ObjectMap: Detecting Insecure Object Deserialization

Nikolaos Koutroumpouchos
nikoskoutr@ssl-unipi.gr
Department of Digital Systems,
University of Piraeus, Piraeus Greece

Christoforos Ntantogian
dadoyan@unipi.gr
Department of Digital Systems,
University of Piraeus, Piraeus Greece

ABSTRACT

In recent years there is a surge of serialization-based vulnerabilities
in web applications which have led to serious incidents, exposing
private data of millions of individuals. Although there have been
some efforts in addressing this problem, there is still no unified
solution that is able to detect implementation-agnostic vulnerabili-
ties. We aim to fill this gap by proposing ObjectMap, an extendable
tool for the detection of deserialization and object injection vul-
nerabilities in Java and PHP based web applications. Furthermore,
we also introduce the first deserialization test environment which
can be used to test deserialization vulnerability detection tools
and for educational purposes. Both of these tools are easily ex-
tendable and the first to implement this combination of features
to the best of our knowledge and they bring together a synthe-
sis of cross-complementing functionalities that are able to ignite
further research in the field and help in the development of more
feature-rich solutions.

CCS CONCEPTS

« Security and privacy — Vulnerability scanners; Web appli-
cation security; Penetration testing.

KEYWORDS

insecure deserialization, web application, security, vulnerability
scanner

1 INTRODUCTION

Insecure deserialization is a vulnerability that occurs when un-
trusted data are deserialized and used to abuse the application logic,
inflict denial of service (DoS) attacks, or even execute arbitrary code.
This class of vulnerabilities is included in the ten most critical web
application security risks of OWASP [31]. In order to understand
what insecure deserialization is, we first must understand what
the serialization and deserialization functionalities are. Complex
modern systems are highly distributed, as the components com-
municate with each other and share information (such as moving
data between services, storing information, etc.), the native binary
format is not ideal for transmission. Serialization, also known as
marshaling, refers to a process of converting a native binary object
into a format that can be easily stored (for example saved to a file
or a database), sent through data streams (for example stdout), or
sent over a network. The format in which an object is serialized
into, can either be binary or structured text (such as XML, JSON,

Georgios Lavdanis
georlav@ssl-unipi.gr
Department of Digital Systems,
University of Piraeus, Piraeus Greece

Eleni Veroni
veroni@unipi.gr
Department of Digital Systems,
University of Piraeus, Piraeus Greece

Christos Xenakis
xenakis@unipi.gr
Department of Digital Systems,
University of Piraeus, Piraeus Greece

YAML, etc.) with JSON and XML being two of the most commonly
used serialization formats within web applications. On the other
hand, deserialization is the exact opposite of serialization, that is,
transforming serialized data coming from a file, stream or network
socket back to an object identical to the one that the deserialized
data came from. Serialization operations are extremely common
in architectures that include APIs, microservices, and client-side
MVC (Model View Controller). Web applications make use of se-
rialization and deserialization regularly and most programming
languages even provide native features to serialize data (especially
into common formats like JSON and XML). This process is safe as
long as the data and objects used, come from trusted and bug-free
sources. Using data from any other provenance poses the risk of a
malfunction or a deserialization attack since the incoming serialized
data could potentially conceal malicious instructions that will force
the deserializing program to execute them. It is frequently possible
for an attacker to abuse these deserialization features when the
application is deserializing untrusted data that the attacker con-
trols. Successful insecure deserialization attacks could allow an
attacker to carry out denial-of-service (DoS) attacks, authentication
bypasses and remote code execution attacks. [1] Deserialization at-
tack occurrences are abundant both in the past and in recent years,
as can be seen in Table 1 [16], where seven documented CVEs re-
lated to insecure deserialization are presented, the most recent one
was in 2019. It should be noted that the large scale data breach
that happened to Equifax in 2017 rooted in insecure deserialization
of the struts framework. [14] Furthermore, in [9], the researchers
identified insecure deserialization as a core threat to smart grid
systems due to their nature, which requires the transmission of data
between nodes that should be serialized and then unserialized in
their destination, thus providing a larger than usual attack surface.

