

HAEOLUS

Hydrogen-Aeolic Energy with Optimised eLectrolysers Upstream of Substation

HAEGLUS

Programme Review Days 2019 Brussels, 19-20 November 2019

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Federico Zenith

SINTEF

http://www.haeolus.eu

federico.zenith@sintef.no

W5H52991

PROJECT OVERVIEW

- **Call year: 2017**
- **Project dates:** 1 January 2018 31 December 2021
- % stage of implementation 01/11/2019: 33%
- Total project budget: 7 613 404 €
- FCH JU max. contribution: 4 997 738 €
- **Other financial contribution: 0 €**
- **Partners:** SINTEF, UBFC, Hydrogenics, Tecnalia, UniSannio, Varanger Kraft, KES

Call topic: FCH-02-4-2017, Highly flexible electrolysers balancing the energy output inside the fence of a wind park

PROJECT SUMMARY

- Objectives:
 - Enable more wind power in energy grids
 - Test multiple use cases for hydrogen-wind plants
 - Demonstration of 2.5 MW PEM electrolyser, remotely operated
- Haeolus' target: isolated wind resources with weak or no grid (also at sea)
- Comparable projects:

 - HyChico (Argentina), about ¼ capacity of Haeolus, H₂ mixed with NG used in gensets StratosFuel (USA), distribution network of H₂ from "wind farmers" •HyBalance (EU), ½ capacity of Haeolus, focus on grid balancing

• HAEOLUS: Hydrogen-Aeolic Energy with Optimised electrolysers Upstream of Substation

PROJECT SUMMARY

- Raggovidda wind park (45 MW built out of 200 MW)
- Bottleneck to reach main grid
- Low local consumption
- Hydrogen as solution to export energy
 - Total potential is 2 GW (400 t/d of hydrogen)
- Location in Berlevåg Harbour
 - Still virtually inside the fence with dedicated power line
 - Access to road and sea for export
- Start-up next year (April/May)

PROJECT PROGRESS/ACTIONS – Electrolyser Efficiency & Cost

Achievement to date

55 kWh/kg 3,7 M€/(t/d)

- Efficiency targets already met by Hydrogenics' latest stack
 - 52 kWh/kg is the MAWP 2020 target
- Cost is also met (according to budget)
 - Will be verified at installation time (spring/summer 2020)
 - MAWP 2020 target is 2 M€/(t/d)

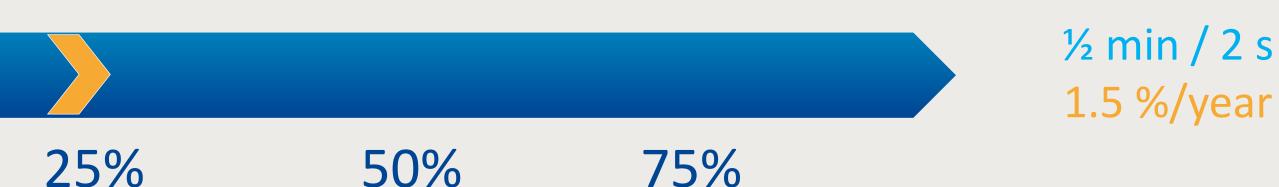
50%

75%

52 kWh/kg 3 M€/(t/d)

PROJECT PROGRESS/ACTIONS – Electrolyser Performance

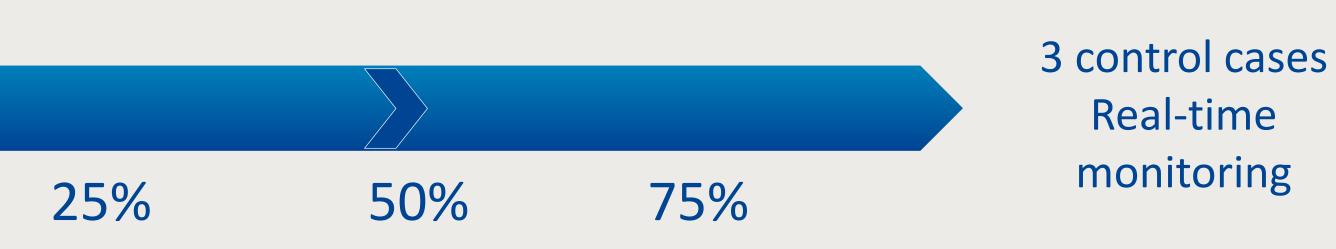
Achievement to-date


20 min / 30 s 2 %/year

- Cold and hot start: optimisation work to start in January at Hydrogenics
 - Project targets are MAWP 2020's
- Next year: report on how to reach MAWP 2023 targets by Hydrogenics Degradation will be verified during operation Prognostic approach on system level (UFC)
- - 1.5 %/year is MAWP2020 target

