the execution
of workflows while the definition of new workflows is done via a graphical interface (Camunda Modeler).

The implementation of the document manager was complicated because at the beginning, it was only
regarded as a storage and retrieval module for documents, but it also has the functionality of storing and
providing access to the linked data (Legal Knowledge Graph). It has been implemented based on Trellis
LDP, and extended with some additional HTTP methods to adapt its functionality to project needs.

Considering that this report is only an initial version of implementation, some modifications are expected
both in the DCM and in the WM depending on the development of the pilots. Some steps that must be
carried out in the project and are already foreseen are:

e The implementation of the workflows defined in D4.3 that are not yet implemented (Labour Law
workflow).

e The implementation of some modifications in the curation workflow manager to support more
efficient communication capabilities between the services.

D4.4 | Initial Implementation and Report of Data and Content Curation Services 15

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

ANNEX 1 - IMPLEMENTATION DETAILS (CODE)

This annex contains all the repositories related to DCM and CWM.

Repository URL Description

https://gitlab.com/superlynx/alp wm Workflow Manager engine

https://gitlab.com/superlynx/workers Workers

https://gitlab.com/superlynx/workflows Contains the implemented workflows in BPMN format.

https://gitlab.com/superlynx/dcm Document Manager

Table 1. List of repositories related to DCM and WM.

NOTE: some of the repositories are established as private access but credentials are offered upon
request.

Next one finds a report on OpenAPI description of the DCM and CWM’ HTTP endpoints. The tool
https://mrin9.github.io/RapiPdf/ was used to generate these reports.

D4.4 | Initial Implementation and Report of Data and Content Curation Services 16

https://gitlab.com/superlynx/alp_wm
https://gitlab.com/superlynx/workers
https://gitlab.com/superlynx/workflows
https://gitlab.com/superlynx/dcm
https://mrin9.github.io/RapiPdf/

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

API| Reference

Api Documentation

API Version: 1.0
Api Documentation

CONTACT

Terms of service: urn:tos

10f17

D4.4 | Initial Implementation and Report of Data and Content Curation Services

17

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

INDEX

1. ANNOTATION

GET /collections/{collectionId}/documents/{documentId}/annotations
PUT /collections/{collectionId}/documents/{documentId}/annotations
POST /collections/{collectionId}/documents/{documentId}/annotations

DELETE /collections/{collectionId}/documents/{documentId}/annotations/**
GET /collections/{collectionId}/documents/{documentId}/annotations/list

L S U W

.
2
3
.4 GET /collections/{collectionId}/documents/{documentId}/annotations/**
5
6

. COLLECTIONS

.1 GET /collections

.2 POST /collections/{collectionId}
.3 DELETE /collections/{collectionId}

N N NN

. DOCUMENTS

GET /collections/{collectionId}/documents

PUT /collections/{collectionId}/documents

POST /collections/{collectionId}/documents

GET /collections/{collectionId}/documents/search

GET /collections/{collectionId}/documents/{documentId}
DELETE /collections/{collectionId}/documents/{documentId}

W W W w w w w
o g b~ WON =

o o b b W W W

NN NN

10
12
14
15
16

20f17

D4.4 | Initial Implementation and Report of Data and Content Curation Services

18

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

API
1. ANNOTATION

Annotation Controller

1.1 GET /collections/{collectionId}/documents/{documentId}/annotations

Gets all the annotations of a document
Returns a complete representation of the annotations of the document

REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION

*collectionId string collectionld

*documentId string documentld

HEADER PARAMETERS
NAME TYPE DESCRIPTION

*Accept string Accept

RESPONSE

STATUS CODE - 200: OK

RESPONSE MODEL - application/json

RESPONSE MODEL - application/json+ld

RESPONSE MODEL - application/rdf+xml

RESPONSE MODEL - text/turtle

RESPONSE MODEL - application/n-triples

STATUS CODE - 401: Unauthorized
STATUS CODE - 403: Forbidden

STATUS CODE - 404: Not Found

1.2 PUT /collections/{collectionId}/documents/{documentId}/annotations

Updates annotations of a document
This will replace all previous annotations of the document. The request body should be a valid NIF 2.1 document

