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Abstract: Changes in vegetation phenology are among the most sensitive biological responses to global 

change. While land surface phenological changes in the Northern Hemisphere have been extensively studied 

from the widely used long-term AVHRR (Advanced Very High Resolution Radiometer) data, current 

knowledge on land surface phenological trends and the associated drivers remains uncertain for the tropics. 

This uncertainty is partly due to the well-known challenges of applying satellite-derived vegetation indices 

from the optical domain in areas prone to frequent cloud cover. The long-term vegetation optical depth 

(VOD) product from satellite passive microwaves features less sensitivity to atmospheric perturbations and 

measures different vegetation traits and functioning as compared to optical sensors. VOD thereby provides 

an independent and complementary data source for studying land surface phenology and here we performed 
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a combined analysis of the VOD and AVHRR NDVI (Normalized Difference Vegetation Index) datasets 

for the dry tropics (25°N to 25°S) during 1992-2012. We find a general delay in the VOD derived start of 

season (SOS) and end of season (EOS) as compared to NDVI derived metrics, however with clear 

differences amongst land cover and continents. Pixels characterized by significant phenological trends (P < 

0.05) account for up to 20% of the study area for each phenological metric of NDVI and VOD, with large 

spatial difference between the two sensor systems. About 50% of the pixels studied show significant 

phenological changes in either VOD or NDVI metrics. Drivers of phenological changes were assessed for 

pixels of high agreement between VOD and NDVI phenological metrics (serving as a means of reducing 

noise-related uncertainty). We find rainfall variability and woody vegetation change to be the main forcing 

variables of phenological trends for most of the dry tropical biomes, while fire events and land cover change 

are recognized as second-order drivers. Taken together, our study provides new insights on land surface 

phenological changes and the associated drivers in the dry tropics, as based on the complementary long-

term data sources of VOD and NDVI, sensitive to changes in vegetation water content and greenness, 

respectively. 

 

Keywords: Vegetation optical depth, land surface phenology, trends, dry tropics, NDVI, drivers of 

phenological trends. 

 

1. Introduction 

Seasonal variations in vegetation properties such as leaf area, photosynthetic productivity and water 

content are tightly coupled to global carbon, water, and energy fluxes (Bonan 2008; Piao et al. 2007) and 

are recognized as a key indicator for ecosystem structure and functioning (Peñuelas et al. 2009). During 

recent decades, climate change has profoundly affected vegetation phenology across the globe through 

global warming and altered rainfall seasonality (Peñuelas and Filella 2001) and altered phenophases in turn 
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also affect climate via biophysical feedbacks (Richardson et al. 2013; Zeng et al. 2018). Considerable efforts 

have been made on mapping phenology based on the combined use of ground observations and remotely 

sensed data (Linderholm 2006), using local in situ measurements to train and validate remote sensing and 

modelling approaches at larger spatial scales (White et al. 2009; Xu et al. 2016). Periodical variations in 

vegetation as observed by remote sensing systems are usually termed land surface phenology in contrast to 

the term vegetation phenology that refers to life cycle events (e.g., bud break, flowering, and leaf senescence) 

of individual plants or species at the field level. Since collection of ground observations is laborious and 

limited in spatial extent, continuous satellite observations have become a widely recognized tool for 

monitoring large-scale vegetation phenology from regional to global scales. Based on remote sensing 

vegetation indices (VIs), such as Normalized Difference Vegetation Index (NDVI), land surface phenology 

is usually described by some key metrics i.e., start and end of growing season (SOS and EOS, respectively), 

from which phenological trends over time can be quantified (Verger et al. 2016; Zhang et al. 2003).  

Long-term global land surface phenological trends have been extensively studied using satellite 

observations from the AVHRR (Advanced Very High Resolution Radiometer) sensors covering the period 

from 1981 to present. The AVHRR VI data measure the greenness of the canopy, which is closely linked to 

the leaf area, chlorophyll abundance and thus the overall vegetation productivity (Myneni and Hall 1995). 

Particularly, for the Northern Hemisphere, several studies have shown widespread phenological changes in 

AVHRR VI based SOS and EOS (Garonna et al. 2014; Jeong et al. 2011; Piao et al. 2006), mainly as a 

consequence of global warming (Jeong et al. 2011). Contrastingly, studies of long-term phenological 

changes in the tropics are rather limited (Garonna et al. 2016). The few AVHRR-based studies conducted 

at a global scale revealed fewer areas of significant changes and more spatially heterogeneous land surface 

phenological change patterns in the tropics as compared to the Northern Hemisphere (Buitenwerf et al. 2015; 

Garonna et al. 2016). These differences in patterns of land surface phenology between tropics and the 

Northern Hemisphere are likely due to the high inter-annual variation in tropical land surface phenology 

related to climate oscillations (Brown et al. 2010) and complex relationships between driving factors 
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including both climatic and anthropogenic (land management) forcing (Archibald and Scholes 2007; Broich 

et al. 2014). Moreover, cloud-cover and atmospheric disturbances largely reduce the signal-to-noise level 

and availability of high-quality optical satellite imageries in cloud-prone tropical regions (Fensholt et al. 

2007), introducing large uncertainties in the derived phenological metrics and the associated inter-annual 

changes (Ganguly et al. 2010; Zhang et al. 2009). 

The vegetation optical depth (VOD) retrieved from satellite passive microwaves provides an independent 

and complementary data source to assess vegetation phenology at regional to global scales (Jones et al. 

2011). VOD is linearly correlated with vegetation water content (Van de Griend and Wigneron 2004; 

Jackson and Schmugge 1991) and is sensitive to both leafy and woody vegetation components (Guglielmetti 

et al. 2007; Jones et al. 2013; Tian et al. 2017). VOD is only minimally affected by cloud and aerosol 

contaminations and passive microwave signals are also not impacted by variations in illumination conditions 

as being the case for VI’s derived from optical/near infrared spectral bands. These characteristics of VOD 

have recently evoked substantial interests for global vegetation studies, including ecosystem-scale plant 

hydraulics (Konings and Gentine 2016; Tian et al. 2018), carbon stocks and dynamics (Brandt et al. 2018; 

Liu et al. 2015), woody/forest cover (Brandt et al. 2017a; van Marle et al. 2016), vegetation productivity 

(Teubner et al. 2018), crop yield estimation (Alemu and Henebry 2017b), and land surface phenology (Jones 

et al. 2012). In particular, the long-term VOD dataset (1992-2012) provides an unprecedented opportunity 

for studying global changes in land surface phenology over a period comparable to the commonly used 

AVHRR VI datasets (Liu et al. 2011). The VOD product has data gaps under frozen soil conditions, thus 

hampering the calculation of phenological metrics such as SOS and EOS in large parts of the Northern 

Hemisphere, which is however not a problem in the tropics where valid VOD retrievals are available 

throughout the year.  

It is thus of high relevance to perform a combined analysis of land surface phenological trends observed 

from the VOD time series and the AVHRR NDVI data records during 1992-2012 (the overlapping period 

of data availability) in tropical regions (25°N to 25°S) to gain more comprehensive insights into recent 
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changes in the phenology of dry tropical ecosystems. In this study, we: (1) analyze agreement/differences 

in spatio-temporal patterns of VOD and NDVI derived phenological metrics of SOS and EOS for different 

land cover types and subcontinental regions and (2) examine potential drivers of VOD/NDVI observed 

phenological trends. 

