
Next-generation cluster management architecture
and software

Paul Peltz Jr., J. Lowell Wofford
High Performance Computing Division

Los Alamos National Laboratory
Los Alamos, NM, USA
{peltz,lowell}@lanl.gov

Abstract—Over the last six decades, Los Alamos National
Laboratory (LANL) has acquired, accepted, and integrated over
100 new HPC systems, from MANIAC in 1952 to Trinity in 2017.
These systems range from small clusters to large supercomputers.
The high performance computing (HPC) system architecture has
progressively changed over this time as well; from single system
images to complex, interdependent service infrastructures within
a large HPC system. The authors are proposing a redesign of
the current HPC system architecture to help reduce downtime
and provide a more resilient architectural design.

Index Terms—Systems Integration; Systems Architecture;
Cluster

I. INTRODUCTION

High performance computing (HPC) systems have always
been a challenge to build, boot, and maintain. This has only
been compounded by the needs of the scientific community
upon the HPC architectural design because FLOP-centric
applications are no longer the driving force behind modern
HPC procurement. The modern scientist’s complex applica-
tions have necessitated the need for burst buffers, network
gateways (visualization and real-time instrument data), I/O
forwarders, and file system caching support services which
have in turn greatly increased the complexity of the HPC
systems. Vendors are required to provide a flexible HPC
architecture for a diverse customer base to integrate into
their infrastructure. However, this flexibility comes at a cost.
The variety of support services that are needed now have
led to a more complex HPC architecture. Many of these
new support services are interdependent with other services
and these services have to start up in the right order. This
complexity has greatly increased the time it takes to boot the
HPC system. Previous generations of HPC systems would boot
up in a matter of minutes, where the current generation of
HPC systems take approximately two hours to boot. The long

This work has been authored by an employee of Los Alamos National
Security, LLC, operator of the Los Alamos National Laboratory under
Contract No. DE-AC52-06NA25396 with the U.S. Department of Energy. The
United States Government retains and the publisher, by accepting this work
for publication, acknowledges that the United States Government retains a
nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce
this work, or allow others to do so for United States Government purposes.
Los Alamos National Laboratory strongly supports academic freedom and a
researcher’s right to publish; however, the Laboratory as an institution does not
endorse the viewpoint of a publication or guarantee its technical correctness.
This paper is published under LA-UR-17-28282.

and unpredictable nature of booting large-scale HPC systems
has created an expensive problem to HPC institutions. The
downtime and administrator time required to boot has led to
longer maintenance windows and longer time before these
systems can be returned to users. A fresh look at HPC system
architecture is required in order to address these problems.

II. CURRENT HPC SYSTEM
ARCHITECTURE

The current HPC system design is no longer viable to
the large-scale HPC institutions. The system state is binary,
because it is either up or down and making changes to the
system requires a full system reboot. This is due to a number
of reasons including tightly coupled interconnects, undefined
API, and a lack of workload manager and system state
integration. Overcoming these problems require a redesign
of the current HPC architecture. Typical HPC systems are
designed as shown in Figure 1.

The problem with this design is that even though it is
designed to provide redundant management services, only one
of these management systems are active at a given time.
Active-Passive failover adds additional risk and burden to
the management of the system, which normally outweighs
its benefits of preventing single-point failures. Only having
one active management node also places the entire burden
of managing, booting, and supporting the HPC system onto
one server. In order to scale to larger node counts, secondary
boot servers (sub-masters) are necessary in order to provide a
scalable boot solution; otherwise there is too much congestion
from one server and will cause the boot to fail. This can also
be addressed by means of a tiered boot, in which the system
is incrementally booted in units in order to not overload the
management server. All of the aforementioned support service
types (such as burst buffers) only add to the complexity of
booting the system.

III. FUTURE HPC SYSTEM
ARCHITECTURE

In order to address the problems detailed in the previous
section, we need to take a fresh look at HPC system design.
By ”fresh look” we do not mean a reinvention of the wheel,
however. We can leverage much of what has been done
with previous generations of HPC systems and also what the



Fig. 1. Current HPC Design.

cloud management community are doing. One of the things
that cloud management systems do well is scale horizontally
by providing load-balanced communication paths from the
underlying node farm to the management servers. This type
of design removes the single management server bottleneck
and provides scalability to handle ever-growing system sizes.
LANL’s Roadrunner [7] system was able to boot in under
20 minutes, and used industry standard tools xCAT [19] and
Warewulf [18] to accomplish this. Its success can be directly
attributed to the division of duties of service nodes from
compute nodes. Service nodes were managed separately from
compute nodes, but from the same management system. Speed
increases in compute node boot times were achieved by close
collaboration between IBM and LANL to develop a multicast
boot system which treated all compute nodes as boot servers
to help distribute the images across the system. This greatly
improved the speed and reliability of system boot. Building
from the lessons learned in these two examples, we propose
the following design to meet the future needs of large HPC
systems.