30f17

D4.4 | Initial Implementation and Report of Data and Content Curation Services 19

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

REQUEST

PATH PARAMETERS
NAME TYPE DESCRIPTION

*collectionId string collectionld

*documentId string documentld

REQUEST BODY - application/rdf+xml

RESPONSE

STATUS CODE - 201: Created
STATUS CODE - 204: No Content
RESPONSE MODEL - */*

STATUS CODE - 401: Unauthorized
STATUS CODE - 403: Forbidden
STATUS CODE - 404: Not Found

1.3 POST /collections/{collectionId}/documents/{documentId}/annotations

Creates new annotation(s)
The request body should be a valid NIF 2.1 document

REQUEST

PATH PARAMETERS
NAME TYPE DESCRIPTION

*collectionId string collectionld

*documentId string documentld

REQUEST BODY - application/rdf+xml

RESPONSE

STATUS CODE - 201: Created

RESPONSE MODEL - */*

STATUS CODE - 401: Unauthorized
STATUS CODE - 403: Forbidden

STATUS CODE - 404: Not Found

1.4 GET /collections/{collectionId}/documents/{documentId}/annotations/

40f 17

D4.4 | Initial Implementation and Report of Data and Content Curation Services

20

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

**

Gets an annotation
This will show a specific annotation of a document.

REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION

*collectionId string collectionld

*documentId string documentld

HEADER PARAMETERS
NAME TYPE DESCRIPTION

*Accept string Accept

RESPONSE

STATUS CODE - 200: OK
RESPONSE MODEL - application/json

RESPONSE MODEL - application/json+ld

RESPONSE MODEL - application/rdf+xml

RESPONSE MODEL - text/turtle

RESPONSE MODEL - application/n-triples

STATUS CODE - 401: Unauthorized
STATUS CODE - 403: Forbidden

STATUS CODE - 404: Not Found

1.5 DELETE /collections/{collectionId}/documents/{documentId}/
annotations/**

Deletes an existing annotation
Deletes an annotation

REQUEST
PATH PARAMETERS

NAME TYPE DESCRIPTION

*collectionId string collectionld

*documentId string documentld

50f17

D4.4 | Initial Implementation and Report of Data and Content Curation Services

21

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

RESPONSE

STATUS CODE - 200: OK

RESPONSE MODEL - */*

STATUS CODE - 204: No Content
STATUS CODE - 401: Unauthorized
STATUS CODE - 403: Forbidden

1.6 GET /collections/{collectionId}/documents/{documentId}/annotations/
list

Lists all the annotations of a document
Returns an array of annotation identifiers.

REQUEST

PATH PARAMETERS
NAME TYPE DESCRIPTION

*collectionId string collectionld

*documentId string documentld

RESPONSE

STATUS CODE - 200: OK
RESPONSE MODEL - application/json

RESPONSE MODEL - application/rdf+xml

RESPONSE MODEL - text/turtle

STATUS CODE - 401: Unauthorized
STATUS CODE - 403: Forbidden

STATUS CODE - 404: Not Found

6 of 17

D4.4 | Initial Implementation and Report of Data and Content Curation Services 22

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

2. COLLECTIONS

Collection Controller

2.1 GET /collections

Lists the available collections

REQUEST

No request parameters

RESPONSE

STATUS CODE - 200: OK

RESPONSE MODEL - */*

STATUS CODE - 401: Unauthorized
STATUS CODE - 403: Forbidden

STATUS CODE - 404: Not Found

2.2 POST /collections/{collectionId}

Creates a new collection
any slug with no empty spaces

REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION

*collectionId string collectionld

RESPONSE

STATUS CODE - 201: Created

RESPONSE MODEL - */*

STATUS CODE - 401: Unauthorized
STATUS CODE - 403: Forbidden
STATUS CODE - 404: Not Found