2. Data and methods  

The overall data processing and analysis workflow is illustrated in Figure 1 and detailed descriptions 

of the individual steps are provided below in sections 2.1 to 2.6. 

  

 

Figure 1. Flow chart of the study involving extraction of VOD and NDVI phenological metrics, inter-comparison and 

analysis of drivers of phenological changes. 

2.1 VOD data 

Satellite passive microwave radiometers sense the thermal emissions from land surface quantified 

as brightness temperature (TB, the product of emissivity and physical temperature), from which VOD 

(dimensionless) can be retrieved. VOD is a measure of the strength of vegetation attenuation effect on the 

microwave signals, including both the leafy and woody components of the canopy. VOD was found to be 
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linearly correlated with vegetation water content (kg m-2) and the relationship varies by microwave 

frequency (Wigneron et al. 2017). L-band passive microwaves (1-2 GHz) have a strong penetration 

capability (i.e., a relatively weak vegetation attenuation effect) due to the long wavelength (15-30 cm), while 

C-/X-/K-band passive microwaves (6-18 GHz) are weaker in penetrating through the vegetation layer (Santi 

et al. 2009). Therefore, for dense deciduous forests, L-band VOD mainly senses water stored in trucks and 

branches with a relatively narrower seasonal dynamic range; whereas, C-/X-/K-band VODs mainly 

represent the water content fluctuations at canopy/crown level (leaves and branches) with larger seasonal 

dynamics. VODs from all these bands are minimally affected by clouds and aerosols. However, open surface 

water bodies have a strong influence on the accuracy of retrieved VOD, which needs to be carefully dealt 

with by masking out pixels accordingly. 

The long-term VOD dataset employed here was produced and provided by Liu et al. (2011, 2015) at a spatial 

resolution of 0.25° and with a daily temporal resolution for the period 1992-2012. The VOD dataset was 

retrieved from several satellite microwave radiometers at frequencies ranging from 6.8 GHz to 19.4 GHz 

(C-/X-/K-band), including the Special Sensor Microwave Imager (SSM/I), the Advanced Microwave 

Scanning Radiometer for EOS (AMSR-E), the WindSat, and the FengYun-3B, using the land parameter 

retrieval model (Owe et al. 2001). A cumulative distribution function matching approach was applied to 

merge the retrievals from different sensors to form a consistent long-term VOD time series, having a 

dynamic range from 0 to 1.2 (Liu et al. 2011). For areas dominated by herbaceous vegetation, the seasonal 

variation in the VOD signal reflects the annual cycle of the entire herbaceous layer. For areas dominated by 

woody vegetation, the VOD seasonality is related to the canopy water status, i.e., fluctuations in the canopy 

leaf area and the associated water content in both leaves and branches (Momen et al. 2017; Santi et al. 2009; 

Tian et al. 2016). As the VOD seasonality may be influenced by seasonal inundation, we masked out pixels 

with a spatial extent of inundation > 10% (Supplementary Figure S1a), based on a global inundation map 

(Fluet-Chouinard et al. 2015). 

2.2 AVHRR NDVI data 



7 
 

We used the Global Inventory Modeling and Mapping Studies (GIMMS) NDVI 3rd generation 

version 1 product (Pinzon and Tucker 2014) due to its high temporal consistency across multiple AVHRR 

sensors (Tian et al. 2015) and its frequent use for long-term phenological trend analysis. This NDVI dataset 

is provided in a 1/12° spatial and a semi-monthly temporal resolution by compositing (selecting the 

maximum value) the daily observations within each 15-day window to reduce the impacts from cloud cover 

and atmospheric influence. We aggregated the NDVI data to a 0.25° by pixel averaging to match the spatial 

resolution of the VOD dataset.  

2.3 Extraction of phenological metrics 

We applied the same method for VOD and NDVI time series to extract SOS and EOS, although 

VOD and NDVI respond to different biophysical characteristics (vegetation water content vs greenness) 

and show different seasonal patterns depending on ecosystem functional types (Figure 2). SOS and EOS 

extractions were done at the per-pixel level using the TIMESAT software (Jönsson and Eklundh 2004) by 

calculating the day of year (DOY) when VOD/NDVI reach half of their seasonal amplitudes (the difference 

between annual minimum and maximum) before and after the peaking time, respectively (Garonna et al. 

2014; White et al. 2009). These settings are comparable to the middle point method applied by Garonna et 

al. (2016) used for an NDVI-based global phenological trend analysis.  

The VOD and NDVI raw time series were smoothed using a Savitzky-Golay filter (window size = 60 days, 

i.e., 61 observations for VOD and 5 for NDVI) in the TIMESAT software (Figure 2). Areas characterized 

by a seasonal amplitude < 0.1 (Supplementary Figure S1b) and with an annual mean value < 0.1 

(Supplementary Figure S1c) for either VOD or NDVI were masked out, following the criteria used by 

Garonna et al. (2016). We also masked out areas with more than one growing season (Supplementary Figure 

S1d) based on the phenology product generated by the Vegetation Index and Phenology Lab 

(http://www.vip.arizona.edu). Rather than reducing the VOD temporal resolution to match with NDVI (15-

day), we used the daily VOD as input to obtain the highest possible accuracy of SOS and EOS retrievals to 

support our study aims. An inter-comparison of SOS and EOS estimates as based on time series of daily 

http://www.vip.arizona.edu/
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VOD and 15-day composited VOD was conducted (Supplementary Figure S2) showing high consistency 

(R2 values and RMSE) between output results. 

 

Figure 2. Examples of VOD and NDVI seasonal variations during 2005 at (a) a grassland site (location: 15.25N, 15W) 

in northern Senegal and (b) a woodland site (location: 6.75N, 17.25E) in the southern Central African Republic. 

Crosses represent the VOD and NDVI raw values and lines represent smoothed seasonal curves using the Savitzky-

Golay filter. The solid points represent retrieved start and end of growing season as based on VOD and NDVI. The 

daily rainfall data (dark grey bars) are from the CHIRPS rainfall product.  

 

2.4 Comparison between VOD and NDVI phenological metrics 

We examined the per-pixel intra-annual difference of each phenological metric (SOS and EOS) 

between VOD and NDVI. We also compared the differences in VOD and NDVI  long-term phenological 

trends (SOS and EOS), using the non-parametric Theil-Sen linear trend analysis and the Mann-Kendall 

significance test (Mann 1945; Sen 1968). These intra- and inter-annual phenological differences were 

compared based on land cover types (using the European Space Agency (ESA) Climate Change Initiative 

(CCI) products, https://www.esa-landcover-cci.org/). We regrouped the original land cover classes into 

https://www.esa-landcover-cci.org/
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grassland, shrubland, cropland, mosaic tree/shrub/grass/crop, and broadleaf deciduous forest (Figure 3; 

pixels classified as broadleaf evergreen forest were excluded due to the limited seasonality producing high 

uncertainty in the SOS and EOS extraction), each representing different characteristics of ecosystem 

structure and functioning. Yet, vegetation characterized by the same land cover type may show a different 

biophysical behavior across space; for example, the rain use efficiency of the African semi-arid regions 

varies significantly between the Sahel and southern Africa (Ratzmann et al. 2016). Therefore, we also broke 

down the analysis to a sub-continental level by studying four individual regions, that is, northern sub-

Saharan Africa (N. Africa), southern Africa (S. Africa), eastern South America (S. America), and northern 

Australia (N. Australia) (Figure 3).  