In [24], the researchers have found two new previously unknown
high severity vulnerabilities in Android related to Java object dese-
rialization. The first is in the Android Platform and the second in
Google Play Services. The Android platform vulnerability affects
Android 4.3-5.1, M (Preview 1), that is 55% of Android devices at the
time of the research writing. This vulnerability allows for arbitrary
code execution in the context of many apps and services and also
results in privilege escalation. The researchers also demonstrated a
Proof-of-Concept exploit against the Google Nexus 5 device, that
achieves code execution inside the highly privileged system_server
process, and then either replaces an existing arbitrary application
on the device with a malware application or changes the device’s

Nikolaos Koutroumpouchos, Georgios Lavdanis, Eleni Veroni, Christoforos Ntantogian, and Christos Xenakis

Table 1: Recent Deserialization Attacks

CVE Description

CVE-2019-6503
CVE-2019-10068
CVE-2018-7489

Remote code execution in Chatopera Java application.
Remote code execution in Kentico .NET application.
Remote code execution in systems that include the Java Jackson XML functionality.

CVE-2018-6496, CVE-2018-6497 Cross-site request forgery that stemmed from insecure deserialization.

CVE-2018-19362
CVE-2017-9805

Denial of service in the JBoss application server due to a XML Jackson deserialization vulnerability.
Remote code execution related to Struts handling of XML deserialization. (Equifax Incident)

SELinux policy which would allow the easier exploitation of the
device. The researchers also exploited other devices, that they were
able to gain kernel code execution by loading an arbitrary kernel
module. The Android security team tagged this vulnerability with
the CVE-2015-3825 (internally as ANDROID-21437603/21583894)
and patched Android 4.4 / 5.x / M and Google Play Services.

Deserialization attacks, despite Java, also affect other languages
such as PHP and Python. A PHP Object Injection vulnerability oc-
curs when not sanitized input is used during the deserialization of
data in a given web application. The PHP functionalities serializa-
tion and deserialization that allow for data storage of any type in a
simple string. This format makes it easy to transfer complicated data
structures and is often misused to create multidimensional cookies
and similar data structures. Since PHP allows deserialization of
arbitrary objects, an attacker might be able to inject a specially
prepared object with an arbitrary set of properties into the appli-
cation. Depending on the application implementation, an attacker
could trigger internal PHP magic functions which in turn could
lead to several vulnerabilities such as code injection, SQL injection,
path traversal and application denial of service, depending on the
context. [8] Furthermore, python is also vulnerable to these same
exploitations through its deserialization functionality. More specif-
ically, an attacker that can control the input to a deserialization
python function (pickle.loads(serialized_data)) can forge serialized
data that will force the system to run any arbitrary code in the con-
text of the web application. [21] In order for a PHP object injection
to be possible, the following conditions must be met [27]:

e The web application must include a class that implements an
internal PHP magic method which can be used as a gadget
in the attack or to begin a property-oriented programming
(POP) chain.

o All of the classes used in the attack must be already declared
when the target deserialization function is called, otherwise
these classes must be supported by object autoloading.

Object injection in PHP is quite common and many recent vulnera-
bilities have affected large scale applications. More specifically, both
WordPress (CVE-2018-20148) and Drupal (CVE-2019-6338) were
affected by object injection in vulnerabilities that allowed attackers
to execute code, manipulate files and privilege escalation. Other
web applications affected include PHPMailer (CVE-2018-19296),
Alienvault (CVE-2016-8580) and OpenPSA2 (CVE-2018-1000525).
In 2009, Esser showed that code reuse attacks based on inse-
cure deserialization (similar to return-oriented programming) are
viable in PHP-based web applications [10, 11]. More specifically,

he introduced an exploitation approach for object injection vulner-
abilities in web applications that abuses the ability of an attacker
to arbitrarily modify the properties of an object that is injected
into a given web application through deserialization. Thus, the
data and control flow of the application can be manipulated de-
pending on the injected objects and the term Property-Oriented
Programming (POP) was first used. In the past years, many object
injection vulnerabilities were detected in popular open-source PHP
content management systems such as Wordpress, Drupal, Joomla,
and Piwik. They can lead to critical security vulnerabilities, such as
remote code execution, and affect a majority of web servers since
PHP is the most popular scripting language on the Web with a
market share of more than 80% [25].