2.3 DELETE /collections/{collectionId}

Deletes an existing collection
the collection must be empty

REQUEST

7 of 17

D4.4 | Initial Implementation and Report of Data and Content Curation Services

23

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

PATH PARAMETERS
NAME TYPE DESCRIPTION

*collectionId string collectionld

RESPONSE

STATUS CODE - 202: Accepted
RESPONSE MODEL - */*

STATUS CODE - 204: No Content
STATUS CODE - 401: Unauthorized
STATUS CODE - 403: Forbidden

80of 17

D4.4 | Initial Implementation and Report of Data and Content Curation Services 24

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

3. DOCUMENTS

Document Controller

3.1 GET /collections/{collectionId}/documents

List documents.
Retrieves a list of all documents in a collection

REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION

*collectionId string collectionld

QUERY PARAMETERS
NAME TYPE DESCRIPTION

limit int32 limit
offset int32 offset

sort string sort

RESPONSE

STATUS CODE - 200: OK

RESPONSE MODEL - application/json

{
docs [{

Array of object:
@context
annotations [{
Array of object:
anchor0Of
comment
id
offset_end
offset_ini
referenceContext
source
taClassRef
taldentRef
type [{
Array of object:
}H

}H

id

metadata {

}

parts [{
Array of object:

}H

90of 17

D4.4 | Initial Implementation and Report of Data and Content Curation Services

25

Y Lynx

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

partsVictor [{

Array of object:
@id
@type
offset_end
offset_ini
parent
text
title

3

text

type [{

Array of object:

H

H

total

}
STATUS CODE - 401: Unauthorized

STATUS CODE - 403: Forbidden

STATUS CODE - 404: Not Found

3.2 PUT /collections/{collectionId}/documents

Updates a document

This will update a document. The previous version of the document will be overwritten and the the annotations re-evaluated

REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION

*collectionId string collectionld

REQUEST BODY - application/json
{
@context
annotations [{
Array of object:
anchorOf
comment
id
offset_end
offset_ini
referenceContext
source
taClassRef
taIdentRef

type [{
Array of object:
3

}

id

metadata {

}

10 0f 17

D4.4 | Initial Implementation and Report of Data and Content Curation Services

26

f#wnx

}

Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

parts [{
Array of object:

}
partsVictor [{
Array of object:
@id
@type
offset_end
offset_ini
parent
text
title
H
text
type [{
Array of object:

}H

REQUEST BODY - application/rdf+xml

{

@context

annotations [{

Array of object:
anchorOf
comment
id
offset_end
offset_ini
referenceContext
source
taClassRef
taldentRef
type [{
Array of object:
}H

}H

id

metadata {

}

parts [{
Array of object:

H
partsVictor [{
Array of object:
@id
@type
offset_end
offset_ini
parent
text
title
H
text
type [{
Array of object:

}H

11 0f 17

D4.4 | Initial Implementation and Report of Data and Content Curation Services

27

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

RESPONSE

STATUS CODE - 201: Created
STATUS CODE - 204: No Content

RESPONSE MODEL - */*

STATUS CODE - 401: Unauthorized
STATUS CODE - 403: Forbidden

STATUS CODE - 404: Not Found

3.3 POST /collections/{collectionId}/documents

Creates a new document
If the document has no id, a new one will be assigned. Use JSON for the moment please

REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION

*collectionId string collectionld

REQUEST BODY - application/json
{

@context

annotations [{

Array of object:
anchorOf
comment
id
offset_end
offset_ini
referenceContext
source
taClassRef
taldentRef
type [{
Array of object:
}H

}H

id

metadata {

}

parts [{
Array of object:

}H
partsVictor [{
Array of object:
@id
@type
offset_end
offset_ini

12 0f 17

D4.4 | Initial Implementation and Report of Data and Content Curation Services 28

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

parent
text
title
}H
text
type [{
Array of object:
3
}

REQUEST BODY - application/rdf+xml
{

@context

annotations [{

Array of object:
anchorOf
comment
id
offset_end
offset_ini
referenceContext
source
taClassRef
taldentRef
type [{
Array of object:
H

}H

id

metadata {

}

parts [{
Array of object:

}H

partsVictor [{

Array of object:
@id
@type
offset_end
offset_ini
parent
text
title

H

text

type [{

Array of object:

H

}

RESPONSE

STATUS CODE - 201: Created

RESPONSE MODEL - */*

STATUS CODE - 401: Unauthorized

130f 17

D4.4 | Initial Implementation and Report of Data and Content Curation Services 29

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

STATUS CODE - 403: Forbidden

STATUS CODE - 404: Not Found

3.4 GET /collections/{collectionId}/documents/search

Makes a search

REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION

*collectionId string collectionld

QUERY PARAMETERS

NAME TYPE DESCRIPTION
limit int32 limit
offset int32 offset

query array of string query

RESPONSE

STATUS CODE - 200: OK

RESPONSE MODEL - application/json

{
docs [{

Array of object:
@context
annotations [{
Array of object:
anchorOf
comment
id
offset_end
offset_ini
referenceContext
source
taClassRef
taldentRef
type [{
Array of object:
}H

}H

id

metadata {

}

parts [{
Array of object:

}H

partsVictor [{
Array of object:

@id

14 0f 17

D4.4 | Initial Implementation and Report of Data and Content Curation Services

30

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

@type
offset_end
offset_ini
parent
text
title

3

text

type [{

Array of object:

H

H

total

}
STATUS CODE - 401: Unauthorized

STATUS CODE - 403: Forbidden
STATUS CODE - 404: Not Found

3.5 GET /collections/{collectionId}/documents/{documentId}

Retrieves an existing document
The document has not annotations, in principle

REQUEST

PATH PARAMETERS

NAME TYPE DESCRIPTION

*collectionId string collectionld

*documentId string documentld

HEADER PARAMETERS

NAME TYPE DESCRIPTION

*Accept string Accept

RESPONSE

STATUS CODE - 200: OK

RESPONSE MODEL - application/json

RESPONSE MODEL - application/json+ld

RESPONSE MODEL - application/rdf+xml

RESPONSE MODEL - text/turtle

STATUS CODE - 401: Unauthorized

150f 17

D4.4 | Initial Implementation and Report of Data and Content Curation Services

31

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

STATUS CODE - 403: Forbidden

STATUS CODE - 404: Not Found

3.6 DELETE /collections/{collectionId}/documents/{documentId}

Deletes an existing document

REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION

*collectionId string collectionld

*documentId string documentld

RESPONSE

STATUS CODE - 200: OK
STATUS CODE - 204: No Content
STATUS CODE - 401: Unauthorized

STATUS CODE - 403: Forbidden

16 of 17

D4.4 | Initial Implementation and Report of Data and Content Curation Services 32

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

17 of 17

D4.4 | Initial Implementation and Report of Data and Content Curation Services 33

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

API| Reference

Workflow manager

API Version: 0.0.0

Responsible for the effective orchestration of the microservices for the execution of workflows. Workflows are
combinations of both parallel and sequential tasks and are specified using Directed Acyclic Graphs.

CONTACT

NAME: Lynx-Project APl Team

EMAIL: apiteam@lynx-project.eu

URL: https://lynx-project.eu

Terms of service: http://lynx-project.eu/terms/

10of5

D4.4 | Initial Implementation and Report of Data and Content Curation Services

34

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

INDEX

1. WORKFLOWS EXECUTION 3
1.1 POST /workflows/LKGP 3

2. WORKFLOWS STATUS
2.1 GET /workflows/status/{workflowInstanceId} 4

20of 5

D4.4 | Initial Implementation and Report of Data and Content Curation Services

35

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

API
1. WORKFLOWS EXECUTION

1.1 POST /workflows/LKGP

Start the ingestion of a document in the Lynx system

REQUEST
QUERY PARAMETERS
NAME TYPE DESCRIPTION

collectionId string The LKG collection in which the enriched document will be stored.

REQUEST BODY - application/json
{
text
metadata {
languagex*
}
parts [{

Array of object:
offset_inix*
offset_end*
titlex

}]

}

RESPONSE

30of5

D4.4 | Initial Implementation and Report of Data and Content Curation Services

36

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

2. WORKFLOWS STATUS

2.1 GET /workflows/status/{workflowInstanceId}
Start the ingestion of a document in the Lynx system
REQUEST

PATH PARAMETERS
NAME TYPE DESCRIPTION

workflowInstanceId string The LKG collection in which the enriched document will be stored.