 

Figure 3. Land cover types of the dry tropics (25°N to 25°S), based on the ESA CCI land cover class data in 2000 

(representing the middle of our study period). The four subcontinental regions examined are indicated by blank 

bounding boxes. Light grey colored areas are masked according to information provided in Supplementary Figure S1 

a-d. 

We further evaluated whether two independent groups were equivalent or not in the SOS and EOS difference 

as derived from VOD and NDVI. Test of significant difference between groups of variables measured across 

space from remote sensing can be ambiguous due to a large number of pixels and spatial autocorrelation of 

these pixels (Foody 2009a, b). To avoid this issue, we instead tested for equivalence between groups as has 
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been done by Robinson and Froese (2004) and de Beurs et al. (2015). Specifically, we tested at a certain 

level (α) if the mean value of two groups were equivalent or not, with the null hypothesis: 

𝐻0: |𝐺1 − 𝐺2| > 𝛼 

By rejecting H0, we conclude that the two tested groups are equivalent (the difference between them is not 

sufficient to care about). We set α to 25% of the mean standard deviation (Robinson and Froese 2004) of 

the observed differences for all the tested groups (different land cover types and geographic regions) 

corresponding to 5.26 days.  

2.5 Assessment of NDVI and VOD data quality by inter-comparison 

 Both NDVI and VOD time series data are subject to some level of noise and perturbation effects, 

especially for the humid and densely vegetated areas. NDVI suffers from atmospheric contamination from 

aerosols, water vapor and extensive cloud cover (Vermote et al. 2002) and directional effects from varying 

sun-sensor geometry (Fensholt et al. 2010; Leeuwen and Orr 2006), whereas VOD retrieval accuracy 

decreases when vegetation exceeds a certain level (Jones et al. 2011). Also, both NDVI and X-band VOD 

show saturation effects as a function of vegetation density (Jones et al. 2011; Sellers 1985; Tian et al. 2016). 

These well-known issues are likely to introduce uncertainties in the calculated phenological metrics and will 

thereby impact the inter-annual variations of the respective metrics. VOD and NDVI are expected to co-

vary between successive years in response to climate factors (e.g. earlier rains in a specific year will result 

in earlier SOS for both VOD and NDVI), except for years with abrupt disturbances. However, this short-

term co-variation will not necessarily result in identical long-term trends if changes in structure and/or 

species composition are occurring. We computed the Pearson's product-moment correlation coefficient 

between detrended VOD and NDVI phenological metrics (SOS and EOS) during 1992-2012 to assess the 

agreement between these two independent datasets. Detrended time series of phenological metrics were 

used to focus this part of the analysis on the short-term co-variation between VOD and NDVI. Pixels with 

significant (P < 0.05) correlation for either SOS or EOS were marked as “high agreement” between VOD 
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and NDVI (good data quality), otherwise marked as “low agreement”. As VOD and NDVI measure different 

vegetation traits (water content and greenness, respectively) it should be noted that a per-pixel low 

correlation coefficient could potentially also be caused by changes in species composition (e.g., woody 

vegetation fraction), climatic variation (e.g., onset of rainy season) and land cover disturbances (e.g., fires) 

because the response of VOD and NDVI to the above-mentioned changes might not be identical. However, 

the aim here was to make a first assessment of the importance of impacts from various perturbations on both 

VOD and NDVI derived phenological metrics, to be used in our following analysis of exploring potential 

drivers of phenological trends. 

2.6 Examining potential drivers of phenological trends 

 A significant trend in phenology is usually associated with structural changes in vegetation 

composition and/or functioning (Peñuelas et al. 2009). Here, we label a pixel to be characterized by a change 

in phenology if trends in any of the four examined metrics (VOD SOS, VOD EOS, NDVI SOS, and NDVI 

EOS) were significant. We subsequently examined the potential drivers of a significant phenological change 

by analyzing various driver variables. For a given land cover type at the sub-continental level, we compared 

the group of pixels showing significant phenological trends against the reference group of pixels with non-

significant phenological trends (Figure 1). A given driver variable was identified as potential driver if its 

value was not equivalent between the groups of significant and non-significant phenological trends (see 

section 2.4). A two-sided equivalent test was used for all the comparisons except for the analysis of land 

cover change intensity as a potential driver, where a one-sided test was used with the null hypothesis: 

𝐻0: 𝐺1 − 𝐺2 > 𝛼 

We selected four potential controlling variables, which were land cover change and temporal dynamics of 

rainfall, fire events, and woody vegetation (encroachment or deforestation/forest degradation). Here, 

temporal dynamics refer to the per-pixel long-term trend (slope of linear regression against time) and inter-

annual variation (IAV, the anomaly to the fitted trend line). These drivers may not be mutually exclusive, 
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but rather represent complementary information about forcing mechanisms leading to a change in vegetation 

composition and/or functioning. For example, a shrubland area characterized by woody encroachment may 

show altered ecosystem functioning even though the land cover remains categorized as shrubland, but 

eventually the land cover might change as well (e.g. into savanna woodland). Only pixels assigned with 

high agreement between VOD and NDVI phenological metrics (see section 2.5) were included in this 

analysis to reduce the potential impacts from data artefacts (atmospheric perturbations, viewing geometry, 

signal saturation etc.) on the attribution of drivers. 

The prevalence of land cover change (the number of land cover types of a given location during the period 

of analysis, here referred to as land cover change intensity) was calculated based on the annual ESA CCI 

land cover time series. We first counted the number of land cover types during 1992-2012 for each pixel at 

the original spatial resolution (300 m) and then resampled the output to VOD pixel size by averaging. 

Annual rainfall data from CHIRPS v2.0 (Funk et al. 2015) covering the period 1992-2012 were used and 

the data provided at a spatial resolution of 0.05° were resampled to 0.25° by averaging. Changes in woody 

vegetation (trees and shrubs) were estimated using annual minimum  VOD observations (corresponding to 

dry season observations with no/limited herbaceous cover), found to be a robust proxy for fractional woody 

cover (Brandt et al. 2017a). This VOD dataset is found to be homogeneous across sensors as assessed by 

Tian et al. (2016). Data on fire events were obtained from the GFED4 monthly burned area product 

(excluding small fires) during 1996-2012 (four years less than the other datasets) at 0.25° spatial resolution 

(Giglio et al. 2013). Per-pixel monthly burned area information was aggregated to annual sums for further 

analysis.  

3. Results 

3.1 Differences between VOD and NDVI phenological metrics 

Mean values for SOS and EOS of VOD generally occurred later in the season than those derived 

from the NDVI time series (1992-2012) for the majority of pixels analyzed (83% and 81% of SOS and EOS 
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for the study area, respectively) (Figure 4 and Table 1-2, see Supplementary Figure S3 for the mean DOY 

and Supplementary Figure S4 for the standard deviation of VOD and NDVI phenology difference). A larger 

difference between VOD and NDVI is seen for SOS as compared to EOS in most areas and VOD and NDVI 

phenological differences also show clear spatial patterns clustered within different sub-continental regions. 