1.1 General Rules for Prevention

There are many possible prevention routes that a developer might
choose when it comes to insecure deserialization protection. The
first and most obvious is allowing only authenticated users and pro-
cesses to have access to the web application, and thus to minimize
the chances of the system falling prey to such an exploit, this does
not solve the issue entirely though, because there other attack paths
that an intruder might choose. In [22] there is a comprehensive list
of possible measures that includes the following:

e Do not accept serialized objects from untrusted sources

o The serialization process needs to be encrypted so that hos-
tile object creation and data tampering cannot run

o Run the deserialization code with limited access permissions

o Strengthen the source code’s java.io.objectinputstream

e Monitoring the serialization process can help catch any ma-
licious code and breach attempts

e Validate user input

e Use a web application firewall that can detect malicious or
unauthorized insecure deserialization

e Prevent deserialization of domain objects

o Use non-standard data formats

o Only deserialize signed data

Not all of these solutions can be implemented in every scenario but,
with enough awareness of the issue, a strategy can be formulated
that will protect the web application from malicious deserialization
activity from the internet.

In this work, we propose a new software tool named ObjectMap
for the detection of both PHP and Java deserialization vulnerabili-
ties. To the best of our knowledge, it is the first tool of its class that
is able to detect vulnerabilities in both of these programming lan-
guages and it can be easily extended to also cover other languages

ObjectMap: Detecting Insecure Object Deserialization

such as python and ruby. We analyze the software architecture of
the tool and we discuss several implementation choices. We also
introduce the first vulnerable test environment for deserialization
vulnerabilities. This tool can be used by researchers for testing the
effectiveness of new deserialization vulnerability detection tools as
well as by tutors for educational purposes. Both of these tools are
open source, hosted openly online (ObjectMap ! and PHP Object
Injection Test Environment 2) for review with the aim of enabling
fellow researchers and security analysts to produce new related
research and tools. Finally, we discuss peculiarities and inherent
limitations related to the exploitation of the deserialization attacks
that our tool inherits. All in all the contributions of this paper are:

o The design and implementation of the ObjectMap deserial-
ization vulnerability detection tool.

o The deserialization vulnerability test environment for the
assessment of our tool.

In section 2 there is related work to our research, which includes
both tools and academic work. In section 3 the ObjectMap tool is
presented and analyzed and in section 4 we show the results we
had when using ObjectMap with our test environment. Finally, in
section 5 we discuss the results of our work and possible future
work when it comes to extending our tool.

2 RELATED WORK

As discussed previously, Java-based applications that do not make
proper usage of deserialization can be vulnerable to exploitation
which has led to the creation of detection tools and has initiated
related research. In [16] the authors analyzed a series of Java vul-
nerabilities, one of which was insecure deserialization. Two of the
vulnerabilities use a deserialization sequence to create a custom
class loader, which can be used to define a class with high privi-
leges. Another exploit uses deserialization within a custom thread,
to have a specific restricted class loaded by the bootstrap class
loader. Furthermore, two exploits use serialization to transfer infor-
mation through side channels undetected. One of these two exploits
(CVE-2013-1489) prepares an instance of a system class in a way
that would be impossible when running with limited privileges.
More specifically, it manipulates the value of a certain private field
of that system class, which holds a bytecode representation of a
class that will later be defined by triggering a specific call sequence.
This is profitable because the system class will define this custom
class in a namespace that provides access to restricted classes. An
attacker would prepare the instance of that system class before
the actual attack. When the exploit code is to be deployed, it only
contains the serialized object. Deserialization of the manipulated
instance is possible even when running with limited privileges. The
second exploit that uses serialization to bypass information hiding
uses a custom output stream to leak declared fields of serializable
classes, while their instances are about to be written. This allows
for manipulating private fields of system classes.

The ysoserial tool [12] is a collection of utilities and property-
oriented programming "gadget chains" discovered in common java
libraries that can, under the right conditions, exploit Java applica-
tions performing unsafe deserialization of objects. The main driver

Ihttps://github.com/georlav/objectmap
Zhttps://github.com/georlav/ObjectInjectionPlayground

program takes a user-specified command and wraps it in the user-
specified gadget chain, then serializes these objects to stdout. When
an application with the required gadgets on the classpath unsafely
deserializes this data, the chain will automatically be invoked and
cause the command to be executed on the application host. Fur-
thermore, the hackUtils [5] project incorporates ysoserial in its
penetration testing suite. In another instance of deserialization
vulnerability detection, Serianalyzer [4] is a Java static bytecode
analyzer that traces native method calls made by methods called
during deserialization. The main purpose of this tool is as a research
tool to audit code for dangerous behavior during deserialization.
Finally, another tool based on ysoserial, Android Java Deserializa-
tion Vulnerability Tester aims to find and exploit deserialization
vulnerabilities in the Android ecosystem.