This design alleviates many of the shortcomings of the
current system and provides a scalable framework to expand
upon. Starting from the top of Figure 2, Active-Passive HA
is replaced with a management cluster that handle system
management functions. This management cluster will provide
distributed services to the rest of the system and to systems
administrators; this may be sized as needed according to the
scale and criticality of the HPC system under management.
All system functions should be provided through both CLI
and GUI interfaces that interact through an ABI with the sys-
tem software. This provides conflict protection; for example,
against multiple administrators executing the same commands
on different management nodes. It should be possible to

upgrade individual management nodes and provide backwards
compatibility for minor upgrades of the system software.
Although it is understood that major upgrades have a more
drastic impact upon the system and will necessitate the rest of
the system being shut down, these should happen infrequently,
no more than two times a year.

A. Scalable Service Nodes

The scalable services nodes (SSN) will be the major work-
horses for the management cluster, providing such services
as boot support, log aggregation, metrics collection, workload
scheduling and job launch, etc. These SSNs should be backed
by an object storage system such as CEPH [3] to provide a
scalable storage system that can scale in capacity/bandwidth
with the number of SSNs required to support the system. SSNs
would provide distributed services with backward-compatible
ABI interfaces so that minor upgrades can be performed via
rolling upgrades of each SSN, again with major and more
disruptive upgrades requiring a shutdown of the management
cluster. Such major upgrades should be limited to no more than
six times a year. It may also be beneficial for these nodes to
be stateful and not rely on any other service to maintain state.
A configuration management system should be employed to
maintain the state of the SSNs to ensure proper configuration.

B. Service Nodes

Service nodes that provide near-compute resources to the
HPC system, such as I/O forwarders, will not necessarily
be supported by this distributed SSN model. However, they
should reroute services to other available service nodes that
provide the same functionality. These service nodes would
likely require more frequent patches and configuration changes
so rebooting of these may be more frequent. Again, they



Fig. 2. Future HPC Design.



should utilize rolling updates with backward-compatible ABIs
so that changes do not require a reboot of the entire system.

C. Compute Nodes

Compute nodes are the most volatile components of the
system, and therefore the priority on these components should
be to return them to service as quickly as possible with no
disruption to the running system. Compute nodes need to be
rebooted for a variety of reasons such as job failure, OS image
changes, and BIOS changes.

D. Management Network

An upgrade of the management network is also desirable
for future HPC systems. The management network has been
a long neglected technology that has traditionally been under-
provisioned and therefore underutilized. With an upgrade of
the core management network with smart switches, it would
allow the site and vendor to offload certain I/O traffic off
of the HSN and onto the management network. This would
include but not limited to: pub/sub services for logging, metric
collection for performance data, scheduler communication,
and booting of nodes while the system is running jobs to
prevent disrupting the HSN. In order to insure that the site does
not overload the management network and prevent critical data
communication over the management network, appropriate
QoS settings should be placed on the network.

IV. BOOT OPTIMIZATION STRATEGIES

This design provides a separation of services and eliminates
the binary nature of the HPC system state. This allows
compute nodes to be able to be rebooted freely for any purpose
that may be required by users or administrators. Because
of this requirement it is paramount that these nodes can be
rebooted quickly, and that should occur whether rebooting
one or hundreds of thousands of nodes. In addition to being
quick, boots must also be reliable and tolerant of failure.
Accomplishing this task will require research, both of past
successful strategies and innovative ones.