In the N. Africa subset, the southernmost Sudan-Guinean zone is characterized by a higher vegetation 

density (deciduous forests and shrubs) with larger differences in SOS (Figure 4a and Table 1) and EOS 

(Figure 4b and Table 2) than the Sahelian zone to the north (dominated by grassland and shrubland). A 

similar cluster of differences between VOD and NDVI co-varying with vegetation density was also found 

in southern Africa for SOS, but being less clear for EOS. The analysis revealed that the same land cover 

type exhibits significantly different patterns in different subcontinental regions (Table 1-2). For example, a 

widespread earlier SOS of VOD as compared to NDVI was found in the N. Australian shrublands, which 

was not found to be the case for shrublands in the other tropical regions.  
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Figure 4. Mean number of days of difference between (a) VOD SOS and NDVI SOS and between (b) VOD EOS and 

NDVI EOS during 1992-2012. Light grey colored areas are masked according to information provided in 

Supplementary Figure S1 a-d. 

 

Table 1. The mean number of days of difference between VOD SOS and NDVI SOS for each land cover type and 

sub-continental region. The capital letters (e.g., A, B) indicate the equivalence test between geographic regions for a 

given land cover type (individual columns), while the numbers (e.g., 1, 2) indicate the equivalence test between land 

cover types for a given geographic region (individual rows). Groups with the same capital letter or number are 

equivalent in values. The equivalence level α is 5.26 days. 

 Grassland Shrubland Cropland Mosaic 

tree/shrub/grass/crop 

Broadleaf 

deciduous 

forest 

All  19.73C12 15.49B1  22.49AB2  17.94CD12  32.78B3  

N. Africa 4.98A1 31.14C3  19.10A2  15.09C2  34.13B3  

S. Africa 13.43B1  15.90B1  25.47B2  21.29D2 32.13B3  

S. America 28.76D3  13.51B2  24.07AB3  7.36B1  25.26A3  

N. Australia 3.04A2  -2.44A1  NA 1.31A12  NA 

 

Table 2. The mean number of days of difference between VOD EOS and NDVI EOS for each land cover type and 

sub-continental region. The capital letters (e.g., A, B) indicate the equivalence test between geographic regions for a 

given land cover type (individual columns), while the numbers (e.g., 1, 2) indicate the equivalence test between land 

cover types for a given geographic region (individual rows). Groups with the same capital letter or number are 

equivalent in values. The equivalence level α is 5.26 days. 

 Grassland Shrubland Cropland Mosaic 

tree/shrub/grass/crop 

Broadleaf 

deciduous 

forest 

All  21.89C2  12.91AB1  19.51B2  29.32BC3  18.45C2  

N. Africa 3.87A1  17.11B3  13.39A23  10.47A2  28.42D4  

S. Africa 10.39B1  11.70A1  23.78B2  25.23B2  12.71B1  

S. America 30.00D3  8.78A1  19.35B2  15.04A2  6.67A1  

N. Australia 32.60D2  11.49A1  NA 31.04C2  NA 

 



15 
 

3.2 Inter-annual trends in VOD and NDVI phenological metrics 

Overall, the percentage of pixels characterized by significant trends (P < 0.05) is covering up to 20% 

of the study area for each category of SOS and EOS as derived from both VOD and NDVI, with spatial 

clusters showing both significantly positive and negative trends (Figure 5). Significant trends towards later 

dates of both SOS and EOS for N. Africa region were observed from NDVI, which was less prominent in 

the analysis based on VOD data. For southern Africa, both VOD phenological metrics (SOS and EOS) show 

large spatially clustered patterns of significant trends towards both earlier and later dates, whereas the NDVI 

metrics show a more scattered pattern. In S. America notably, the overall EOS trend in the Brazilian Cerrado 

area shows opposite patterns between VOD (later) and NDVI (earlier).  

When combining the results of VOD and NDVI trends, both SOS and EOS show significant trends for 

around 25% of the study area, each with the majority being characterized by only one significant metric for 

either VOD or NDVI, while few pixels show converging or diverging VOD/NDVI significant trends for 

SOS and EOS (Figure 6a, b). Detailed joint occurrence tables showing all combinations of VOD and NDVI 

trends (i.e., significant positive, significant negative and non-significant) for each sub-continental region 

and land cover type are provided as supplementary material (Tables S1-S18). Generally, the N. Africa region 

show more significant phenological trends in NDVI, while other regions show more or less equivalent 

proportions of significant trends between VOD and NDVI. A significant trend in any of the four metrics 

examined (VOD SOS, VOD EOS, NDVI SOS, and NDVI EOS) exists for about 50% of the area studied 

(Figure 6c).  
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Figure 5. Linear trends in phenological metrics of VOD and NDVI (1992-2012) for SOS (a, b) and EOS (c, d). Pixels 

with significant trends (P < 0.05) are colored, while non-significant trends are shown in dark grey. The areal 

percentages of the three types of trends (i.e, earlier, later, and non-significant) for each selected sub-continental region 

(N: N. Africa, S: southern Africa, SA: S. America, A: northern Australia) and land cover type (G: grassland, S: 

shrubland, C: cropland, M: mosaic tree/shrub/grass/crop, D: broadleaf deciduous forest) are inserted as bar-plots. The 
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width of bars indicates the relative size of each region and land cover type (wider means a larger areal size). Light grey 

colored areas are masked according to information provided in Supplementary Figure S1 a-d. 

 

Figure 6. Comparison of (a) SOS trends and (b) EOS trends between VOD and NDVI and (c) the combined mapping 

of significant trends in any of the phenological metrics. Pixels with significant trends (P < 0.05) are colored, while 

non-significant trends are shown in dark grey. The per-category areal percentages for each selected sub-continental 

region (N: N. Africa, S: southern Africa, SA: S. America, A: northern Australia) and land cover type (G: grassland, S: 

shrubland, C: cropland, M: mosaic tree/shrub/grass/crop, D: broadleaf deciduous forest) are inserted as bar-plots. The 
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width of bars indicates the relative size of each region and land cover type (wider means a larger areal size). Light grey 

colored areas are masked according to information provided in Supplementary Figure S1 a-d. 

3.3 Agreement between VOD and NDVI phenological metrics 

 The correlation between inter-annual variations in VOD and NDVI metrics (both SOS and EOS; 

Figure 7a, b) are higher in the drier regions, e.g., the African Sahel, grasslands of southern Africa, Brazilian 

Caatinga, and northern Australia as compared to the wetter regions, e.g., the African Sudan-Guinean, the 

wet Miombo woodland, north-eastern Cerrado Brazil, and southeast Asia. These drier regions correspond 

well with previously reported areas where NDVI data have ample high quality cloud-free observations 

(Fensholt and Proud 2012). When combining results from both SOS and EOS (Figure 7c), about 70% of the 

study area shows high agreement (significant correlation, P < 0.05) between VOD and NDVI phenological 

metrics (from where the following analysis on potential drivers was performed). It is evident that trend 

agreement is lower for the S. America continental subset as compared to the three other subsets.  
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Figure 7. Correlation between VOD and NDVI derived SOS (a) and EOS (b) as well as VOD and NDVI phenological 

metric agreement during 1992-2012 as evaluated by the existence of a significant correlation (P < 0.05) in either SOS 

or EOS (c). The areal percentages of each category for each selected sub-continental region (N: N. Africa, S: southern 

Africa, SA: S. America, A: northern Australia) and land cover type (G: grassland, S: shrubland, C: cropland, M: mosaic 

tree/shrub/grass/crop, D: broadleaf deciduous forest) are inserted as bar-plots. The width of bars indicates the relative 

size of each region and land cover type (wider means a larger areal size). Light grey colored areas are masked according 

to information provided in Supplementary Figure S1 a-d. 
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3.4 Potential drivers of observed phenological trends 