Look-ahead object input streams can be used as a mitigation for
Java deserialization issues in cases where deserializing untrusted
data cannot be avoided. There are several different LAOIS imple-
mentations such as SerialKiller [6], ValidatingObjectInputStream
[7] and Contrast-rO0 [23] with most of them lacking in their de-
fense against DoS attacks. The most promising solution is the one
shipped by default in Java 9, the JEP 290 Serialization Filtering
[26]. Configurable process-wide filters are also available in recent
updates to Java 6, Java 7, and Java 8. However, even JEP 290 (as cur-
rently implemented) is deficient in its defense against DoS attacks.
[29]

Similar to well-understood injection vulnerabilities such as cross-
site scripting (XSS) [19] and SQL injection (SQLi) [15], PHP object
injection (POI) vulnerabilities in a given application can be detected
with the help of taint analysis. [8] Broadly speaking, a vulnerabil-
ity is manifested when untrusted user input reaches a security-
sensitive sink [28]. Several analysis frameworks to detect different
kinds of injection vulnerabilities were proposed in the last years
[3, 18, 32, 33].

Furthermore, another tool used in the detection of POI vulnerabil-
ities is PHPGGC [30] which is a library of unserialize payloads along
with a tool to generate them, from a command line or programmat-
ically. When the tool encounters an unserialize on a website, this
tool allows for the automatic generation of the payload that will be
used to test if the website is vulnerable or not. PHPGGC is consid-
ered to be the PHP equivalent of the ysoserial Java tool mentioned
above. Another tool used as plugin in the web application security
testing software Burp Suite is the "PHP Unserialize Check". This
plugin tries to find PHP Object Injection Vulnerabilities by passing
serialized objects and testing for errors. It is the most closely related
to our solution since it uses error based detection, but it is not as
robust as our tool without the ability to detect Java serialization
vulnerabilities. Furthermore, this tool is an extension of a commer-
cial application that comes in contrast with our open-source and
free solution, available to the community to facilitate in research
endeavors.

3 OBJECTMAP

The idea was to create a simple command-line tool to help users
check web applications developed in PHP or JAVA for insecure dese-
rialization vulnerabilities. The tool is developed in Golang and can
be downloaded from https://github.com/georlav/objectmap. The

https://github.com/georlav/objectmap
https://github.com/georlav/ObjectInjectionPlayground
https://github.com/georlav/objectmap

Nikolaos Koutroumpouchos, Georgios Lavdanis, Eleni Veroni, Christoforos Ntantogian, and Christos Xenakis

detection is mostly error-based and depends on application error
reporting settings. PHP has various options for error reporting and
many different error level settings, usually on local development
PHP is set to show all kind of errors notices, warnings, errors etc,
its also very usual to find applications at production environments
with error reporting fully enabled or partially enabled, when par-
tially enabled only fatal errors are visible. Having any kind of error
reporting on the production server is considered very bad practice
and harmful as it can disclosure useful information to an attacker.

In order to identify possible object injection vulnerabilities, we
tried sending different types of data to a request parameter that will
be used in an unserialize operation within PHP. Sending random
alphanumeric values will make the web application return a simple
notice for a deserialization error only if notice-level PHP verbosity
is enabled. Since the desired vulnerability detection cannot be based
on such hit or miss system (most production systems will not have
notice-level reporting), we needed something that will surely cause
the web application to report an error when our data were used in
an unserialize operation. To solve this problem, we generated valid
serialized objects and changed them until errors were starting to
occur and get reported on the client-side. Depending on the PHP
version that the web application was running, different errors were
reported with different information and different error codes, our
solution checks for all of these indications to identify deserialization
errors. Any found errors are reported as possible object injection
vulnerabilities, which depending on the PHP code running could
be exploited, the actual exploitation of the application is not in the
scope of the ObjectMap vulnerability scanner.

3.1 How does it work

The basic idea behind our solution is that ObjectMap will receive
as input a target URL and a variety of options, it will validate and
analyze the input, from the input it will generate a combination of
requests with various insertion points. The insertion point is any
point inside a request that a user can inject a payload, it can be a
header, a cookie, post or get parameters even the raw body of the
request. (Figure 1)

POST /form HTTP/1.1

Host: 127.0.0.1:8056

Content-Length: 42

Content-Type: application/x-www-form-urlencoded
User-Agent: {insertion point}

Cookie: PHPSESSID={insertion point};
csrftoken={insertion point}; gat={insertion point};
license={insertion point} &content={insertion point}&
paramsXML={insertion point}

Figure 1: Possible serialized data insertion points in a re-
quest.