A. Local Storage

The strategy that provides the greatest scalability is to
simply boot a compute node from local storage. Previously
this meant having a large hard disk drive local to the system;
these were frequently slow, used too much power, generated
heat, and consumed valuable space within the chassis. With the
introduction of the M.2 [10] form factor, all of these concerns
are substantially diminished. Such local storage could be used
in two different ways. The first would be to boot the entire
Operating System(OS) directly from the local storage device.
However, in this scenario configuration drift between nodes
becomes a problem. The storing of the OS on the local device
would also hamper the ability to boot multiple OS images
because the device has limited space. The second, preferred
option would be to use the local storage to hold a stage-one
[9] boot image, which gets the node up enough for it to the
pivot into its final OS image. Distributing this initial stage-
one image to all nodes may be challenging as the scale of

the system increases. Possible solutions are to use the Redfish
[16] API over the management network to seed the M.2 device
initially and also to verify its presence when the compute node
is booted after being serviced. If using the Redfish API is not
possible then distribution of the stage-one image could fall to
the top-of-rack switches that control the management network,
which leads to the next option.

B. Top-of-Rack Switches

Top-of-rack (TOR) Ethernet switches are now capable of
doing much more than just handling network traffic. They
are now mini-servers capable of running a customized Linux
environment. TOR switches also represent a scalable system
unit, as they tend to scale with the number of racks in an HPC
system. With switches now providing advanced functionality
and being a scalable unit design, we should use them to help
boot the system. Using a project such as ONIE [12] as an
example, we can hijack the DHCP and PXE boot process on
the switch and deliver a small stage-one image to the compute
nodes to boot from. Using the TOR switch would also provide
a solution for smaller HPC systems that may not need the
local storage or a motherboard that does not have a M.2 slot,
therefore both strategies should be investigated.

C. Multicast

Another option that has been successful for LANL in the
past [17] was to use multicast TFTP to distribute the work of
booting the compute nodes across the system. Each compute
node would be activated as a TFTP server for a short time and
then continue to boot. This method helps distribute the work
required to distribute the stage-two image to every compute
node in the system.

D. kexec

A more innovative approach may be to use kexec [8] to
reboot a compute node into a new OS without the node
having to reload from the BIOS on up. Booting from the
BIOS up adds a large amount of additional time that is not
necessary under most circumstances. If there are no BIOS
changes required for the reboot, there is no reason why the
node should have to incur the additional time to reload the
BIOS. This would only be effective once the system is booted,
but it could be a very fast method to switch between running
OS environments on compute nodes.

E. Torrent

Using the torrent protocol to do peer-to-peer distribution of
the boot images is another method that has been attempted
in the past by ROCKS [2] in their Avalanche installer. This
could provide the ability of all compute nodes to help deliver
the stage-two images to each of its peers for a short period of
time and then continue booting. This is similar to the multicast
method mentioned previously.



F. Coreboot

A research project that was originally developed at LANL
and now being pursued out of the Google realm is Coreboot
[4]. This replaces the existing BIOS with a lightweight, secure,
and highly optimized Linux payload to drastically increase the
boot times of individual nodes. This alone has shown that boot
times can be down to as little as 3 seconds. Coreboot also has
support for Ethernet, Myricom, and Quadrics interconnects for
netbooting. This solution has great promise for speeding up
boot times, but processor vendors would need to support this
project to make it a viable solution.

V. A REVIEW OF
CURRENT SOLUTIONS

Now that we have an architectural design for the system,
do any of the current HPC system management solutions meet
our requirements? We will review a few of the major offerings
that are available, which are both commercial and open
source solutions. This is not a comprehensive list of solutions,
as many large organizations have also developed their own
software to meet their own site’s unique requirements. LANL
is also using a customized version of Perceus [15] which is a
defunct branch of warewulf and Sandia National Laboratory
uses oneSIS [11] for example.

A. Warewulf

Warewulf is an open source cluster management toolkit
originally developed at Lawrence Berkely National Labora-
tory. It has proven very successful in the past for managing
small to mid-sized HPC systems, but it has been difficult to
adapt to the large system space due in part to it’s lack of focus
on scalable management infrastructure. For instance, warewulf
has only marginal support for distributed services nodes and
the current main branch only supports x86 architecture, though
there is a development effort to incorporate ARM as well.

Warewulf is written in object-oriented Perl, and its manage-
ment data store can be backed by multiple database services
through a database abstraction layer. The data model is exten-
sible, allowing for feature additions and modification of basic
system functionality. The core functionality of warewulf is
limited to keeping an inventory of nodes, managing filesystem
images, and implementing a PXE boot process. It provides
boot provisioning by auto-configuring basic services such as
DHCPD, BIND and in.tftpd to provide the relevant portions
of the boot process. Images are provided to nodes through an
Apache web service that pulls them from the backing database.