Table 3 shows results of the equivalence tests between pixels with and without significant phenological 

trends (Figure 6c) for each sub-continental region and land cover type, while the drivers identified are 

summarized in Table 4. Overall, the temporal dynamics in woody vegetation, rainfall, and fire events were 

all important drivers for the study area whereas land cover change was found to be less dominant. Whereas 

the variables examined had little explanatory power as drivers of phenological trends for land cover types 

of N. Africa, all drivers collectively were found to play a role for phenological changes of land cover types 

in S. America. For southern Africa, woody vegetation dynamics play a major role for all the land cover 

types (except for the deciduous forest areas), coinciding with areas documented by extensive woody 

encroachment (O'Connor et al. 2014). For N. Australia, the analysis revealed dynamics in woody vegetation 

and fire events as drivers of phenological trends for the land cover types of grassland and mosaic 

tree/shrub/grass/crop. Cropland and broadleaf deciduous forest were excluded from the sub-continental 

analysis of N. Australia due to the limited number of pixels available (< 50). The summary of identified 

drivers across land cover types and continents (Table 4) show that rainfall and woody vegetation dynamics 

are the most frequently occurring variables explaining phenological trends (nine occurrences each), 

followed by fire events (seven occurrences) and land cover change intensity (two occurrences).  
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Table 3. Mean values of examined drivers for pixels characterized by non-significant (NS) and significant (S) 

phenological trends, respectively, for each land cover type and sub-continental region. Presence of a phenological trend 

was defined by considering both VOD and NDVI metrics (Figure 6c) and only pixels with high agreement (Figure 7c) 

were analyzed. The equivalence test was performed between the groups of NS and S for each land cover type and sub-

continental region. Numbers in bold within each of the driver variables indicate that groups are not equivalent (i.e. the 

difference between them is significant) at the respective level of α and thereby regarded as drivers of significant 

phenological trends 

Woody vegetation trend (α = 5.54 * 0.0001VOD/year) and IAV (α = 0.25 * 0.01*VOD/year) 

 Grassland Shrubland Cropland Mosaic 

tree/shrub/grass/crop 

Broadleaf 

deciduous forest 

NS S NS S NS S NS S NS S 

N. Africa Trend 8.96  8.60 8.49  9.58 2.94 -3.19 6.78  4.67 12.11  11.27 

IAV 1.34 1.29 2.01 1.86 1.59 1.57 1.56 1.53 2.09 1.92 

S. Africa Trend 52.68  47.49 34.49  24.96 4.31  3.25 26.63  19.07 8.48 9.65 

IAV 3.00 3.27 3.48 2.98 2.76 2.40 2.38 2.43 2.22 1.94 

S. America Trend 8.96 2.56 3.28 -0.18 -17.61 -15.81 -18.76  -15.43 -12.98  -35.33 

IAV 3.14 2.92 2.80 2.97 3.47 3.37 3.64 3.52 2.52 2.71 

N. Australia Trend 50.50  31.42 44.45 48.33 NA NA 33.38  39.87 NA NA 

IAV 5.68 4.83 3.85 3.97 NA NA 4.16 4.05 NA NA 

Rainfall trend (α = 1.21 mm /year) and IAV (α = 0.08 cm/year) 

N. Africa Trend 1.79 1.87 0.55 1.27 0.71 0.73 0.68 1.02 -0.28 -0.55 

IAV 0.74 0.71 1.12 1.04 0.93 0.98 0.84 1.00 1.25 1.23 

S. Africa Trend 8.30 10.94 5.10 6.82 3.99 4.19 6.62 6.68 2.70 4.10 

IAV 1.14 1.30 1.23 1.29 1.49 1.46 1.34 1.29 1.36 1.21 

S. America Trend 4.07 2.61 1.39 1.01 -0.89 -0.71 1.12 -0.14 1.05 1.34 

IAV 1.85 1.84 1.72 1.78 1.62 1.72 1.36 1.47 1.53 1.22 

N. Australia Trend 8.71 5.01 12.33 12.41 NA NA 6.14 6.27 NA NA 

IAV 1.65 1.55 2.00 2.07 NA NA 1.59 1.62 NA NA 

Fire events trend (α = 11.39 * 0.001 ha/year) and IAV (α = 1.03 * 0.1 ha/year) 

N. Africa Trend 10.54 14.36 -9.72 -12.38 -15.96 -23.50 -2.20 -3.94 -16.33 -15.82 

IAV 9.87 8.85 4.86 4.52 7.34 6.66 7.97 7.51 5.03 4.90 

S. Africa Trend 26.98 26.05 11.09 6.68 10.78 2.34 4.14 3.21 7.01 7.22 

IAV 9.70 6.58 8.46 6.78 7.73 7.29 8.17 8.64 3.87 3.61 

S. America Trend 51.16 60.22 29.05 17.49 28.57 15.67 20.75 3.10 35.61 30.80 

IAV 9.33 9.21 8.94 9.11 9.46 9.48 9.08 8.86 9.72 10.27 

N. Australia Trend 30.63 -1.48 10.95 8.37 NA NA 28.11 29.26 NA NA 

IAV 11.95 12.98 9.44 9.69 NA NA 10.66 13.08 NA NA 

Land cover change intensity (α = 0.021 land cover type) 

N. Africa 1.049 1.050 1.054 1.054 1.062 1.082 1.057 1.044 1.069 1.060 

S. Africa 1.037 1.058 1.046 1.067 1.115 1.122 1.058 1.051 1.050 1.048 
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S. America 1.061 1.048 1.076 1.070 1.049 1.056 1.188 1.246 1.161 1.259 

N. Australia  1.124 1.065 1.018 1.020 NA NA 1.034 1.040 NA NA 

 

Table 4. Summary of identified drivers of significant phenological trends for each land cover type and sub-continental 

region. The results were combined for the equivalence tests of trend and interannual variability (IAV) of woody 

vegetation, rainfall, fire events (burnt area) and land cover change intensity (LCC), respectively.  

 Grassland Shrubland Cropland Mosaic 

tree/shrub/grass/crop 

Broadleaf 

deciduous forest 

N. Africa   Woody veg. Rainfall  

S. Africa Woody veg., 

Rainfall, 

Fire events 

Woody veg., 

Rainfall, 

Fire events 

Woody veg. Woody veg. Rainfall 

S. America Woody veg., 

Rainfall 

Fire events Rainfall,  

Fire events 

Rainfall,  

Fire events,  

LCC 

Woody veg., 

Rainfall,  

LCC 

N. Australia Woody veg., 

Rainfall, 

Fire events 

 NA Woody veg., 

Fire events 

NA 

 

4. Discussion 

4.1 Biophysical comparability of VOD and NDVI phenology 

Similar to NDVI, the VOD product employed in this study also shows a clear seasonal response to 

vegetation growth (Figure 2), which allows for VOD-based mapping of land surface phenology in the same 

way as NDVI (Jones et al. 2011; Jones et al. 2012). The observed land surface phenology in both NDVI and 

VOD is driven by vegetation seasonal  variations but monitoring of phenology from optical and microwave 

sensor systems involves different sensitivity to biophysical traits of vegetation, which complicates the 

interpretation of observed patterns in phenological metrics and changes herein. While NDVI measures the 

vegetation greenness related to the leaf component, VOD is sensitive to the vegetation water content in both 

the leaf and woody components. Therefore, the phenological difference derived from NDVI and VOD 

should be interpreted as the sum of both the leaf water status at a given level of greenness and the water 

status of the woody vegetation components. At a seasonal scale, canopy greenness and leaf water content 
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are usually highly correlated, both co-varying with the amount of green vegetation biomass. This co-

variation is supported by the small SOS/EOS difference between VOD and NDVI for the grasslands (Figure 