After identifying all the possible insertion points, ObjectMap will
then generate a series of requests that will contain forged payloads
injected in each insertion point. These payloads will be designed in a

way that will force the target web application to throw an error if the
payload is directly passed to a deserialization function on the server-
side. This way, our solution will be able to identify any request
parameter that possibly exposes the web application to an insecure
deserialization vulnerability. The requests generated will be pushed
through a shared channel and then several workers (threads) which
can be defined by the user, will execute all these requests. The
application will then gather all the responses from the target web
application and will search for known patterns (deserialization
error messages) inside the responses trying to identify if a target is
vulnerable, if any possible vulnerabilities are found, then ObjectMap
will report from which parts of the request this behavior stemmed.
The final report will look like the one shown in Figure 2. This output
indicates that for the given request, it found 10 insertion points,
for which it generated and executed 40 requests and detected that
the paramsXML parameter is possibly vulnerable to PHP object
injection.

INFO Calculating insertion points
INFO Found 18 insertion points

PHP Object Injection
Java Deserialization

Param[paramsXML]
Cookie[_gat]

Cookie[PHPSESSID] Java Deserialization
Param[license] PHP Object Injection
Cookie[PHPSESSID] PHP Object Injection
Cookie[csrftoken] PHP Object Injection
Cookie[csrftoken] Java Deserialization
Param[content] PHP Object Injection

Header[User-Agent]
Param[paramsXML]
Header[User-Agent]
Cookie[_gat]
Param[content]

|
+
| |
| |
| |
| |
| |
| |
| Param[license] | Java Deserialization
| |
| |
| | PHP Object Injection
| | Java Deserialization
| | Java Deserialization
| | PHP Object Injection
| | Java Deserialization
+

Figure 2: A typical result after running ObjectMap against
a domain. Here the parameter "Content" is found to be vul-
nerable.

4 RESULTS AND TEST ENVIRONMENT

For the purposes of the ObjectMap demonstration, we developed
the PHP Object Injection playground environment that contains ob-
ject injection insertion points in various formats. This environment
is designed so that we can test all the capabilities of ObjectMap by
targeting GET/POST parameters, cookies and the headers of the
request, effectively covering the entire client-side attack surface.
The playground environment is the first open-source object injec-
tion vulnerability testing tool to the best of our knowledge, it is
easily extensible and fully dockerized with the aim of helping other
researchers and security analysts in their endeavors. For complete-
ness, we executed attacks on the entirety of the request to ensure

ObjectMap: Detecting Insecure Object Deserialization

Table 2: ObjectMap Detection Ability

Injection Point Detectable

GET Parameters Detected Vulnerability
POST Parameters Detected Vulnerability
Cookies Detected Vulnerability
Headers Detected Vulnerability

that our solution was able to successfully inject the desired payload
on any of the available positions within the header. More specifi-
cally, ObjectMap was able to find all the possible object injection
points that existed within our vulnerable website (see Table 2).

In more detail, we first created a custom request that only in-
cluded HTTP GET parameters and loaded it to ObjectMap. The
exact request with the report from ObjectMap can be found in Fig-
ure 3. Here the obj POST parameter, found in the first line of the
request is possibly vulnerable to object injection attacks since it
was detected that this parameter is fed directly to an unserialize
PHP function. Likewise, in other tests, ObjectMap was able to find
POST parameters and Cookie objects to be possibly vulnerable to
object injection.

GET /params?obj=1 HTTP/1.1

Host: 127.0.0.1:8056

User-Agent: Mozilla/4.0 (compatible; MSIES.01;
Windows NT)

Accept-Language: en-us

Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9,el;q=0.8
Connection: Keep-Alive

Cookie: PHPSESSID=298zf09hf012fh2;
csrftoken=u32t403tb3gg43; gat=1;

| Param[obj]

Figure 3: A vulnerability found in a GET parameter and the
result from ObjectMap.