While warewulf was designed to be modular and extensible,
it’s underlying design was not geared towards some of the
current challenges such as multi-architecture clusters and
alternative boot methods. Incorporating these features would
require software architecture changes that extend beyond the
extensibility of the platform. Additionally, there has been
little movement in the open source community to continue to
develop and adapt warewulf to newer HPC system challenges.

B. OpenStack

OpenStack has gained a lot of popularity in the hyperscale
world for managing both private and public cloud systems.
OpenStack does extremely well at handling elastic demand
of resources to quickly respond to load requirements for
companies to manage their infrastructure. However, these are
loosely coupled systems tend to scale well horizontally, but
not as a tightly interconnected HPC system. There have been
some forays into crossing over HPC into OpenStack [6]. Most
of these systems are focused on diverse scientific workload
to address a multitude of use cases. HPC system sizes that
have deployed OpenStack are not typically large either and
until ironic fully supports diskless booting, the compute nodes
do require to be provisioned by Ironic which would greatly
increase the boot time of compute nodes. The complexity and
rapid development pace of OpenStack and its ever growing
number of components is also a concern. However, only a
subset of the OpenStack components could be used to reduce
that complexity.

C. xCAT

xCAT is an open source cluster management suite that has
a somewhat active development community and is backed by
IBM. Compared to warewulf, it aims to be much more feature
complete, integrating control of switches, PDUs and BMCs,
and providing support for x86 and PowerPC. It also has native
support for multiple modes of deploying service nodes for
large scale HPC systems.

The degree to which it is endorsed by IBM has proven
to be both a benefit and a drawback. Major vendor support
means that development on xCAT has continued to advance,
and has incorporated many advanced features. On the other
hand, the association with IBM tends to push other vendors
away who want to avoid adding value to a competitor. As
a result, many of the more advanced features of xCAT are
specific to systems running IBM hardware. Additionally, there
is a push in xCAT development to emphasize technologies that
advance IBM, such as PowerPC architecture.

xCAT has a large code base, and has not been designed for
easy extensibility in the way that warewulf and other platforms
have been. As a result, adding new major boot methodologies,
image management features and hardware platforms requires
a good deal of direct modification to the code. This makes
modifying xCAT with new major features a daunting task.
xCAT has been performing scalability tests to reach exascale
systems, but to date these tests have only been performed with
IBM hardware.

D. Cray Linux Environment Software

Cray Linux Environment (CLE) [5] system management
software has historically been specially designed to support its
unique hardware platform. Because of this fact, it is debatable
if the software should be mentioned in this paper. However,
they are one of the few companies that can demonstrate
scalability of their software design on large capability class
HPC systems. Cray’s release of CLE 6.0 was intended to



conform to industry standards and open source software solu-
tions to manage their HPC system. In some ways this was a
successful venture because of the use of RPMs, YAML files
to define configuration options, Ansible [1] for configuration
management, and chroot based images for different node types
in the system. Unfortunately, each of these solutions were
implemented in a non-standard way or obfuscated by custom
tools to manage these various tools. The complexity of Cray’s
implementation of these tools have caused a steep learning
curve for HPC administrators which creates a challenge for
training new employees into organizations that operate Cray
machines.

There are two important lessons learned from Cray’s CLE
6.0 however that are important to capture here. The first is the
concept of post- vs. pre- configuration of the node state on
the system. Cray decided to try and implement a purely post-
configured node state as defined by Ansible after the node
boots. The node in the system boots a completely generic
node image and then intends to specialize the node post-boot
to provide a specific service such as an LNET router. There
were many challenges to this approach that were discovered
including: failed boot due to broken Ansible plays, slow
performance of Ansible on KNL nodes, and Ansible play bloat
which increases boot time. The lesson learned here is that disk
space is cheap, but time is not. The disk space required to host
node specific images greatly outweighs the added time to do
post-configuration of a node. Cray’s monolithic boot procedure
compounds the other issues and adds to a fragile and long boot
process if there is a system interrupt event.

Node image management and state is a complex problem
and Cray developed two robust tools to address this, the Image
Management and Provision System (IMPS) and Node Image
Mapping Service (NIMS). These two tools do an excellent
job at managing the images by defining them through recipes
and by mapping those images and configuration definitions to
individual nodes. Unfortunately, these tools are unique to the
Cray, but their philosophy and design are important to consider
for the future.