2 and 3) and is also consistent with a previous study focusing on homogenous croplands of northern Eurasia 

(Alemu and Henebry 2017a). In contrast, the seasonal development of water content of the woody 

component does not necessarily follow canopy greenness, often exhibiting a certain time lag (Borchert 1994; 

Tian et al. 2018), which explains the larger SOS/EOS difference for the forested areas (Figure 2 and 3). For 

woodlands, the NDVI increases rapidly and reaches the highest level (around 0.8) following the green-up 

period and then remains at this level (or even decreases a bit) during the growing season. In the event of 

NDVI saturation effects, the estimated SOS will be underestimated (detected earlier), but the 

underestimation should be far below the observed SOS difference between VOD and NDVI (around 2 

months in woodlands). Overall, the observed delay in SOS and EOS from VOD as compared to NDVI 

indicate general asynchronicity in the vegetation seasonal cycle of canopy greenness and vegetation water 

content. However, the differences between VOD and NDVI metrics show sub-continental region-specific 

patterns for the same land cover type (Figure 4), suggesting the existence of distinct eco-physiological traits 

of vegetation with region-specific functional and structural adaptation to biotic and abiotic factors. 

Since the VOD product used in this study is retrieved from relatively high microwave frequencies (>6 GHz), 

the variation in vegetation water content mainly origins from the canopy/crown level for dense forest areas. 

This is different for the VOD retrieved from SMOS (Soil Moisture and Ocean Salinity) at L-band (1.4 GHz), 

which can sense the water storage in stems of dense forest (Brandt et al. 2018; Tian et al. 2018). However, 

SMOS VOD data are only available since 2010, and the short period and noisy signal limit its current 

suitability for assessing trends in land surface phenology. 

4.2 Uncertainties in VOD and NDVI phenology 

NDVI is influenced by atmospheric contamination, and notably cloud cover largely reduces the 

number of valid NDVI observations in tropical areas (Fensholt et al. 2007; Rankine et al. 2017). Temporal 

compositing (e.g., semi-monthly or monthly maximums) or smoothing (gap-filling) is often used to reduce 
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the impact from atmospheric contamination in NDVI time series (Holben 1986; Zhang 2015). The 15-day 

temporal resolution of the GIMMS AVHRR NDVI inevitably will introduce uncertainties in the extracted 

phenological metrics (i.e., SOS and EOS) as compared to analyzes conducted on daily data. Also, the coarse 

spatial resolution may conceal details in the spatial domain (Zhang et al. 2017) with uneven levels of 

uncertainty between SOS and EOS (Zhang et al. 2018). Yet, the GIMMS AVHRR NDVI dataset has been 

widely used in detecting phenological changes, particularly in the Northern Hemisphere (Garonna et al. 

2014; Jeong et al. 2011; Piao et al. 2006; Xu et al. 2016). The changes detected from AVHRR time series 

spanning several decades are commonly reported to be at a rate of a few days, which is a change rate being 

much shorter than the temporal resolution of the composited dataset, as summarized by Garonna et al. (2016). 

The results are however valid, assuming that data uncertainties are randomly distributed over long periods, 

and patterns of change are prevalent for the Northern Hemisphere showing noticeable temperature-driven 

seasonal trends (Zhang et al. 2009; Zhang et al. 2004).  

Contrastingly, phenological changes in the dry tropics are often more spatially heterogeneous as potentially 

driven by more than one dominant variable (Garonna et al. 2016). Our study provides the first spatially 

comprehensive evaluation of GIMMS AVHRR NDVI phenological trends in the dry tropics by comparing 

with independent results from VOD data. It is by nature a difficult task to assess how severe is the impact 

from NDVI and VOD data uncertainties on phenological trend retrievals, as differences between metrics 

from NDVI and VOD can be caused by both data quality and the different sensitivity to greenness and 

canopy water content, combined with impacts from possible changes in climate and land management. 

However, areas of low correlation between detrended NDVI and VOD phenological metrics matches well 

with areas of widespread cloud cover, thus suggesting a cautious interpretation of the NDVI phenological 

trends reported here (Figure 5) and in previous studies (Buitenwerf et al. 2015; Garonna et al. 2016). We 

attributed the potential drivers only within areas of the dry tropics showing high SOS/EOS agreement 

between NDVI and VOD, which reduces the effects of data artifacts and significant uncertainties. Hence, 

we did not further explore the phenological trends and potential drivers from VOD data in areas of no 
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correlation with NDVI and in areas masked out based on a common NDVI/VOD seasonal amplitude 

threshold (here masked based on a threshold of 0.1). However, as VOD is less affected by atmospheric 

contamination (even cloud cover) and shows less saturation effects as compared to NDVI (Tian et al. 2016), 

VOD-based information is likely to contain interesting information on land surface phenology in the areas 

excluded here. Future studies on land surface phenology in these cloud-prone tropical regions should also 

explore the potential use of data from geostationary satellite systems (e.g. the Spinning Enhanced Visible 

and Infrared Imager carried by Meteosat satellites) producing more cloud-free observations as compared 

the polar-orbiting sensors with implications for phenology studies in the humid rainforests (Fensholt et al. 

2007; Fensholt et al. 2006; Guan et al. 2014; Julien et al. 2012; Yan et al. 2016a; Yan et al. 2017; Yan et al. 

2016b).  

4.3 Dry tropical phenological trends 

The land surface phenological trends of SOS assessed by NDVI during 1992-2012 (this study) show 

visually different spatial patterns with those reported by Garonna et al. (2016), who used the same dataset 

and methods but during 1982-2012. With a 10-year shorter period, our study shows visually more areas 

characterized by significant trends in SOS, for example, the significant delay in the N. African drylands 

(Figure 5b). Yet, also similar EOS trend patterns were observed between these two studies, for instance, the 

widespread significant delaying trend in N. Africa and the significant earlier trend in Brazil (Figure 5d). 

The difference in trends obtained between different periods is likely related to the vegetation response to 

climate variations/perturbations as herbaceous and woody vegetation in dry tropics are sensitive to water 

availability (Huber et al. 2011) and some species of woody vegetation can quickly die off due to a lack of 

rainfall in several successive years (Brandt et al. 2017b). Contrastingly, similar trend patterns during 1992-

2012 and 1982-2012 in some areas indicate relatively persistent shifts in vegetation structure/species 

composition and/or climate regimes. 

The large discrepancy between VOD and NDVI phenological trend patterns in both SOS and EOS (Figure 

6a, b) shows that ecosystem-scale vegetation changes may not always translate into uni-directional changes 
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in vegetation functional traits, highlighting the benefits of including independent and complementary data 

sources for studying land surface phenology. The combined use of VOD and NDVI can thus be used for a 

more comprehensively understanding of phenological changes as compared to using only a single dataset. 

For example, the Sahelian grasslands show similar phenology dates between VOD and NDVI dataset 

(Figure 4) but inconsistent long-term trends (Figure 7), which could be an indication of changes in 

herbaceous species (e.g., a change from horizontal to vertical leaf orientation may induce larger changes in 

NDVI (Mbow et al. 2013) than in VOD). Furthermore, VOD and NDVI even show some scattered areas of 

significant diverging phenological trends (notably in southern Africa and S. America; Figure 6a, b and 

supplementary Tables S12-S13), which could be caused by extensive land transformations such as large-

scale deforestation caused by cropland expansion in the Brazilian Cerrado (Lapola et al. 2013).  