5 DISCUSSION AND FUTURE WORK

ObjectMap’s functionality, although powerful, is somehow limited
when it comes to robustness and adaptability. A missing feature is
the inclusion of a web crawler that would walk through every page
and scan not only the request parameters, but also detect input
forms that could potentially contain object injection vulnerabilities.
This feature would greatly improve the quality of the application
as a penetration testing tool by automating the process of detecting
object injection vulnerabilities in an entire domain.

Furthermore, this solution could be improved by increasing its
impact on other languages. ObjectMap detects deserialization vul-
nerabilities in Java and PHP, as discussed in section 1 though, these
vulnerabilities affect other programming languages such as Python

[21] and Ruby [20] which are commonly used in web applications.
Our aim is to research how these languages react to bad serialized
data and extend ObjectMap so that it can detect possible unsafe de-
serialization of user-supplied data which could provide exploitation
paths.

Moreover, the tool aims to only detect possible vulnerabilities
without exploiting them. Historically, this specific type of attack
was very difficult to successfully execute. This is because creating
an automatic exploitation tool for deserialization vulnerabilities
requires knowledge of how the target application is actually im-
plemented. In order to exploit such a vulnerability, the attacker
needs to go through a trial and error procedure until he can find
out if the deserialization function is vulnerable. Although this ap-
proach cannot be automated in general, there are two tools that we
mentioned before (ysoserial [12], PHPGGC [30]) that can automati-
cally exploit common vulnerabilities that have known exploitation
payloads. Of note, these tools can easily be integrated within the
ObjectMap workflow to actually test if the found deserialization
insertion points are vulnerable to these common exploits.

These tools are limited in their functionality as they depend
on specific preconditions for them to produce effective exploita-
tion payloads. More specifically, GGC makes use of a function
introduced in PHP 5, the autoload() magic function [17], which
unintentionally made exploitation of deserialization vulnerabilities
easier. This auto-loading feature was helpful for PHP developers
who did not have to manually declare all the source files they re-
quired in the corresponding PHP files, while it also allowed for the
creation of PHP package managers such as composer. The downside
of this function was that it also allowed the easier exploitation of
deserialization functions, because they provided the capability to
instantiate any new PHP class across the entire application with-
out the need for them to be declared, thereby enabling the easier
construction of gadget chains. This exact new functionality is what
the PHPGGC tool utilizes to create exploitation payloads, although
it is limited by what packages are installed (and thus auto-loadable)
within the PHP web application. More specifically, when a web
application contains a list of popular PHP packages such as Doc-
trine, Symfony, Laravel, Yii and Zend-Framework which are known
to contain vulnerabilities, PHPGGC can generate gadget chains
(with the usage of the autoload function) to achieve remote code
execution, arbitrary file writes, and SQL injections. [2]

On the other hand, ysoserial depends on two criteria for a mani-
festation of a Java deserialization vulnerability: (1) The software
must accept and deserialize data from a source that an attacker
could manipulate and (2) the existence of "unsafe" classes (gadgets)
in the classpath of the application. [13] Ysoserial contains a database
of Java frameworks that are known to contain these unsafe classes
and asks from the user to provide it with the target framework
so that it can generate the appropriate exploitation payload. This
way, ysoserial is also limited (like PHPGGC) to the exploitation of
a specific list of vulnerable targets. To the best of our knowledge,
there are no general-purpose automatic exploitation toolkits which
are not limited by what frameworks or packages are installed in
the context of the target web application.

Finally, web applications make use of readily available packages
to implement specific functionalities. These packages are installed

Nikolaos Koutroumpouchos, Georgios Lavdanis, Eleni Veroni, Christoforos Ntantogian, and Christos Xenakis

as-is in various ways (composer, npm, requirement-file) on the back-
end of the web application and could potentially contain vulnerabil-
ities such as unsafe deserialization. We aim to improve ObjectMap
in order to identify what framework is used by the application
while searching for possible vulnerable packages and report them
at the end of its operation. Furthermore, since the vulnerabilities
will be known, ObjectMap could use pre-loaded payloads in order
to check if any of the request parameters are used within those
vulnerable packages.

6 CONCLUSIONS

In this work, we analyzed the need for a more sound and complete
approach when it comes to detecting deserialization vulnerabili-
ties. Although this class of vulnerabilities has produced large-scale
attacks with a considerable economic and social impact, there is
still a lack when it comes to complete and automatic deserialization
vulnerability detection tools and related research. Through our
solution, we aim to cover this research need by providing a novel
and complete solution (ObjectMap) that can detect deserialization
vulnerabilities in the most common implementations. Furthermore,
we also created a deserialization vulnerability test-bed, with which
we tested our detection tool, which can initialize novel and innova-
tive research. Both of our proposed solutions are open-source and
available to the community to support any research or software
development aspirations. Through our work, we hope that new at-
tention is brought to this matter with a more detailed approach that
is required to defend against this serious and widespread threat.