VI. FUTURE ARCHITECTURAL SOLUTIONS

As HPC systems move into exascale and beyond the man-
agement and service node infrastructure required to support
the system could be large enough to be considered their
own cluster. Therefore they should be treated as such instead
of trying to manage both the management system and the
compute system under the same software stack. Because of
this, it is necessary to also rethink the system management
software as well as the hardware architecture. The aforemen-
tioned software is either targeted for small to medium clusters,
custom hardware, or hyperscale systems. The future of HPC
systems management could and probably should be a hybrid of
these management systems. The proposed future HPC system
architecture could be divided into three separate management
zones.

A. Management Cluster

Traditional HPC management systems are monolithic and
difficult to install and maintain. All of the components that
are required are loosely connected and dependencies are not
well defined. If instead these components were separated out
and managed independently as micro-services it would allow
the entire management stack to run on a basic OS and all of
the components necessary to administer the system would be
deployed as containers for virtual hosts. Two approaches to
this could be OpenStack or a micro-service cluster solution
such as OpenShift [14] which is a Docker and Kubernetes
deployment engine. This methodology could enable some of
the requirements listed above which would allow for rolling
reboots of management services when there are updates.

A scalable design also needs to take into account for smaller
machines that do not want to incur a large cost in system
management overhead. Uptime may not be a priority for some
institutions, so this should be taken into consideration in the
design requirements. A 3+ node management cluster does
not necessarily need to be running on physical hardware. If
the clustering of the services were also run in containers or
virtualized then the three node cluster could all be running
on one physical node. Even the scalable service nodes could
be virtualized on the same physical hardware. OpenStack
however does not scale down as well which may make it more
costly at a small scale.

B. Service Support Nodes

The services these nodes provide tend to be more closely
tied to running jobs on the system. They provide support
services such as I/O forwarding, network routing, burst buffers,
etc. Since these services are typically tied to physical hardware
such as network interconnects and SSDs that the services these
nodes provide can be shared by multiple jobs running on the
system, it might not lend itself well to being treated as a
micro-service. The services these nodes provide also tend to
require the most updates and changes to them. Therefore, these
nodes need to be drained and once idle reboot them into a new
configuration or software version and then returned to service.

C. Compute Nodes

Compute nodes are extremely volatile and have the highest
failure rates of any component of the system. Therefore,
expectations are that they will be rebooted the most often.
Other than post-boot configuration of the compute node to
prepare it for service, the next item that continues to cause
long delays in boot time is the mounting of various file systems
either within the HPC system or from external file systems
outside of the HPC system. Depending on the number of
clients attempting to mount and the number of file systems
there are to mount, it could cause delays in the order of
1-5 minutes of a compute node to mount everything that
is required for it to be healthy. Research needs to be done
to either reduce the number of mount requests or remove
the file system mount requests completely by the use of I/O
forwarding layers.



D. System Management Software

In order to scale up to 10s of thousands of nodes and support
varying hardware vendors and CPU architectures, the solution
must support and run under different CPU architectures, e.g.
arm, ppc, x86 64, and be modular in design. The modular
design component is important so that it can interface into pro-
prietary boot systems that vendors may provide. If this is the
case then the vendors need to provide an API into their boot
system and a module can be built to work with the vendor’s
API. This modular design will also be useful for heterogeneous
system designs in which different boot optimization techniques
would be required. Separate boot implementation may also be
useful for in-production reboots vs. system quiesced reboots
of compute nodes. While the system is running jobs it would
be desirable to use the management network rather than the
high-speed network to boot the node to keep from disrupting
running jobs.

VII. FUTURE SOFTWARE MANAGEMENT SOLUTION

In order to address the needs of the future systems and
replace legacy cluster management solutions, LANL has de-
signed a new cluster management tool named Kraken [20].
Kraken addresses the needs above as a modular and cluster
management solution capable of supporting multiple architec-
tures. Kraken is written in Go and supports running on any
architecture for which the Go language has a compiler.

Kraken takes a novel approach to cluster management.
Rather than acting as a front-end to basic cluster booting
services, as traditional cluster management solutions have
done, Kraken provides its own scalable microservices for basic
tasks like system PXE boot. This approach allows Kraken to
easily scale out boot services on demand.

Kraken provides a framework for distributed system au-
tomation. At its core, Kraken is a highly flexible distributed
state engine. It maintains the latest intended state of the
cluster, tracks the current state of the cluster, and is capable
of determining how to converge current state into the intended
state. It achieves asynchronous state convergence through an
eventual consistency model that has proven its ability to scale
in large environments [21], [22]. The state engine approach
provides a high level of flexibility and modularity while also
providing new ways to handle difficult automation tasks on
clusters.