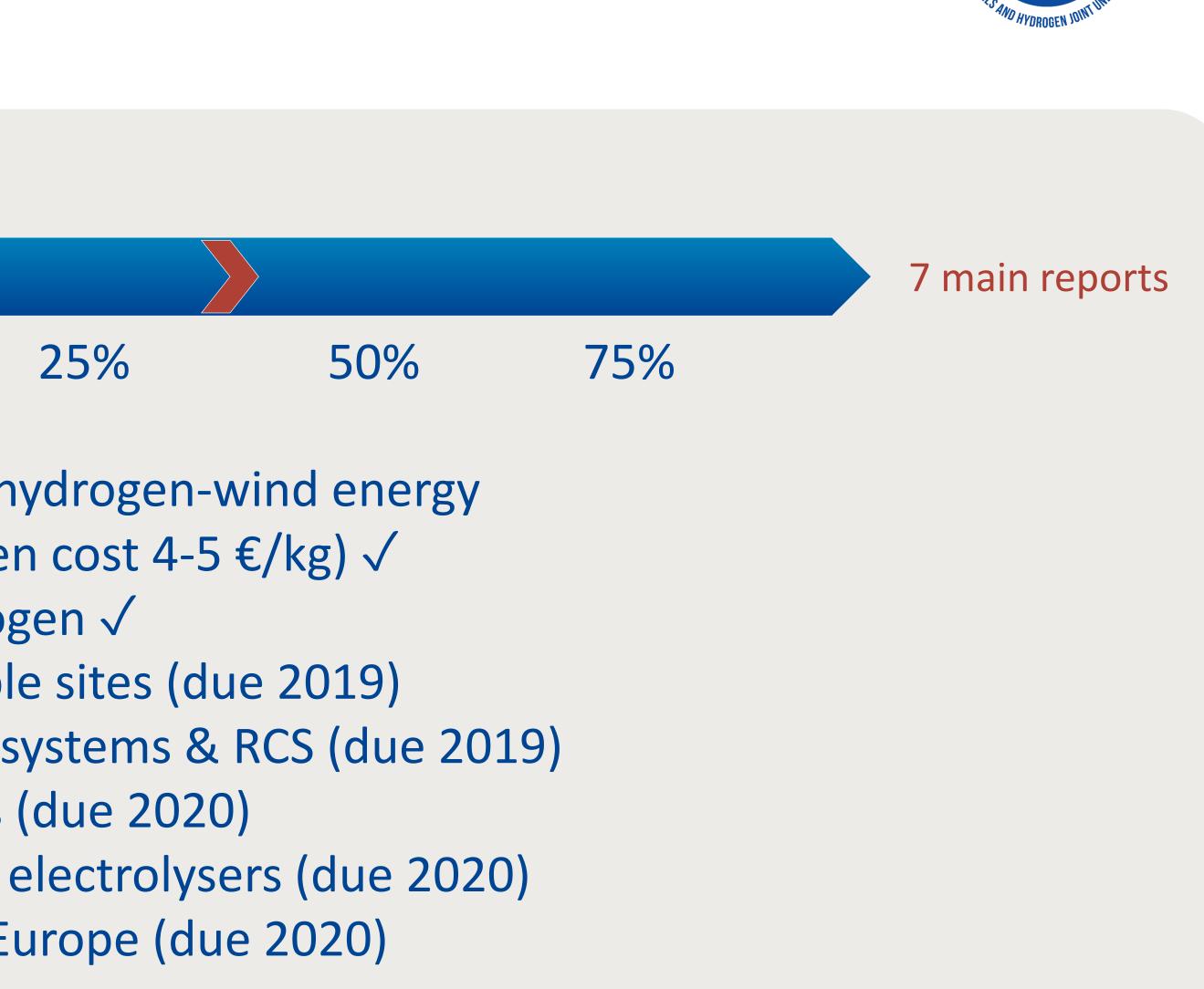
PROJECT PROGRESS/ACTIONS – Control & Monitoring System