7 ACKNOWLEDGMENTS

This work was supported by the European Commission, under the
FutureTPM, CUREX, INCOGNITO and SECONDO projects; Grant
Agreements no. 779391, 826404, 824015 and 823997, respectively.

REFERENCES

[1] 2017. Deserialization of untrusted data. Retrieved August 19, 2019 from
https://www.owasp.org/index.php/Deserialization_of untrusted_data

[2] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. 2019. Less is
more: quantifying the security benefits of debloating web applications. In 28th
{USENIX} Security Symposium ({USENIX} Security 19). 1697-1714.

[3] Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. 2008. Saner: Composing static and
dynamic analysis to validate sanitization in web applications. In 2008 IEEE Sym-
posium on Security and Privacy (sp 2008). IEEE, 387-401.

[4] Moritz Bechler. 2015. Serianalyzer. Retrieved September 1, 2019 from https:
//github.com/mbechler/serianalyzer

[5] Brianwrf. 2015. hackUtils. Retrieved September 1, 2019 from https://github.com/
brianwrf/hackUtils

[6] Luca Carettoni. 2017. SerialKiller. Retrieved September 5, 2019 from https:
//github.com/ikkisoft/SerialKiller

[7] Apache Commons. 2019. ValidatingObjectInputStream. Retrieved September 5,
2019 from https://github.com/apache/commons-io/blob/master/src/main/java/
org/apache/commons/io/serialization/ValidatingObjectInputStream.java

[8] Johannes Dahse, Nikolai Krein, and Thorsten Holz. 2014. Code reuse attacks in

php: Automated pop chain generation. In Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security. ACM, 42-53.

Vasudev Dehalwar, Akhtar Kalam, Mohan Lal Kolhe, and Aladin Zayegh. 2017.

Review of web-based information security threats in smart grid. In 2017 7th

International Conference on Power Systems (ICPS). IEEE, 849-853.

[10] Stefan Esser. 2009. Shocking News in PHP Exploitation. Power of Community

(POC) (2009).

Stefan Esser. 2010. Utilizing code reuse or return oriented programming in PHP

applications. BlackHat USA 69 (2010).

Chris Frohoff. 2018. ysoserial. Retrieved September 1, 2019 from https://github.