Any module introduced into the Kraken system can do any
number of the following tasks: 1) create new system state
variables to track; 2) declare its ability to discover the current
value for a system state variable; and, 3) declare its ability to
“mutate” a state variable from one value to another, e.g. the
ability to mutate the system power from OFF to ON. This
provides for a powerful and flexible mechanism to extend man-
agement capabilities. By creating a compact module API, we
are able to rapidly develop, test and assess different boot and
management approaches and make per–cluster determinations
on the desired management methodologies.

In addition to providing a flexible module framework, the
design of Kraken provides a centralized mechanism for achiev-

ing automation of cluster management tasks. By providing the
ability to automatically mutate the system state, and further
to define and extend what system state is comprised of, a
wide array of system automation are easily attainable. For
instance, an image management module can handle a rolling
update process by providing the necessary state mutation steps
required to safely transition the state of a node from running
one image version to running another. Similarly, functionality
can be added to handle automated recovery from failure
states (where possible), use different methodologies during
different phases of system life-cycle (e.g. cold vs warm boot),
and provide different management capabilities to hardware of
different architecture or purpose within the same cluster.

VIII. CONCLUSION

One of the big challenges in redesigning the HPC system
is the balance between ”reinventing the wheel” and using ”the
right tool for the right job”. There are several options available
for managing clusters, some are commercial solutions, some
open source, or vendor specific solutions. Many of these
solutions can manage and boot a system, but at the cost of
complexity, scaling limitations, or solutions that are difficult
to maintain. A common system management solution would
be ideal, but reaching such an agreement among institutions
and vendors on the solution has historically been difficult.
However, there needs to be a movement in evolving the system
management framework to make it more scalable and more
resilient. OpenHPC [13] provides a promising start to this
attempt, but at present it only contains xCAT and Warewfulf
as system management solutions. LANL intends that this
new development effort with Kraken can improve the current
offerings within OpenHPC for cluster management. In order
for this to be successful however a collaborative effort between
institutions and vendors is critical to the success of this new
ambitious project.

ACKNOWLEDGMENTS

The authors would like to thank Quellyn Snead, Daryl
Grunau, Cory Lueninghoener, Michael Jennings, Sean Blan-
chard, and Tim Randles for their input on this paper. Many of
the topics and ideas came out of a number of meetings and
brainstorming sessions that lead to the writing of this paper.

REFERENCES

[1] Ansible, 2018. https://www.ansible.com.
[2] Base users guide, 2018. http://central6.rocksclusters.org/roll-

documentation/base/6.1.1/roll-base-usersguide.pdf.
[3] Ceph, 2018. http://ceph.com/.
[4] Coreboot, 2018. https://www.coreboot.org/.
[5] Cray publications, 2018. https://pubs.cray.com/discover.
[6] Hpc openstack, 2018. https://www.openstack.org/assets/science/OpenStack-

CloudandHPC6x9Booklet-v4-online.pdf.
[7] Ibm roadrunner, 2018. https://en.wikipedia.org/wiki/IBM Roadrunner.
[8] Kexec, 2018. https://en.wikipedia.org/wiki/Kexec.
[9] Linux startup process, 2018. https://en.wikipedia.org/wiki/Linux -

startup process.
[10] M.2, 2018. https://en.wikipedia.org/wiki/M.2.
[11] onesis, 2018. https://en.wikipedia.org/wiki/OneSIS.
[12] Onie, 2018.
[13] Openhpc, 2018. http://www.openhpc.community/.



[14] Openshift, 2018. https://www.openshift.com/.
[15] Perceus, 2018. https://github.com/perceus.
[16] Redfish api, 2018. http://redfish.dmtf.org/.
[17] Roadrunner: Hardware and software overview, 2018.

http://www.redbooks.ibm.com/redpapers/pdfs/redp4477.pdf.
[18] Warewulf - scalable, modular, adaptable systems management, 2018.

http://warewulf.lbl.gov/.
[19] xcat, 2018. https://xcat.org/.
[20] kraken, 2018. https://www.github.com/hpc/kraken/.
[21] W. Vogels, ”Eventual Consistency,” Communications of the ACM, vol.

52, no. 1, 2009.
[22] D. Terry, ”Replicated Data Consistency Explained Through Baseball,”

MSR Technical Report, 2011.

APPENDIX

A. Abstract

“This paper is not paired with an artifact.”