4.4 Drivers and implications of observed phenological trends 

Understanding drivers of observed trends in land surface phenology across the dry tropics is 

important but also challenging. Rather than analyzing the per-pixel inter-annual development of land surface 

phenological metrics and potential drivers, (i.e., land cover change and dynamics in rainfall, fire, and woody 

vegetation), we here opted for a spatial approach based on spatial statistics of the potential drivers within 

the same land cover type and geographic region (Table 3-4). Our results provide evidence for the effects of 

trends and variations (IAV) in woody vegetation, rainfall, and fire events on phenological changes over the 

dry tropics. Woody encroachment was reported to be widespread across the tropical drylands (Brandt et al. 

2016; Brandt et al. 2018; O'Connor et al. 2014; Stevens et al. 2017) and significant negative trends in fire 

frequency have been documented for the tropics (Andela et al. 2017; Andela and van der Werf 2014), which 

are both consistent with the widespread phenological changes found in our study. 

Recent studies documented the widespread pre-rain green-up phenomenon in African deciduous forests 

(Ryan et al. 2017; Tracy et al. 2018), which suggest a decoupling of SOS of woody vegetation and the onset 

of the rainy season. The controlling process of the pre-rain green-up is still unclear (D. Stock 2017), although 

different environmental cues have been suggested to trigger the leaf emergence of woody vegetation in these 
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areas, including air humidity (Alemu and Henebry 2017b; Brown and de Beurs 2008; Do et al. 2005) and 

photoperiod (Ryan et al. 2017). In any case, the vegetation water consumption before rainfall onset is 

expected to come from ground water which is recharged from previous years’ rainfall. Therefore, these facts 

do not contradict the dominant role of rainfall variability on phenological trends for the southern African 

broadleaf deciduous forests as revealed by this study (Table 3-4). Moreover, the magnitude of leaf 

development during the pre-rain green-up period is usually smaller as compared to that during the rainy 

period (Ryan et al. 2017). Also, the specific phenological metrics calculated here were based on the middle 

point between the annual minimum and maximum VOD/NDVI values, which will consequently reduce the 

effect of pre-rain green-up from the trees while enhance the sensitivity to the rainfall-driven herbaceous 

layer. Our results highlight the importance of rainfall variability in the tropical land surface phenology, 

supporting the hypothesis that vegetation structure of seasonally dry tropical forests will be sensitive to 

present and future changes in rainfall regimes (Kara et al. 2017). Therefore, it is likely that a projected shift 

in rainfall regimes due to climate change (Feng et al. 2013; Seth et al. 2013) may introduce further changes 

in land surface phenology, as a consequence of changes in the coexistence between herbaceous and woody 

vegetation in dry tropical forest ecosystems (Zhang et al. 2019).  

Alterations in ecosystem functioning caused by land cover change are expected to impact vegetation in the 

form of an abrupt shift, after which the ecosystems would be still predominantly controlled by other factors, 

such as rainfall, in the tropical drylands. This mechanism could explain the limited impacts of land cover 

change in driving land surface phenological trends. Areas without any identified drivers for N. African 

(grassland, shrubland, and broadleaf deciduous forest) and N. Australia (shrubland, Table 3-4) indicate other 

forcing variables not included in the current analysis (e.g. grazing, temperature and radiation).   

5. Conclusion 

 We analyzed land surface phenological trends in the dry tropical regions (25°N to 25°S) during 

1992-2012 by a combined analysis of VOD and AVHRR NDVI datasets based on passive microwave and 

optical remote sensing systems, respectively. The findings represent a new way of mapping and 
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understanding recent changes in phenology of the dry tropical ecosystems building on the complementarity 

of the data sources used, being sensitive to different vegetation functional traits and characterized by 

different abilities to overcome noise-propagation in the phenology retrievals from atmospheric perturbations 

and saturation effects. We found a general delay of the VOD derived start of season (SOS) and end of season 

(EOS) as compared to NDVI derived metrics. Pixels characterized by significant phenological trends 

covered up to 20% of the study area for each phenological metric (SOS/EOS from VOD/NDVI), however 

showing large spatial differences in areas of significant trends between the two sensor systems. Temporal 

dynamics in rainfall, woody vegetation, followed by fire events and land cover change were identified to be 

the drivers of phenological trends (in decreasing order of importance), however varying across land cover 

types and sub-continental regions. Further research should be specifically designed to take advantage of the 

complementary biophysical bearing of VOD (sensitive to vegetation water content) and NDVI (sensitive to 

canopy greenness) for studies of land surface phenological changes and associated ecophysiology in the 

tropics, where the single use of optical sensor systems is often hampered by prevailing cloud cover. 
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List of figure captions 

Figure 1. Flow chart of the study involving extraction of VOD and NDVI phenological metrics, inter-comparison 

and analysis of drivers of phenological changes. 

Figure 2. Examples of VOD and NDVI seasonal variations during 2005 at (a) a grassland site (location: 15.25N, 15W) 

in northern Senegal and (b) a woodland site (location: 6.75N, 17.25E) in the southern Central African Republic. 

Crosses represent the VOD and NDVI raw values and lines represent smoothed seasonal curves using the Savitzky-

Golay filter. The solid points represent retrieved start and end of growing season as based on VOD and NDVI. The 

daily rainfall data (dark grey bars) are from the CHIRPS rainfall product.  

Figure 3. Land cover types of the dry tropics (25°N to 25°S), based on the ESA CCI land cover class data in 2000 

(representing the middle of our study period). The four subcontinental regions examined are indicated by blank 

bounding boxes. Light grey colored areas are masked according to information provided in Supplementary Figure S1 

a-d. 

Figure 4. Mean number of days of difference between (a) VOD SOS and NDVI SOS and between (b) VOD EOS and 

NDVI EOS during 1992-2012. Light grey colored areas are masked according to information provided in 

Supplementary Figure S1 a-d. 
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Figure 5. Linear trends in phenological metrics of VOD and NDVI (1992-2012) for SOS (a, b) and EOS (c, d). Pixels 

with significant trends (P < 0.05) are colored, while non-significant trends are shown in dark grey. The areal 

percentages of the three types of trends (i.e, earlier, later, and non-significant) for each selected sub-continental region 

(N: N. Africa, S: southern Africa, SA: S. America, A: northern Australia) and land cover type (G: grassland, S: 

shrubland, C: cropland, M: mosaic tree/shrub/grass/crop, D: broadleaf deciduous forest) are inserted as bar-plots. The 

width of bars indicates the relative size of each region and land cover type (wider means a larger areal size). Light grey 

colored areas are masked according to information provided in Supplementary Figure S1 a-d. 

Figure 6. Comparison of (a) SOS trends and (b) EOS trends between VOD and NDVI and (c) the combined mapping 

of significant trends in any of the phenological metrics. Pixels with significant trends (P < 0.05) are colored, while 

non-significant trends are shown in dark grey. The per-category areal percentages for each selected sub-continental 

region (N: N. Africa, S: southern Africa, SA: S. America, A: northern Australia) and land cover type (G: grassland, S: 

shrubland, C: cropland, M: mosaic tree/shrub/grass/crop, D: broadleaf deciduous forest) are inserted as bar-plots. The 

width of bars indicates the relative size of each region and land cover type (wider means a larger areal size). Light grey 

colored areas are masked according to information provided in Supplementary Figure S1 a-d. 