com/frohoft/ysoserial

=
X0

[11

[12

[13] Apostolos Giannakidis. 2018. The Java Deserialization Problem. Retrieved
September 3, 2019 from https://www.waratek.com/java-deserialization-problem/
Jason Gillam. 2017. Equifax Breach. Retrieved August 12, 2019 from https:
//blog.secureideas.com/2017/09/equifax-breach-why-i-am-not-surprised.html
William G Halfond, Jeremy Viegas, Alessandro Orso, et al. 2006. A classifica-
tion of SQL-injection attacks and countermeasures. In Proceedings of the IEEE
International Symposium on Secure Software Engineering, Vol. 1. IEEE, 13-15.
Philipp Holzinger, Stefan Triller, Alexandre Bartel, and Eric Bodden. 2016. An
in-depth study of more than ten years of java exploitation. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security. ACM,
779-790.
Michael Hull. 2016. Autoloading Classes In PHP. Retrieved September 3, 2019
from https://resoundingechoes.net/development/autoloading- classes-php/
Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Pixy: A static anal-
ysis tool for detecting web application vulnerabilities. In 2006 IEEE Symposium
on Security and Privacy (S&P’06). IEEE, 6-pp.
[19] Amit Klein. 2002. Cross site scripting explained. Sanctum White Paper (2002),
1-7.
John Leyden. 2018. Ruby taken off the rails by deserialization exploit. Retrieved
August 19, 2019 from https://portswigger.net/daily-swig/ruby-taken-off-the-
rails-by-deserialization-exploit
Dan Lousqui. 2017. Explaining and exploiting deserialization vulnerability with
Python. Retrieved September 1, 2019 from https://dan.lousqui.fr/explaining-
and-exploiting-deserialization- vulnerability- with- python-en.html
Graeme Messina. 2018. 10 Steps to Avoid Insecure Deserialization. Retrieved
September 2, 2019 from https://resources.infosecinstitute.com/10-steps-avoid-
insecure-deserialization/
Contrast Security OSS. 2016. Contrast-rO0. Retrieved September 5, 2019 from
https://github.com/Contrast-Security-OSS/contrast-rO0
Or Peles and Roee Hay. 2015. One class to rule them all: 0-day deserialization
vulnerabilities in android. In 9th {USENIX} Workshop on Offensive Technologies
({WOOT} 15).
Natalya Prokofyeva and Victoria Boltunova. 2017. Analysis and Practical Applica-
tion of PHP Frameworks in Development of Web Information Systems. Procedia
Computer Science 104 (12 2017), 51-56. https://doi.org/10.1016/j.procs.2017.01.059
Roger Riggs. 2017. JEP 290: Filter Incoming Serialization Data. Retrieved
September 5, 2019 from https://openjdk.java.net/jeps/290
[27] Egidio Romano. 2015. PHP Object Injection. Retrieved August 12, 2019 from
https://www.owasp.org/index.php/PHP_Object_Injection
Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In 2010 IEEE symposium on Security and
privacy. IEEE, 317-331.
Robert Seacord. 2017. Combating Java Deserialization Vulnerabilities with Look-
Ahead Object Input Streams (LAOIS).
Ambionics Security. 2019. PHPGGC: PHP Generic Gadget Chains. Retrieved
September 1, 2019 from https://github.com/ambionics/phpgge
[31] Andrew van der Stock, Brian Glas, Neil Smithline, and Torsten Gigler. 2018.
OWASP Top 10 -2017. Technical Report.
[32] Gary Wassermann and Zhendong Su. 2008. Static detection of cross-site script-
ing vulnerabilities. In 2008 ACM/IEEE 30th International Conference on Software
Engineering. IEEE, 171-180.
Yichen Xie and Alex Aiken. 2006. Static Detection of Security Vulnerabilities in
Scripting Languages.. In USENIX Security Symposium, Vol. 15. 179-192.

[14

[15

[16

=
=

(18

[20

[21

[22

[23

[24

[25

[26

&
&

[29

[30

[33

https://www.owasp.org/index.php/Deserialization_of_untrusted_data
https://github.com/mbechler/serianalyzer
https://github.com/mbechler/serianalyzer
https://github.com/brianwrf/hackUtils
https://github.com/brianwrf/hackUtils
https://github.com/ikkisoft/SerialKiller
https://github.com/ikkisoft/SerialKiller
https://github.com/apache/commons-io/blob/master/src/main/java/org/apache/commons/io/serialization/ValidatingObjectInputStream.java
https://github.com/apache/commons-io/blob/master/src/main/java/org/apache/commons/io/serialization/ValidatingObjectInputStream.java
https://github.com/frohoff/ysoserial
https://github.com/frohoff/ysoserial
https://www.waratek.com/java-deserialization-problem/
https://blog.secureideas.com/2017/09/equifax-breach-why-i-am-not-surprised.html
https://blog.secureideas.com/2017/09/equifax-breach-why-i-am-not-surprised.html
https://resoundingechoes.net/development/autoloading-classes-php/
https://portswigger.net/daily-swig/ruby-taken-off-the-rails-by-deserialization-exploit
https://portswigger.net/daily-swig/ruby-taken-off-the-rails-by-deserialization-exploit
https://dan.lousqui.fr/explaining-and-exploiting-deserialization-vulnerability-with-python-en.html
https://dan.lousqui.fr/explaining-and-exploiting-deserialization-vulnerability-with-python-en.html
https://resources.infosecinstitute.com/10-steps-avoid-insecure-deserialization/
https://resources.infosecinstitute.com/10-steps-avoid-insecure-deserialization/
https://github.com/Contrast-Security-OSS/contrast-rO0
https://doi.org/10.1016/j.procs.2017.01.059
https://openjdk.java.net/jeps/290
https://www.owasp.org/index.php/PHP_Object_Injection
https://github.com/ambionics/phpggc

	Abstract
	1 Introduction
	1.1 General Rules for Prevention

	2 Related Work
	3 ObjectMap
	3.1 How does it work

	4 Results and Test Environment
	5 Discussion and Future Work
	6 Conclusions
	7 Acknowledgments
	References