RESPONSE

STATUS CODE - 200: The completation percentage

RESPONSE MODEL - text/plain

40f5

D4.4 | Initial Implementation and Report of Data and Content Curation Services

37

Y Lynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

50f 5

D4.4 | Initial Implementation and Report of Data and Content Curation Services

38

AL ynx
Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe

REFERENCES

[OMG2011] OMG. (2011). Business Process Model and Notation (BPMN), Version 2.0, January.

[LynxD11] Jorge Gonzalez-Conejero, Emma Teodoro, & Pompeu Casanovas. (2018). Lynx D1.1 Functional
Requirements Analysis Report. https://zenodo.org/record/1256836

[LynxD24] Victor Rodriguez-Doncel, Socorro Bernardos, Rebeca Varela, Patricia Martin. (2018). Lynx D2.4
Data Management Plan. https://zenodo.org/record/3236320

[LynxD41] Julidn Moreno-Schneider & Georg Rehm. (2018). D4.1 Pilots Requirements Analysis Report.
https://zenodo.org/record/3236427

[LynxD42] Julidn Moreno-Schneider & Georg Rehm. (2018). D4.2 Intermediate version of Workflow
definition. https://zenodo.org/record/1745324

[LynxD43] Julidn Moreno-Schneider & Georg Rehm. (2019). D4.3 Final version of Workflow definition.
https://doi.org/10.5281/zeno0d0.3235767

[Bourgonje2016] Peter Bourgonje, Julidn Moreno Schneider, Georg Rehm, and Felix Sasaki. Processing
Document Collections to Automatically Extract Linked Data: Semantic Storytelling Technologies for
Smart Curation Workflows. In Aldo Gangemi and Claire Gardent, editors, Proceedings of the 2nd
International Workshop on Natural Language Generation and the Semantic Web (WebNLG 2016),
pages 13-16, Edinburgh, UK, 9 2016. The Association for Computational Linguistics.

[MorenoSchneider2018a] Julian Moreno Schneider & Georg Rehm. Towards a Workflow Manager for
Curation Technologies in the Legal Domain. In Georg Rehm, Victor Rodriguez-Doncel, and
Julian Moreno Schneider, editors, Proceedings of the LREC 2018 Workshop on Language Resources
and Technologies for the Legal Knowledge Graph, pages 30-35, Miyazaki, Japan, 5 2018. 12 May
2018.

[MorenoSchneider2018b] Julian Moreno Schneider and Georg Rehm. Curation Technologies for the
Construction and Utilisation of Legal Knowledge Graphs. In Georg Rehm, Victor Rodriguez-Doncel,
and Julian Moreno Schneider, editors, Proceedings of the LREC 2018 Workshop on Language
Resources and Technologies for the Legal Knowledge Graph, pages 23-29, Miyazaki, Japan, 5 2018.
12 May 2018.

D4.4 | Initial Implementation and Report of Data and Content Curation Services 39

https://zenodo.org/record/1256836
https://zenodo.org/record/3236320
https://zenodo.org/record/3236427
https://zenodo.org/record/1745324
https://doi.org/10.5281/zenodo.3235767

	1 Introduction
	1.1 Purpose of this document
	1.2 Structure of this document

	2 Document Manager
	2.1 Annotation Controller
	2.1.1 GET
	2.1.2 POST
	2.1.3 PUT
	2.1.4 DELETE

	2.2 Legal Knowledge Graph in the Document Manager

	3 Curation Workflow Manager
	3.1 Workflow Manager engine
	3.2 WORKERS
	3.3 SHARED MEMORY SERVICE
	3.4 Camunda API
	3.5 Pilots APIs
	3.5.1 POST – LKGP, GPA and CA
	3.5.2 GET

	3.6 Graphical User Interface for defining Workflows
	3.7 Execution of a Workflow

	4 Conclusions
	ANNEX 1 – Implementation details (CODe)