Figure 7. Correlation between VOD and NDVI derived SOS (a) and EOS (b) as well as VOD and NDVI phenological 

metric consistency during 1992-2012 as evaluated by the existence of a significant correlation (P < 0.05) in either SOS 

or EOS (c). The areal percentages of each category for each selected sub-continental region (N: N. Africa, S: southern 

Africa, SA: S. America, A: northern Australia) and land cover type (G: grassland, S: shrubland, C: cropland, M: mosaic 

tree/shrub/grass/crop, D: broadleaf deciduous forest) are inserted as bar-plots. The width of bars indicates the relative 

size of each region and land cover type (wider means a larger areal size). Light grey colored areas are masked according 

to information provided in Supplementary Figure S1 a-d. 
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Supplementary materials to “Trends of land surface phenology derived from passive microwave 

and optical remote sensing systems and associated drivers across the dry tropics 1992-2012” 

 

 

Figure S1. Different masks applied in the analyses. (a) Pixels with seasonal inundation > 10% of the spatial extent 

are shown in grey color. (b) Pixels with a seasonal amplitude > 0.1 for both VOD and NDVI are colored in green. (c) 

Pixels with mean annual value > 0.1 for both VOD and NDVI are colored in blue. (d) Pixels with double growing 

season by the VIP dataset are shown in grey color.  
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Figure S2. Comparison of results between VOD daily and VOD 15-day time series, as indicated by the coefficient of 

determination (R2) for (a) SOS and (b) EOS and the root mean square error (RMSE) for (c) SOS and (d) EOS. 
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Figure S3. Mean day of year (DOY) of (a-b) SOS and (c-d) EOS for VOD and NDVI, respectively, during 1992-

2012. 
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Figure S4. Standard deviation (S.D.) of the difference in (a) SOS and (b) EOS between VOD and NDVI during 1992-

2012. Light grey colored areas are masked according to information provided in Supplementary Figure S1a-d. 

 

Table S1. Joint occurrence of VOD and NDVI phenological trends for grassland in N. Africa. The upper cells are 

number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 0  0  18  

 1  0  62 

Sig. negative 0  0  10  

 0  0  4 

Non-sig. 1  2  484  

 4  11  433 

 

Table S2. Joint occurrence of VOD and NDVI phenological trends for shrubland in N. Africa. The upper cells are 

number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 25  0  193  

 41  0  180 

Sig. negative 0  1  8  

 0  0  35 

Non-sig. 33  8  862  

 47  17  810 
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Table S3. Joint occurrence of VOD and NDVI phenological trends for cropland in N. Africa. The upper cells are 

number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 45  6  197  

 14  3  164 

Sig. negative 1  1  5  

 0  5  31 

Non-sig. 61  6  951  

 28  22  1006 

 

Table S4. Joint occurrence of VOD and NDVI phenological trends for Mosaic tree/shrub/grass/crop in N. Africa. The 

upper cells are number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 2  0  31  

 8  0  52 

Sig. negative 1  2  2  

 1  1  13 

Non-sig. 16  3  338  

 4  14  302 

 

Table S5. Joint occurrence of VOD and NDVI phenological trends for Broadleaf deciduous forest in N. Africa. The 

upper cells are number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 107  5  433  

 121  3  659 

Sig. negative 2  0  28  

 0  0  18 

Non-sig. 164  28  1494  

 112  19  1329 
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Table S6. Joint occurrence of VOD and NDVI phenological trends for grassland in S. Africa. The upper cells are 

number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 0  1  5  

 0  0  38 

Sig. negative 0  8  11  

 0  0  9 

Non-sig. 5  106  329  

 6  7  405 

 

Table S7. Joint occurrence of VOD and NDVI phenological trends for shrubland in S. Africa. The upper cells are 

number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 1  1  28  

 4  0  136 

Sig. negative 0  9  49  

 1  5  50 

Non-sig. 24  108  1390  

 35  18  1361 

 

Table S8. Joint occurrence of VOD and NDVI phenological trends for cropland in S. Africa. The upper cells are 

number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 1  1  10  

 1  0  50 

Sig. negative 1  0  16  

 1  3  27 

Non-sig. 31  7  397  

 12  12  358 
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Table S9. Joint occurrence of VOD and NDVI phenological trends for Mosaic tree/shrub/grass/crop in S. Africa. The 

upper cells are number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 1  1  0  

 1  0  9 

Sig. negative 0  1  6  

 1  0  0 

Non-sig. 10  7  121  

 8  7  121 

 

Table S10. Joint occurrence of VOD and NDVI phenological trends for Broadleaf deciduous forest in S. Africa. The 

upper cells are number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 23  8  144  

 22  5  193 

Sig. negative 54  16  256  

 4  13  150 

Non-sig. 254  166  2337  

 236  80  2555 

 

Table S11. Joint occurrence of VOD and NDVI phenological trends for grassland in S. America. The upper cells are 

number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 1  5  30  

 0  2  7 

Sig. negative 2  6  6  

 5  4  33 

Non-sig. 8  22  208  

 17  35  185 
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Table S12. Joint occurrence of VOD and NDVI phenological trends for shrubland in S. America. The upper cells are 

number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 2  3  45  

 3  0  15 

Sig. negative 18  11  63  

 57  9  169 

Non-sig. 102  87  928  

 784  39  783 

 

Table S13. Joint occurrence of VOD and NDVI phenological trends for cropland in S. America. The upper cells are 

number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 7  5  49  

 7  2  32 

Sig. negative 4  8  79  

 20  3  123 

Non-sig. 55  139  794  

 125  33  795 

 

Table S14. Joint occurrence of VOD and NDVI phenological trends for Mosaic tree/shrub/grass/crop in S. America. 

The upper cells are number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 2  1  15  

 1  3  8 

Sig. negative 2  4  6  

 0  5  13 

Non-sig. 4  15  147  

 10  24  132 
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Table S15. Joint occurrence of VOD and NDVI phenological trends for Broadleaf deciduous forest in S. America. 

The upper cells are number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 3  1  20  

 0  0  12 

Sig. negative 0  0  7  

 2  0  10 

Non-sig. 12  15  207  

 19  4  218 

 

Table S16. Joint occurrence of VOD and NDVI phenological trends for grassland in northern Australia. The upper 

cells are number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 0  0  5  

 0  0  1 

Sig. negative 0  0  20  

 0  1  21 

Non-sig. 2  3  74  

 3  1  77 

 

Table S17. Joint occurrence of VOD and NDVI phenological trends for shrubland in northern Australia. The upper 

cells are number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 2  0  27  

 16  1  86 

Sig. negative 3  10  69  

 26  4  43 

Non-sig. 46  28  957  

 107  31  828 
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Table S18. Joint occurrence of VOD and NDVI phenological trends for Mosaic tree/shrub/grass/crop in northern 

Australia. The upper cells are number of pixels for SOS and the lower ones are for EOS. 

 VOD SOS/EOS 

Sig. positive Sig. negative Non-sig. 

NDVI 

SOS/EOS 

Sig. positive 0  0  2  

 0  0  15 

Sig. negative 0  4  52  

 0  1  28 

Non-sig. 2  43  474  

 11  16  506 

 