Achievement to-date


- 3 operation cases being considered
 - Energy storage (and re-electrification)

0

- Mini-grid (islanded operation or weak grid)
- Fuel production
- Achieved:
 - Dynamic model and control algorithm for Energy Storage
 - Control & monitoring infrastructure design



PROJECT PROGRESS/ACTIONS – Wind-Hydrogen Integration

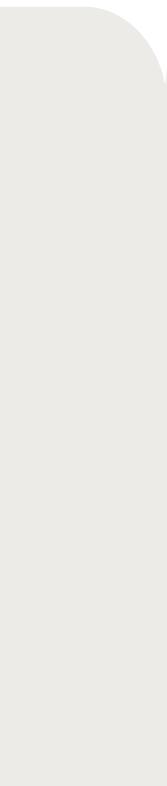
Achievement to-date

- 7 public reports on various aspects of hydrogen-wind energy
 - Raggovidda energy analysis (hydrogen cost 4-5 €/kg) √
 - Valorisation plan for produced hydrogen \checkmark
 - Techno-economic analysis for multiple sites (due 2019)
 - Impact of wind-hydrogen on energy systems & RCS (due 2019)
 - Environmental performance analysis (due 2020)
 - Roadmap to 2023 MAWP targets for electrolysers (due 2020)
 - Business case for wind-hydrogen in Europe (due 2020)

Risks and Challenges

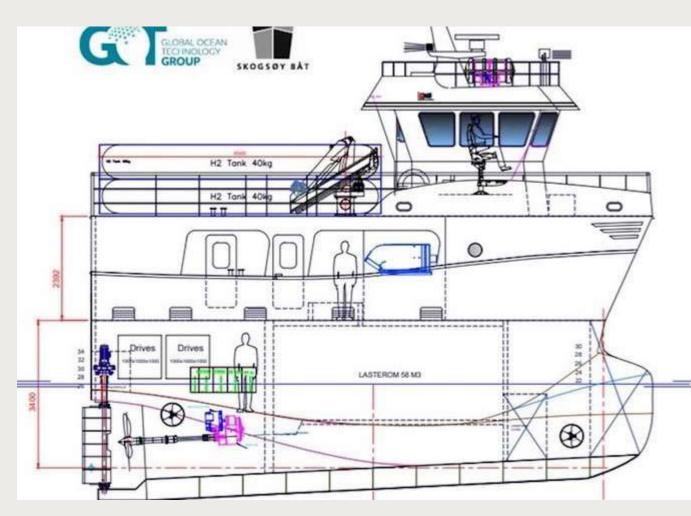
- Choice of electrolyser site
 - Raggovidda (wind park) of Berlevåg harbour (easier access)
 - Solution: Berlevåg with dedicated power line
- Tight construction window due to winter conditions
 - Rough start, missed 2018 window for experimental hall
 - Building now mostly complete, ready for electrolyser
- Accidents during operation
 - More attention after Oslo explosion
 - Thorough safety protocols
 - Site far from residential areas

- oour (easier access) r line
- conditions perimental hall r electrolyser



Communications Activities

- Presented at 3 conferences and several smaller seminars
- I presentation at Oil & Energy ministry of Norway
- 1 workshop and 1 seminar organised by project
- 1 journal paper
- Presentations at IEA-HIA Task 38 (Power-to-H₂)
- Web site: http://www.haeolus.eu
- Social media: in
- Planned:
 - Real-time demonstration data on Web site
 - Plant visit for external observers
 - 2 more academic seminars



EXPLOITATION PLAN/EXPECTED IMPACT

Exploitation

Local valorisation of produced hydrogen:

- Maritime: fishing boats, fast passenger boats, aquaculture (also by-product oxygen)
- Land: cars (taxis), buses, snowmobiles
- Air: replacement of Dash 8 in local transport
- Export: Svalbard decarbonization (7 t/d)

Impact

Strong involvement of local community

- Both county and municipal governments
- Positive influence from local businesses
- Multiple potential users are preparing for hydrogen

Workshop on hydrogen organised by Finnmark County Council for local stakeholders

HAEOLUS

Hydrogen-Aeolic Energy with Optimised eLectrolysers Upstream of Substation

HAEGLUS

Programme Review Days 2019 Brussels, 19-20 November 2019

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Federico Zenith

SINTEF

Coordinator: federico.zenith@sintef.no

W\$H52991

